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Abstract

Extended mesh and enhanced mesh architectures are highly versatile interconnection
networks. The vulnerability of these architectures provides scope for its utility in various
applications such as data communication, intruder locating, data security etc. In this paper we
investigate the toughness and maximum extension of certain ¢-tough sets of the extended mesh
architecture and the enhanced mesh architecture.

1. Introduction

Interconnection network utilization have become the basis of every other
economic activity elaborating the need for its efficient performance. In the
event of negative exploitation of certain nodes of the network, if these nodes
have a small degree or if the remaining segments are well-connected, then
the network can very well perform without much loss in efficiency. If these
nodes have relatively large degree they can even disconnect the network.
Hence the efficiency of the network relies on its remaining segments or
unexploited segments. Therefore, a hierarchical grouping process which
assesses the network performance as well as relays a risk propagation
predicting system thus issuing an early warning to nodes which could be
influenced by those negatively exploited is necessary. In this paper we
establish a graph theory based network vulnerability hierarchical grouping

process, namely, toughness and maximum extension of a ¢-tough set of a
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graph and investigate the same for extended mesh architecture and enhanced
mesh architecture.

1.1 Preliminaries and Literature Survey

Toughness is a measure for the vulnerability of a graph. It estimates how
closely the vertices of the graph are associated with each other. Toughness of
graphs was introduced by Chvatal [3] to study the hamiltonicity property of
graphs. Formally, the toughness of a graph G is defined as follows:

Definition 1. Toughness [3] of a graph G is defined as the real number
T > 0 such that it is the minimum of the ratio of the number of vertices in the
cutset S to the number of components in G \ S taken over all possible
cutsets S of G.

_ o 1S
t—mmm(G\S),VScV (1)

Suppose S is a cutset of a connected graph G, then o(G \ S)> 2 and
| S| = k. Therefore, the relationship between the connectivity and toughness

of a graph is described in the following theorem:
Theorem 1 [3]. If G is not complete, then t < %

Plummer [10] studied the relationship between toughness and n-
extendibility of a graph G in view of classifying graphs with large toughness
as well as graphs with toughness less than 1. Douglas et al. [1] determined
the time complexity of recognizing a ¢-tough graph to be NP-hard. Woeginger
[4, 6] studied the toughness of split graphs and determined a polynomial time
algorithm to generate the same. Brouwer [2] studied the relationship between
toughness and spectrum of a graph. Goddard [11] investigated the toughness
of cubic graphs. Later, Cynthia et al. [8] investigated the toughness of cyclic
split graphs and generalised prism graphs. Xiaofeng Gu [12] derived a tight

lower bound for the toughness of (n, d, A)-graphs moving closer to the

toughness conjecture of Brouwer.

We have introduced the concept of extension of a ¢-tough set of a graph

and hence the maximum extension of the same.
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Definition 2. A ¢-tough set [9] of a connected graph G, denoted as S;, is
defined as a cutset S < V(G) which satisfies the following equation:

|51

tzm,tZT

Definition 3. For a connected graph G, a t'-tough set S; is called an

extension [9] of a ¢-tough set S; if whenever t' <t, S < S'.
(@) If t' = t, then Sy is called a weak extension of S;.
(i) If t' < t, then Sy is called a strong extension of S;.

Definition 4. A ¢, -tough set S; = is called a maximum extension of a -

tough set S; if there does not exist a ¢'-tough set Sy such that ¢, <¢,, and
StO ) Stm.

Definition 3 and definition 4 help to identify a series of supersets of
S, S8 =85, c...c S such that the toughness value decreases
simultaneously (i.e.), ¢ <t <y <...<{t,. The set S; can be identified as the

set of negatively exploited nodes of the network and therefore depending on

the stature of G \ S; the performance efficacy of G can be assessed. In view
of predicting the risk propagation of S, the supersets S;, S, ..., S; fall

under the risk category and so an early threat warning can be issued to each

of the supersets hierarchically.

2. Toughness and Maximum Extension of Some t-Tough Sets of the
Extended Mesh Graph EX(n, n), n > 2

The extended mesh graph [7] EX(n, n) of dimension n xn is derived
from a mesh graph M(n, n) of dimension n x n by adding two intersecting

edges to each of the bounded face of the mesh graph. The vertex set of
EX(n, n) is denoted as follows:

V(EX(n, n)) = {v;;,1 < i, j < n}
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Figure 1. The Extended Mesh Graph EX(4, 4).
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Remark 1. The minimum toughness of the extended mesh graph

EX(3, 8) is 1.25 (i.e.),

t(EX(3, 3)) = 1.25

Figure 2. t-Tough Set S, and the Components of EX(3, 3) — S;.

We derive the toughness of EX(n, n), n >3 following which we will

investigate the maximum extension of certain ¢-tough sets and infer the

vulnerability of the graph.

Theorem 2. The minimum toughness of the extended mesh graph

EX(n, n), n >3 is 1.5.

Proof. By the construction of EX(n, n), (EX(n, n)) = 3, which implies
k < 3. Hence, 1 < 1(EX(n, n)) <1.5. We prove that this bound is sharp by

contradiction. Consider the following cutsets of EX(n, n).
1
S = {vr2, va1, Uzo}
2
S§% = {Ul(n—l)’ U2n» vZ(n—l)}

s? = {Un-1)1> V(n-1)2> Vn2}
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S* = W10 Y1) (n-1)> Un(n-1)} (5)
Then,

| S| _ |52 _ B

o(EX(n, n)-S')  o(EX(n, n)-S?)  o(EX(n, n)- S%)

_ El _3 6
o(EX(n, n)- 8% 2 ©

Suppose S° is a cutset of EX(n, n) such that

| 5° ]
o(EX(n, n) - S°)

<2 @

Then S® is classified as follows:

Type 1. S® consists of vertices of degree 5 and 8. Without loss of
generality, the smallest cutset of this type is

5
S? = {vy g, U13, Vg1, Vg3, V31, Uga} 8)

Figure 3. A Type 1 Cutset S° and the Components of EX(n, n) - S5,

It follows from figure 3 that
o(EX(n, n)\ §%) = 2 9)

and
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| 5° ]
o(EX(n, n)\ S°)

=3>15 (10)

Hence, a contradiction to t(EX(n, n)) < 1.5, n > 3.

Type 2. S° consists of vertices of degree 3, 5 and 8. Without loss of
generality, the smallest cutset of this type is

5
S° ={v11, V13, Va3, U31, U32, Ugs) (11)

U1 v1a/) U13 Uln—1 Uln

V21 U2 | ¢ V2R (U In—1 ()

V31 ve | 03
[

Figure 4. A Type 2 Cutset S° and the Components of EX(n, n) - S5,
It follows from figure 4 that
o(EX(n, n)\ S%) =2 (12)
and

| S° |
o(EX(n, n)\ S°)

=3>1.5 (13)

Hence, a contradiction to t(EX(n, n)) < 1.5, n > 3.
Therefore, t1(EX(n, n)) =1.5,n > 3

In the following theorem we investigate if it is possible to find a #-tough

set S;, t > 1, of EX(n, n) such that S; is its maximum extension.

Theorem 3. Let S, be a t-tough set of the extended mesh graph
EX(n, n), n > 3. Then S, is not an extension of any t-tough S;,t>1, of
EX(n, n).
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Proof. Consider the following t-tough sets of EX(n, n), n > 3.

St = {v12, U1, s} (14)

SZ = {1(n-1) V2n» Vo(n-1)} (15)
82 = {U(n-1)1> Yn-1)2 Vn2} (16)
8¢ = (-1 Yn-1)(n-1)» Un(n-1)} (17)

Uiy 12 Uln—1_ VUrp

Uz

Figure 5. -Tough Set S} and the Components of EX(n, n)— S-.

If there exists a 1.5-tough set, say S of EX(n, n) other than the tough

sets 81, 82, 83 and S then S? is classified as follows:

Case 1. Without loss of generality, let ST5 be a weak extension of S%.

Therefore,
|82 >| 8t | (18)
and
o(EX(n, n) - 8%) > o(EX(n, n) - S?) (19)
But
Ed < | St | _3 (20)

o(EX(n, n) - S2)  o(EX(n, n)-SY) 2

Equations (18) to (20) imply that the cardinality of Sf’ and the number of
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components in w(EX(n, n) — S2) increases in the proportion 3.2. Without loss

of generality, the smallest ST5 is as follows:

S2 = S U {vg3, v14, Vg4 (21)

Figure 6. -Tough Set S2 and the Components of EX(n, n)— S2.
It follows that

|52 |

=2>1.5 22
o(EX(n, )N S?) 22

Hence, a contradiction to the fact that S,v.5 is a weak extension of S%.

Therefore, S, S?, S2 and S are the only t-tough sets of EX(n, n).

Case 2. Without loss of generality, let S? be a strong extension of any of
the tough sets S%. Then, by the degree properties of EX(n, n) it is clearly not

possible to find a tough set S such that | S| < 3 as SI, 82, S2 and S? are
the only t-tough sets of EX(n, n).

Hence, the proof. o

3. Maximum Extension of Some #-Tough Sets of the
Enhanced Mesh Graph EX(n, n), n > 2

The enhanced mesh graph [7] of dimension n x n is constructing from the
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extended mesh graph EX(n,n) by adding a vertex to every pair of

intersecting edges. The vertex set of the enhanced mesh graph is as follows:
V(EN(n, n)) = VIEX(n, n)Ufvl, |11<k<n-1,1<l<n-1} (23)

U1 v12 U13 U14

ol vi vy

V21 ) 2 Ug

vy1 | e | vds ) vd

vq1 U4 Uy vy

Figure 7. The Enhanced Mesh Graph EN(4, 4).

Theorem 4. The minimum toughness of the enhanced mesh graph

nz—

EN(n, n)n>2 is ( 1;*2 (i.e),

n —

n? -4

m,n>2

W(EN(n, n)) =

Also, the t-tough set is
n n-1 n n-1
S; = {Uvm} U {Uvn} U U Uvij
i-1 i—2 i=1 j=3
Proof. By the construction of EN(n, n), EN(n, n))=3 implies
k(EN(n, n)) < 3, we have 1(EN(n, n)) < 1.5. In this proof we will reduce the

n2—

( )2 and show that this bound is sharp for any n.
n-1

bound to

One two three four five six seven eight nine tan
Without loss of generality consider the following 1.5-tough set.

Si5 = {v12, Va1, Vaa} (24)

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022
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Figure 8. Tough set S; 5 = {v; 9, U1, Ug9} and the Components of

EN(I’L, n) - 81.5.

Let S; = S 5. Now, we include more vertices to S; and check if this set
would increase the components in EN(n, n)— S; (i.e.), S; would potentially

decrease the value of ¢. Let

Sy = {v19, Va1, V22 U {v39, V49, Usgs ooy Upa} (25)
v U2 Vln-1 Uln
o) . i 7
21 l"l‘ ¢ ;U2:—1 U2
. : . : . .
'3 . T .
H . H . L
Up |1 iUn_1f2 ! 1‘1;;1 771 Un—1
obr | el ® I ) A

Figure 9. Illustration for Equation (25) and the Components of
EN(n, n) - S;.

n+1l
3

EN(n, n) — S, have increased. Hence, we include more vertices to S; in view

Clearly, ¢t =

> 1.5 though the number of components in

of reducing ¢ by increasing the components in EN(n, n) — S;. Let

Sy = {v19, V21, Vaa} U {vsg, Va9, Usa, ...y Uyat U iUs1, Va1, Us1, -oos U117} (26)

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022
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Figure 10. Illustration for Equation (26) and the Components of
EN(n, n) - S,.

Then, tzZ—%. As n increases, % approaches 0. Hence, ¢ > 1.5.

Therefore, let

S; = {12, V21, vg2} U {v3g, V49, Vs, oy Una} U vs1, va1, Us1s oons U1t )
Ufvis, v23, V33, s Up 3} (27)
. 3n—2 . 3n — 2
In this case, t = 5 1 Clearly, as n increases, o 1 approaches 1.5.

Hence, t <1.5 is sharp for this set. We proceed further to obtain a tough set

which yields toughness less than 1.5. Hence, let

S; = {12, V21, Vg2} U {v3g, 49, U2, oy Una} U {vs1, va1, Us1s ooy Un1tf
Ufvrs, v23, V33, -, Un3f U {14, U24s V34, o5 Upat (28)
In this case S; yields a toughness of ¢ = g: : S . It is easy to realize that
as n increases, 3 : 5 approaches a value less than 1.5. Hence, the bound for
minimum toughness has reduced to Z;Z : g (le), T< gz : g . Following the
same strategy, it is possible to obtain the following tough set for some k& < n
such that t = Ug_%’;ﬁ and t < (k—llg)’:zﬁ
S; = {v12, V21, Vg2} U {v3g, 49, Vs, s Upa} U {vs1, va1, U515 oovs Up1t )

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022
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U{Ul3’ V23, U33, ---» vn3} U {U14’ V24, U34, ---» Un4}

U...U{Ulk, VoL, ng,...,l)nk} (29)

Uln

Figure 11. Illustration for Equation (29) and the Components of
EN(n, n)-S,.

Further, it is possible to find the following tough set by adding more

vertices to S;.
Sy = {19, Va1, Va2} UUsa, Ugg, Usg, ...y Upat U {vsy, Vg1, Us1, ooy Upg1)
Ulvis, va3, U35, 05 Up 3t Uiv1 4, Voas V34, ooy Upaf U UAU1 ks Vo ks Us s oovs Un i

U"'U{U,‘Zn’v3n7v4n’""Un—ln} (30)

iM:

'@‘EIEE
1_11L1 1n1—1l—1n

Figure 12. Illustration for Equation (30) and the Components of
EN(n, n) - S,.

2
It is easy to resolve that 1 < n—42 All that remains to prove is that

(n-1)
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2
T > (n _;12 . As n increases, 1 approaches 1. Moreover, since EN(n, n) is
n-1
: : n?—4
hamiltonian t(EN(n, n)) > 1. Hence, 1(EN(n, n)) = ( 7 O
n-1

Theorem 5. Let S, be a t-tough set of the enhanced mesh graph

EN(n, n), n > 3. Then, S; is the maximum extension of the %-tough sets
given by
n
S, = {Uviz} (31)
2 l=1
n
Sz = i) (32)
2 =l
n
% = Jtwina) (33
2 =l
n
St = Jtons) (34)
2 =l

Proof. Without loss of generality consider the tough set S}L.

2

Let Stl = S;. Consider the following tough sets and the corresponding

toughness: 2
S = {v12, Va2, V32, -, Vpak ty = % (35)
Sy, =Sy Ulver, U315 Va1, -, Upa1h b2 = 2 —% (36)
Sty = S, Ulvrs, v23, V33, -, Unal 83 = ?2)2:? (37)

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022
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kn -2
Sty = Sy Utk ok Vo woos Vakh e = vy 39

2
n-n-2
Sy, 1 = Sna Ulvina1s V2p1s Usn—ts s Unneih tao1 = 7 a3 (39)
2
n® -4
Stn = On-1 U {U2n’ U3ns Uqns «+» Un—ln}’ ty = (40)
(n -1y

Equations (35) to (40) imply that Stl c St2 c St3 c..cC Stk c Stn—1
c S, and numerically 4 >ty > 13 > ... >t >...> 1,1 > t,. By definition,

S;, is an extension of S;. Since ¢, =1, S; is the maximum extension of

By the degree properties of tough sets (31), (32), (33) and (34), these tough
sets are isomorphic to each other. Hence, they yield the same toughness.

Moreover, each of them is a subset of S; = S;. Since, S, is the maximum

extension of S%, it is the maximum extension of S% , Sg and Sé. o

4. Conclusion

In this paper, we have extensively studied the toughness and maximum
extension of certain ¢-tough sets of the extended and enhanced mesh graphs
to their respective t-tough sets. We infer that the extended mesh graph

EN(n, n) is less vulnerable since it is not possible to find a ¢-tough set of this

graph such that its 1- tough sets are its maximum extension. Though certain
t-tough sets of the enhanced mesh graph EN(n, n) have maximum extension
to its t-tough sets, we infer that this graph is less vulnerable due to the
relative largeness of its t-tough set. Finally, we infer that the extended mesh

graph is less vulnerable in comparison to the enhanced mesh graph.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022
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