

VAGUE *ĝ* FUNCTIONS IN VAGUE TOPOLOGICAL SPACES

E. L. MARY TENCY¹ and Dr. M. HELEN²

¹Research Scholar
²Associate Professor
Department of Mathematics
Nirmala College for Women
Coimbatore-18, India
E-mail: tencyelawrence@gmail.com helvic63@yahoo.co.in

Abstract

In this paper we introduced vague \hat{g} continuous mappings, perfectly vague \hat{g} continuous mappings, completely vague \hat{g} continuous mappings, almost vague \hat{g} continuous mappings and vague \hat{g} irresolute mappings. We investigated some of their properties and also provided some characterization of the above mappings.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [13] in 1965. The theory of fuzzy topology was introduced by C. L. Chang [1] in 1967. The theory of vague sets was first initiated by Gau and Buehrer [2]. Norman Levine [3] initiated generalized closed (briefly g-closed) sets in 1970. M. K Veera Kumar [12] introduced \hat{g} -closed sets in topological spaces in 2000.

In this paper we introduced the notion of vague \hat{g} continuous mappings, perfectly vague \hat{g} continuous mappings, strongly vague \hat{g} continuous

Received March 31, 2022; Accepted April 13, 2022

²⁰²⁰ Mathematics Subject Classification: Primary 05A15; Secondary 11B68, 34A05.

Keywords: Vague \hat{g} continuous mappings, perfectly vague \hat{g} continuous mappings, completely vague \hat{g} continuous mappings, almost vague \hat{g} continuous mappings and vague \hat{g} irresolute mappings.

mappings and vague \hat{g} irresolute mappings and studied some of their properties and characterizations.

2. Preliminaries

Definition 2.1 [2]. A vague set A in the universe of discourse X is characterized by two membership functions given by:

- 1. A true membership function $T_{\mathbb{A}}: X \to [0, 1]$ and
- 2. A false membership function $\,F_{\mathbb A}\,:\,X\to[0,\,1],\,$

where $T_A(x)$ is lower bound on the grade of membership of x derived from the "evidence for x", $F_A(x)$ is a lower bound on the negation of x derived from the "evidence against x" and $T_A(x) + F_A(x) \le 1$. Thus the grade of membership of x in the vague set A is bounded by a subinterval $[T_A(x), 1 - F_A(x)]$ of [0, 1]. This indicates that if the actual grade of membership $\mu(x)$, then $T_A(x) \le \mu(x) \le F_A(x)$. The vague set A is written as, $A = \{\langle x, [T_A(x), 1 - F_A(x)] \rangle / x \in X\}$ where the interval $[T_A(x), 1 - F_A(x)]$ is called the "vague value of x" in A and is denoted by $V_A(x)$.

Definition 2.2 [2]. Let \mathbb{A} ad \mathbb{B} be vague sets of the form $\mathbb{A} = \{\langle x, [T_{\mathbb{A}}(x), 1 - F_{\mathbb{A}}(x)] \rangle | x \in X\}$ and $\mathbb{B} = \{\langle x, [T_B(x), 1 - F_B(x)] \rangle | x \in X\}$ Then

(a) $\mathbb{A} \subseteq \mathbb{B}$ if and only if $T_{\mathbb{A}}(x) \leq T_{\mathbb{B}}(x)$ and $1 - F_{\mathbb{A}}(x) \leq 1 - F_{\mathbb{B}}(x)$ for all $x \in X$

(b) A = B if and only if A ⊆ B and B ⊆ A
(c) A^C = {⟨x, F_A(x), 1 - T_A(x)/x ∈ X⟩}
(d) A ∩ B = {⟨x, min(T_A(x), T_B(x)), min(1 - F_A(x), 1 - F_B(x))⟩/x ∈ X}
(e) A ∪ B = {⟨x, max(T_A(x), T_B(x)), max(1 - F_A(x), 1 - F_B(x))⟩/x ∈ X}

For the sake of simplicity, we shall use the notation $\mathbb{A} = \langle x, T_{\mathbb{A}}, 1 - F_{\mathbb{A}} \rangle$ instead of

$$\mathbb{A} = \{ \langle x, T_{\mathbb{A}}(x), 1 - F_{\mathbb{A}}(x) \rangle | x \in X \}.$$

Vague Topological Space

Definition 2.3 [5]. A vague topology (VT in short) on X is a family \mathcal{T} of vague sets (VS in short) in X satisfying the following axioms.

- (a) $0, 1 \in \mathcal{T}$
- (b) $G_1 \cap G_2 \in \tau$, for any $G_1, G_2 \in \mathcal{T}$
- (c) $\bigcup G_i \in \tau$ for any family $\{G_i / i \in J\} \subseteq \mathcal{T}$

In this case the pair (X, \mathcal{T}) is called a vague topological space (VTS in short) and any VS in \mathcal{T} is known as a vague open set (VOS in short) in *X*.

The complement \mathbb{A}^C of a VOS in a VTS (X, τ) is called a vague closed set (VCS in short) in X.

Definition 2.4 [5]. Let (X, τ) be a VTS and $\mathbb{A} = \langle x, T_{\mathbb{A}}, 1 - F_{\mathbb{A}} \rangle$ be a VS in *X*. Then the vague interior and a vague closure are defined by

 $V \operatorname{int}(\mathbb{A}) = \bigcup \{G \setminus G \text{ is an VOS in } X \text{ and } G \subseteq \mathbb{A}\} \text{ and } Vcl(A) = \bigcup \{K \setminus K \text{ is an VCS in } X \text{ and } \mathbb{A} \subseteq K\}$

Note that for any Vague Set \mathbb{A} in (X, τ) , we have $Vcl(\mathbb{A}^C) = (V \operatorname{int}(\mathbb{A}))^C$ and $V \operatorname{int}(\mathbb{A}^C) = (Vcl(\mathbb{A}))^C$.

Definition 2.5 [5]. A Vague set \mathbb{A} of (X, τ) is said to be

(a) a vague semi closed set (VSCS in short) if $V \operatorname{int}(Vcl(\mathbb{A})) \subseteq \mathbb{A}$.

(b) a vague semi open set (VSOS in short) if $\mathbb{A} \subseteq Vcl(V \operatorname{int}(\mathbb{A}))$.

Definition 2.6 [7]. A vague set \mathbb{A} of (X, τ) is said to be a vague \hat{g} -closed sets ($V\hat{G}CS$ in short) if $Vcl(\mathbb{A}) \subseteq U$ whenever $\mathbb{A} \subseteq U$ and U is vague semi open set in X.

Every VCS is a VĜCS and every VĜCS is VGSCS, VGCS, VRGCS, VGPCS, V α GCS, VG α CS but the separate converses may not be true in general. The family of all VĜCSs of a VTS (X, τ) is denoted by VGC (X).

Definition 2.7. Let *f* be a mapping from a VTS (X, τ) into a VTS (Y, σ) . Then *f* is said to be a

(i) [6] Vague continuous mapping (V continuous mapping for short) if $f^{-1}(\mathbb{B}) \in \operatorname{VO}(X)$ for each VOS $\mathbb{B} \in Y$.

(ii) [6] Vague generalized semi continuous mapping (VGS continuous mapping for short) if $f^{-1}(\mathbb{B}) \in \text{VGSO}(X)$ for each VOS $\mathbb{B} \in Y$.

(iii) [6] Vague generalized continuous mapping (VG continuous mapping for short) if $f^{-1}(\mathbb{B}) \in \text{VGO}(X)$ for each VOS $\mathbb{B} \in Y$.

(iv) Vague regular generalized continuous mapping (VRG continuous mapping for short) if $f^{-1}(\mathbb{B}) \in \text{VRGO}(X)$ for each VOS $\mathbb{B} \in Y$.

(v) [6] Vague generalized pre continuous mapping (VGP continuous mapping for short) if $f^{-1}(\mathbb{B}) \in \text{VGPO}(X)$ for each VOS $\mathbb{B} \in Y$.

(vi) [6] Vague generalized α continuous mapping (VG α continuous mapping for short) if $f^{-1}(\mathbb{B}) \in VG\alpha O(X)$ for each VOS $\mathbb{B} \in Y$.

(vii) [5] Vague α generalized continuous mapping (V α G continuous mapping for short) if $f^{-1}(\mathbb{B}) \in V\alpha$ GO(X) for each VOS $\mathbb{B} \in Y$.

(viii) [5] Vague irresolute mapping (V irresolute mapping for short) if $f^{-1}(\mathbb{B}) \in \operatorname{VO}(X)$ for each VOS $\mathbb{B} \in Y$.

(ix) Completely vague continuous mapping (CV continuous mapping for short) if $f^{-1}(\mathbb{B})$ is VRO(X) for each VOS $\mathbb{B} \in Y$.

(x) Perfectly vague continuous mapping ($\mathcal{P}V$ continuous mapping for short) if $f^{-1}(\mathbb{B})$ is both VO(X) and VC(X) for each VOS $\mathbb{B} \in Y$.

(xi) Almost vague continuous mapping (AV continuous mapping for short) if $f^{-1}(\mathbb{B})$ is VO(X) for each VROS $\mathbb{B} \in Y$.

3. Vague \hat{g} Continuous Mappings

In this section we introduce vague \hat{g} continuous mapping and investigate some of its properties.

Definition 3.1. A mapping $f: (X, \tau) \to (Y, \sigma)$ is called vague \hat{g} continuous (V \hat{g} continuous for short) mapping if $f^{-1}(\mathbb{V})$ is a V \hat{g} CS in (X, τ) for every VCS in (Y, σ) .

Example 3.2. Let $X = \{a, b\}, Y = \{u, v\}$ and $\tau = \{0, G_1, 1\}$ and $\sigma = \{0, G_2, 1\}$ are VTs on X and Y respectively.

 $G_1 = \{\langle x, [0.4, 0.8], [0.3, 0.6] \rangle\}, G_2 = \{\langle x, [0.5, 0.9], [0.4, 0.6] \rangle\}.$ Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Since the inverse image of a vague closed set $\mathbb{A} = \{\langle y, [0.1, 0.5], [0.4, 0.6] \rangle\}$ in (Y, σ) is a VgCS in (X, τ) . Hence f is a vague \hat{g} continuous mapping.

Theorem 3.3. Every vague continuous mapping is a $V\hat{g}$ continuous mapping but not conversely.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a vague continuous mapping. Let \mathbb{V} be a VCS in Y. Then $f^{-1}(\mathbb{V})$ is a V \hat{g} CS in X. Since every VCS is a V \hat{g} CS, $f^{-1}(\mathbb{V})$ is a V \hat{g} CS. Hence f is V \hat{g} continuous mapping.

Example 3.4. Let $X = \{a, b\}, Y = \{u, v\}$ and $\tau = \{0, G_1, 1\}$ and $\sigma = \{0, G_2, 1\}$ are VTs on X and Y respectively.

 $G_1 = \{\langle x, [0.4, 0.8], [0.3, 0.6] \rangle\}, G_2 = \{\langle x, [0.5, 0.9], [0.4, 0.6] \rangle\}.$ Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Since the inverse image of a vague closed set $\mathbb{A} = \{\langle y, [0.1, 0.5], [0.4, 0.6] \rangle\}$ in (Y, σ) is a V \hat{g} CS in (X, τ) but $f^{-1}(\mathbb{A})$ is not vague closed in (X, τ) . Hence f is a vague \hat{g} continuous mapping but not vague continuous mapping.

Theorem 3.5. Every vague \hat{g} continuous mapping is a vague gs continuous mapping but not conversely.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a vague \hat{g} continuous mapping. Let \mathbb{V} be a VCS in Y. Then $f^{-1}(\mathbb{V})$ is a V \hat{g} CS in X. Since every V \hat{g} CS is a VGSCS, $f^{-1}(\mathbb{V})$ is a VGSCS. Hence f is VGS continuous mapping.

Example 3.6. Let $X = \{a, b\}, Y = \{u, v\}$ and $\tau = \{0, G_1, 1\}$ and $\sigma = \{0, G_2, 1\}$ are VTs on X and Y respectively.

 $G_1 = \{\langle x, [0.2, 0.5], [0.1, 0.4] \rangle\}, G_2 = \{\langle x, [0.2, 0.7], [0.3, 0.6] \rangle\}.$ Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Since the inverse image of a vague closed set $\mathbb{A} = \{\langle y, [0.2, 0.4], [0.1, 0.3] \rangle\}$ in (Y, σ) is a VGSCS in (X, τ) but $f^{-1}(\mathbb{A})$ is not vague \hat{g} closed in (X, τ) . Hence f is a vague GS continuous mapping but not vague \hat{g} continuous mapping.

Theorem 3.7. Every vague \hat{g} continuous mapping is a vague g continuous mapping but not conversely.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a vague \hat{g} continuous mapping. Let \mathbb{V} be a VCS in Y. Then $f^{-1}(\mathbb{V})$ is a V \hat{g} CS in X. Since every V \hat{g} CS is a VGCS, $f^{-1}(\mathbb{V})$ is a VGCS. Hence f is VG continuous mapping.

Example 3.8. Let $X = \{a, b\}, Y = \{u, v\}$ and $\tau = \{0, G_1, 1\}$ and $\sigma = \{0, G_2, 1\}$ are VTs on X and Y respectively.

 $G_1 = \{\langle x, [0.3, 0.4], [0.2, 0.5] \rangle\}, G_2 = \{\langle x, [0.2, 0.6], [0.3, 0.6] \rangle\}.$ Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Since the inverse image of a vague closed set $\mathbb{A} = \{\langle y, [0.2, 0.4], [0.1, 0.3] \rangle\}$ in (Y, σ) is a VGCS in (X, τ) but $f^{-1}(\mathbb{A})$ is not vague \hat{g} closed in (X, τ) . Hence f is a vague g continuous mapping but not vague \hat{g} continuous mapping.

Theorem 3.9. Every vague \hat{g} continuous mapping is a vague rg continuous mapping but not conversely.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a vague \hat{g} continuous mapping. Let \mathbb{V}

be a VCS in Y. Then $f^{-1}(\mathbb{V})$ is a V \hat{g} CS in X. Since every V \hat{g} CS is a VRGCS, $f^{-1}(\mathbb{V})$ is a VRGCS. Hence f is VRG continuous mapping.

Example 3.10. Let $X = \{a, b\}, Y = \{u, v\}$ and $\tau = \{0, G_1, 1\}$ and $\sigma = \{0, G_2, 1\}$ are VTs on X and Y respectively.

 $G_1 = \{\langle x, [0.5, 0.9], [0.4, 0.8] \rangle\}, G_2 = \{\langle x, [0.5, 0.8], [0.4, 0.7] \rangle\}.$ Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v and f is a vague RG continuous mapping but not vague \hat{g} continuous mapping.

Theorem 3.11. Every vague \hat{g} continuous mapping is a vague gp continuous mapping but not conversely.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a vague \hat{g} continuous mapping. Let \mathbb{V} be a VCS in Y. Then $f^{-1}(\mathbb{V})$ is a V \hat{g} CS in X. Since every V \hat{g} CS is a VGPCS, $f^{-1}(\mathbb{V})$ is a VGPCS. Hence f is VGP continuous mapping.

Example 3.12. Let $X = \{a, b\}, Y = \{u, v\}$ and $\tau = \{0, G_1, 1\}$ and $\sigma = \{0, G_2, 1\}$ are VTs on X and Y respectively.

 $G_1 = \{\langle x, [0.5, 0.9], [0.4, 0.8] \rangle\}, G_2 = \{\langle x, [0.4, 0.8], [0.4, 0.7] \rangle\}.$ Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and v.

Since the inverse image of a vague closed set $\mathbb{A} = \{\langle y, [0.2, 0.6], [0.3, 0.6] \rangle\}$ in (Y, σ) is a VGPCS in (X, τ) but $f^{-1}(\mathbb{A})$ is not vague \hat{g} closed in (X, τ) . Hence f is a vague GP continuous mapping but not vague \hat{g} continuous mapping.

Theorem 3.13. Every vague \hat{g} continuous mapping is a vague gsp continuous mapping but not conversely.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a vague \hat{g} continuous mapping. Let V be a VCS in Y. Then $f^{-1}(\mathbb{V})$ is a V \hat{g} CS in X. Since every V \hat{g} CS is a VGSPCS, $f^{-1}(\mathbb{V})$ is a VGSPCS. Hence f is VGSP continuous mapping.

Example 3.14. Let $X = \{a, b\}, Y\{u, v\}$ and $\tau = \{0, G_1, 1\}$ and $\sigma = \{0, G_2, 1\}$ are VTs on X and Y respectively.

 $G_1\{\langle x, [0.5, 0.8], [0.4, 0.7] \rangle\}, G_2\{\langle x, [0.4, 0.8], [0.4, 0.7] \rangle\}$. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v and f is a vague GSP continuous mapping but not vague \hat{g} continuous mapping.

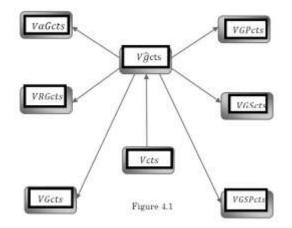
Theorem 3.15. Every vague \hat{g} continuous mapping is a vague αg continuous mapping but not conversely.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a vague \hat{g} continuous mapping. Let \mathbb{V} be a VCS in Y. Then $f^{-1}(\mathbb{V})$ is a V \hat{g} CS in X. Since every V \hat{g} CS is a V α GCS, $f^{-1}(\mathbb{V})$ is a V α GCS. Hence f is V α G continuous mapping.

Example 3.16. Let $X = \{a, b\}, Y\{u, v\}$ and $\tau = \{0, G_1, 1\}$ and $\sigma = \{0, G_2, 1\}$ are VTs on X and Y respectively.

 $G_1\{\langle x, [0.5, 0.8], [0.4, 0.7] \rangle\}, G_2\{\langle x, [0.4, 0.8], [0.4, 0.7] \rangle\}$. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Since the inverse image of a vague closed set $\mathbb{A} = \{\langle y, [0.2, 0.4], [0.3, 0.6] \rangle\}$ in (Y, σ) is a V α GCS in (X, τ) but $f^{-1}(\mathbb{A})$ is not vague \hat{g} closed in (X, τ) . Hence f is a vague α G continuous mapping but not vague \hat{g} continuous mapping.

The relation between various types of vague \hat{g} continuity is given in the figure 4.1. In that figure 'cts' means continuous.



The reverse implications are not true in general in the above figure.

Theorem 3.17. The following statements are equivalent for a function $f: (X, \tau) \rightarrow (Y, \sigma)$

- (i) f is vague \hat{g} continuous.
- (ii) For every vague open set V of Y, $f^{-1}(\mathbb{V})$ is vague \hat{g} open set in X.

Proof. (i) \Rightarrow (ii) Let V be vague open subset of Y and let $x \in f^{-1}(\mathbb{V})$ be any arbitrary point. Since $f(x) \in \mathbb{V}$ by (i), there exist vague \hat{g} open set in Ux in X, containing x such that arbitrary union of vague \hat{g} open sets is vague \hat{g} open, $f^{-1}(\mathbb{V})$ is vague \hat{g} open in X.

(ii) \Rightarrow (i) it is obvious.

Theorem 3.18. If $f : (X, \tau) \to (Y, \sigma)$ is vague \hat{g} continuous then for each vague point $c(\alpha, \beta)$ of X and each vague open set \mathbb{V} of Y such that $f(c(\alpha, \beta)) \subseteq \mathbb{V}$ there exist a vague \hat{g} open set U of X such that $c(\alpha, \beta) \subseteq U$ and $f(U) \in \mathbb{V}$.

Proof. Let $c(\alpha, \beta)$ be a vague point of X and \mathbb{V} be a vague open set of Y such that $f(c(\alpha, \beta)) \subseteq \mathbb{V}$. Put $U = f^{-1}(\mathbb{V})$. Then by hypothesis U is a vague \hat{g} open set of X such that $c(\alpha, \beta) \subseteq U$ and $f(U) = f(f^{-1}(\mathbb{V})) \subseteq \mathbb{V}$.

Theorem 3.19. Let $f : (X, \tau) \to (Y, \sigma)$ is a vague \hat{g} continuous then for each vague point $c(\alpha, \beta)$ of X and each vague open set \mathbb{V} of Y such that $f(c(\alpha, \beta))_{Vq} \mathbb{V}$, there exists a vague \hat{g} open set U of X such that $c(\alpha, \beta)_{Vq} U$ and $f(U) \subseteq \mathbb{V}$.

Proof. Let $c(\alpha, \beta)$ be a vague point if X and \mathbb{V} be a vague open set of Y such that $f(c(\alpha, \beta))_{Vq} \mathbb{V}$. Put $U = f^{-1}(\mathbb{V})$. Then by hypothesis U is a vague \hat{g} open set of X such that $c(\alpha, \beta)_{Vq} U$ and $f(U) = f(f^{-1}(\mathbb{V})) \subseteq \mathbb{V}$.

Theorem 3.20. If $f : (X, \tau) \to (Y, \sigma)$ is vague \hat{g} continuous then $f(V\hat{g} - cl(A)) \subset Vcl(f(\mathbb{A}))$ for every vague subset \mathbb{A} of X.

Proof. Let $\mathbb{A} \subseteq X$. Then $Vcl(f(\mathbb{A}))$ is a vague closed in Y, since f is vague \hat{g} continuous, $f^{-1}(Vcl(f(\mathbb{A})))$ is vague \hat{g} closed in X and $\mathbb{A} \subseteq f^{-1}(f(A))$ $\subseteq f^{-1}(Vcl(f(\mathbb{A})))$. Therefore $V\hat{g} - cl(\mathbb{A}) \subseteq V\hat{g}cl(f^{-1}(Vcl(f(\mathbb{A})))) = f^{-1}(Vcl(f(\mathbb{A})))$. Hence $f(V\hat{g} - cl(A)) \subset Vcl(f(\mathbb{A}))$ for every vague subset \mathbb{A} of X.

Theorem 3.21. Let (X, τ) and (Y, σ) be any two VTS. Let $f: (X, \tau) \to (Y, \sigma)$ be a vague \hat{g} continuous mapping. Then for every vague set A in Y, $V\hat{gcl}(f^{-1}(\mathbb{A})) \subseteq f^{-1}(Vcl(\mathbb{A}))$.

Proof. Let \mathbb{A} be a vague set in (Y, σ) . Let $\mathbb{B} = f^{-1}(\mathbb{A})$. Then $f(B) = f(f^{-1}(\mathbb{A})) \subseteq \mathbb{A}$. Then by the theorem 3.20 $f(V\hat{g} - cl(f^{-1}(\mathbb{A}))) \subseteq Vcl(f(f^{-1}(\mathbb{A})))$. Thus $V\hat{g}cl(f^{-1}(\mathbb{A})) \subseteq f^{-1}(Vcl(\mathbb{A}))$.

Theorem 3.22. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping from a VTS X into a VTS Y. Then the following conditions are equivalent, if X is a $V\hat{g}T_{1/2}$ space:

(i) f is a $V\hat{g}$ continuous mapping.

(ii) If \mathbb{B} is a VOS in Y then $f^{-1}(\mathbb{B})$ is a V $\hat{g}OS$ in X.

(iii) $f^{-1}(V \text{ int } \mathbb{B}) \subseteq Vcl(V \text{ int } (Vcl(f^{-1}(\mathbb{B}))))$ for every vague set \mathbb{B} in Y.

Proof. (i) \Rightarrow (ii) is obviously true by the theorem.

(ii) \Rightarrow (iii) Let \mathbb{B} be any vague set in Y. Then $\operatorname{int}(\mathbb{B})$ is a vague open set in Y. Then $f^{-1}(V \operatorname{int} \mathbb{B})$ is a $V\hat{g}OS$ in X. Since X is a $V\hat{g}T_{1/2}$ space, $f^{-1}(V \operatorname{int} \mathbb{B})$ is a $V\hat{g}OS$ in X. Therefore $f^{-1}(V \operatorname{int}(\mathbb{B})) \subseteq \operatorname{Vcl}(V \operatorname{int}(\operatorname{Vcl}(f^{-1}(V \operatorname{int}(\mathbb{B}))))) \subseteq \operatorname{Vcl}(V \operatorname{int}(\operatorname{Vcl}(f^{-1}(\mathbb{B}))))$.

(iii) \Rightarrow (i) Let \mathbb{B} be a VCS in Y. Then its complement \mathbb{B}^C is a VOS in Y, then int $\mathbb{B}^C = \mathbb{B}^C$ (say $\mathbb{B}^C = \mathbb{A}$). By hypothesis $f^{-1}(\operatorname{int} A) \subseteq$ $cl(\operatorname{int}(cl(f^{-1}(\mathbb{A}))) \Rightarrow f^{-1}(A) \subseteq cl(\operatorname{int}(cl(f^{-1}(\mathbb{A}))))$. Hence $f^{-1}(\mathbb{A})$ is a VOS in X. Since every VOS is a V \hat{g} OS, hence $f^{-1}(\mathbb{A})$ is a V \hat{g} OS in X. Thus $f^{-1}(\mathbb{B})$ is a V \hat{g} CS in X, since $f^{-1}(\mathbb{A}) = f^{-1}(\mathbb{B}^C)$. Hence f is a V \hat{g} continuous mapping.

Theorem 3.23. Let $f : (X, \tau) \to (Y, \sigma)$ be a $V\hat{g}$ continuous mapping and $g : (Y, \sigma) \to (Z, \gamma)$ is a V continuous mapping, then $g \circ f : (X, \tau) \to (Z, \gamma)$ is a $V\hat{g}$ continuous mapping.

Proof. Let \mathbb{V} be a VCS in Z. Then $g^{-1}(\mathbb{V})$ is a VCS in Y, by hypothesis. Since f is a $V\hat{g}$ continuous mapping, $f^{-1}(g^{-1}(\mathbb{V}))$ is a $V\hat{g}$ CS in X. Hence $g \circ f$ is a $V\hat{g}$ continuous mapping.

Theorem 3.24. Let $f : (X, \tau) \to (Y, \sigma)$ be a $v\hat{g}$ continuous mapping and $g : (Y, \sigma) \to (Z, \gamma)$ be a VG continuous mapping, then $g \circ f : (X, \tau) \to (Z, \gamma)$ is a $v\hat{g}$ continuous mapping.

Proof. Let \mathbb{V} be a VCS in Z. Then $g^{-1}(\mathbb{V})$ is a VCS in Y. Since f is a $V\hat{g}$ continuous mapping, $f^{-1}(g^{-1}(\mathbb{V}))$ is a $V\hat{g}$ CS in X. Hence $g \circ f$ is a $V\hat{g}$ continuous mapping.

4. Vague \hat{g} Irresolute Continuous Mappings

In this section we have introduced vague \hat{g} irresolute mappings and studied some of their properties.

Definition 4.1. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be a vague $V\hat{g}$ irresolute ($V\hat{G}$ irresolute for short) mapping if $f^{-1}(\mathbb{V})$ is a $V\hat{g}$ CS in (X, τ) for every $V\hat{g}$ CS \mathbb{V} of (Y, σ) .

Theorem 4.2. If $f : (X, \tau) \to (Y, \sigma)$ is a $V\hat{g}$ irresolute mapping, then f is a $V\hat{g}$ continuous mapping but not conversely.

Proof. Let f be a $V\hat{g}$ irresolute mapping. Let \mathbb{V} be any VCS in Y. Then \mathbb{V} is a $V\hat{g}$ CS and by hypothesis $f^{-1}(\mathbb{V})$ is a $V\hat{g}$ CS in X. Hence f is a $V\hat{g}$ continuous mapping.

Example 4.3. Let $X = \{a, b\}$, $Y = \{u, v\}$ and $\tau = \{0, G_1, 1\}$ and $\sigma = \{0, G_2, 1\}$ are VTs on X and Y respectively.

 $G_1\{\langle x, [0.5, 0.6], [0.4, 0.5]\rangle\}, G_2\{\langle x, [0.3, 0.5], [0.5, 0.5]\rangle\}$. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by $f(\alpha) = u$ and f(b) = v. Then f is a $V\hat{g}$ continuous mapping but not a $v\hat{g}$ irresolute mapping.

Theorem 4.4. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \gamma)$ be a $V\hat{g}$ irresolute mapping. Then $g \circ f : (X, \tau) \to (Z, \gamma)$ is a $V\hat{g}$ irresolute mapping.

Proof. Let \mathbb{V} be a V \hat{g} CS in Z. Then $g^{-1}(\mathbb{V})$ is a V \hat{g} CS in Y, since g is a $V\hat{g}$ irresolute. Now by hypothesis $f^{-1}(g^{-1}(\mathbb{V}))$ is a V \hat{g} CS in X. Hence $g \circ f$ is a $V\hat{g}$ irresolute mapping.

Theorem 4.5. Let $f : (X, \tau) \to (Y, \sigma)$ be a $V\hat{g}$ irresolute mapping and $g : (Y, \sigma) \to (Z, \gamma)$ be a $V\hat{g}$ continuous mapping, then $g \circ f : (X, \tau) \to (Z, \gamma)$ is a $V\hat{g}$ continuous mapping.

Proof. Let \mathbb{V} be a VCS in Z. Then $g^{-1}(\mathbb{V})$ is a $V\hat{g}CS$ in Y. Since f is a $V\hat{g}$ irresolute mapping, $f^{-1}(g^{-1}(\mathbb{V}))$ is a $V\hat{g}CS$ in X. Hence $g \circ f$ is a $V\hat{g}$ continuous mapping.

5. Perfectly Vague \hat{g} Continuous Mappings, Completely Vague \hat{g} Continuous Mappings and Almost Vague \hat{g} Continuous Mappings

In this section we have introduced perfectly vague \hat{g} continuous mappings, completely vague \hat{g} continuous mappings and almost vague \hat{g} continuous mappings. Also investigated some of its properties.

Definition 5.1. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be perfectly vague \hat{g} continuous ($\mathcal{P}V\hat{g}$ continuous mapping for short) if $f^{-1}(\mathbb{B})$ is both VO(X) and VC(X) for each V \hat{g} CS $\mathbb{B} \in Y$.

Definition 5.2. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be completely vague \hat{g} continuous ($\mathcal{C}V\hat{g}$ continuous mapping for short) if $f^{-1}(\mathbb{B})$ is VRC(X) for each $V\hat{g}C$ set $\mathbb{B} \in Y$.

Definition 5.3. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be almost vague \hat{g} continuous $(\mathcal{A}V\hat{g} \text{ continuous mapping for short})$ if $f^{-1}(\mathbb{B})$ is $\nabla \hat{g} C(X)$ for each VRC set $\mathbb{B} \in Y$.

Theorem 5.4. Every $\mathcal{P}V\hat{g}$ continuous mapping is a vague continuous mapping but not conversely.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a $\mathcal{P}V\hat{g}$ continuous mapping. Let \mathbb{A} be a VCS in Y. Since every VCS is a $V\hat{g}CS$, \mathbb{A} is a $V\hat{g}CS$ in Y. Since f is a $\mathcal{P}V\hat{g}$ continuous mapping, $f^{-1}(\mathbb{A})$ is a vague clopen in X. Thus $f^{-1}(\mathbb{A})$ is a VCS in X. Hence f is a V continuous mapping.

Example 5.5. Let $X = \{a, b\}, Y\{u, v\}$ and $\tau = \{0, G_1, 1\}$ and $\sigma = \{0, G_2, 1\}$ are VTs on X and Y respectively.

 $G_1\{\langle x, [0.4, 0.5], [0.5, 0.6]\rangle\}, G_2\{\langle x, [0.4, 0.5], [0.5, 0.6]\rangle\}$. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is a V continuous mapping but not a $\mathcal{P}V\hat{g}$ continuous mapping.

Theorem 5.6. Every $\mathcal{P}V\hat{g}$ continuous mapping is a vague \hat{g} continuous mapping but not conversely.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a $\mathcal{P}V\hat{g}$ continuous mapping. Let \mathbb{A} be a VCS in Y. Since every VCS is a $V\hat{g}CS$, \mathbb{A} is a $V\hat{g}CS$ in Y. Since f is a $\mathcal{P}V\hat{g}$ continuous mapping, $f^{-1}(\mathbb{A})$ is a vague clopen in X. Thus $f^{-1}(\mathbb{A})$ is a VCS in X. Since every VCS is a $V\hat{g}CS$, $f^{-1}(\mathbb{A})$ is a $V\hat{g}CS$. Hence f is a $V\hat{g}$ continuous mapping.

Example 5.7. Let $X = \{a, b\}, Y\{u, v\}$ and $\tau = \{0, G_1, 1\}$ and $\sigma = \{0, G_2, 1\}$ are VTs on X and Y respectively.

 $G_1\{\langle x, [0.4, 0.5], [0.5, 0.6] \rangle\}, G_2\{\langle x, [0.6, 0.7], [0.3, 0.4] \rangle\}$. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is a $V\hat{g}$ continuous mapping but not a $\mathcal{P}V\hat{g}$ continuous mapping.

Theorem 5.8. Every $\mathcal{P}V\hat{g}$ continuous mapping is an almost vague \hat{g} continuous mapping but not conversely.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a $\mathcal{P}V\hat{g}$ continuous mapping. Let \mathbb{A} be a VRCS in Y. Since every VRCS is a $V\hat{g}CS$, \mathbb{A} is a $V\hat{g}CS$ in Y. Since f is a $\mathcal{P}V\hat{g}$ continuous mapping, $f^{-1}(\mathbb{A})$ is a vague clopen in X. Thus $f^{-1}(\mathbb{A})$ is a VCS in X. Since every VCS is a $V\hat{g}CS$, $f^{-1}(\mathbb{A})$ is a $V\hat{g}CS$. Hence f is a $\mathcal{A}V\hat{g}$ continuous mapping.

Example 5.9. Let $X = \{a, b\}, Y\{u, v\}$ and $\tau = \{0, G_1, 1\}$ and $\sigma = \{0, G_2, 1\}$ are VTs on X and Y respectively.

 $G_1\{\langle x, [0.4, 0.5], [0.5, 0.6]\rangle\}, G_2\{\langle x, [0.2, 0.3], [0.7, 0.8]\rangle\}$. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is a $\mathcal{A}V\hat{g}$ continuous mapping but not a $\mathcal{P}V\hat{g}$ continuous mapping.

Theorem 5.10. Every $\mathcal{P}V\hat{g}$ continuous mapping is a $\mathcal{C}V\hat{g}$ continuous mapping.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a $\mathcal{P}V\hat{g}$ continuous mapping. Let \mathbb{A} be a $V\hat{g}CS$ in Y. Since f is a $PV\hat{g}$ continuous mapping, $f^{-1}(\mathbb{A})$ is a vague clopen in X. Thus $f^{-1}(\mathbb{A})$ is a VCS in X. Since every VCS is a $V\hat{g}CS$, $f^{-1}(\mathbb{A})$ is a $V\hat{g}CS$. Hence f is a $\mathcal{A}V\hat{g}$ continuous mapping. Therefore $Vcl(f^{-1}(\mathbb{A})) = f^{-1}(\mathbb{A})$ and $\operatorname{int}(f^{-1}(\mathbb{A})) = f^{-1}(\mathbb{A})$. Now $Vcl(V\operatorname{int}(f^{-1}(\mathbb{A}))) = Vcl(Vf^{-1}(\mathbb{A})) = f^{-1}(\mathbb{A})$. Therefore $f^{-1}(\mathbb{A})$ is VRCS in X. Hence f is a $\mathcal{C}V\hat{g}$ continuous mapping.

Theorem 5.11. A mapping $f : (X, \tau) \to (Y, \sigma)$ is a $\mathcal{P}V\hat{g}$ continuous mapping if and only if the inverse image of each \hat{VgOS} in Y is a vague clopen in X.

Proof. Necessity. Let a mapping $f : (X, \tau) \to (Y, \sigma)$ be $\mathcal{P}V\hat{g}$ continuous mapping. Let \mathbb{A} be a $\mathcal{V}\hat{g}OS$ in Y. Then \mathbb{A}^C is a $\mathcal{V}\hat{g}CS$ in Y. Since f is a $\mathcal{P}V\hat{g}$ continuous mapping, $f^{-1}(\mathbb{A}^C)$ is vague clopen in X. As $f^{-1}(\mathbb{A}^C) = (f^{-1}(\mathbb{A}))^C$. Thus $(f^{-1}(\mathbb{A}))$ is vague clopen in X.

Sufficiency. Let \mathbb{B} be a $V\hat{g}CS$ in Y. Then \mathbb{B}^C is a $V\hat{g}OS$ in Y. By hypothesis, $(f^{-1}(\mathbb{B}^C))$ is vague clopen in X. Thus $(f^{-1}(\mathbb{B}))$ is vague clopen in X, as $f^{-1}(\mathbb{B}^C) = (f^{-1}(\mathbb{B}))^C$. Therefore f is a $\mathcal{P}V\hat{g}$ continuous mapping.

Theorem 5.12. Let $f : (X, \tau) \to (Y, \sigma)$ be a vague continuous mapping and $g : (Y, \sigma) \to (Z, \gamma)$ is $\mathcal{P}V\hat{g}$ continuous mapping, then $g \circ f : (X, \tau) \to (Z, \gamma)$ is a $\mathcal{P}V\hat{g}$ continuous mapping.

Proof. Let A be a $V\hat{g}CS$ in Z. Since g is a $\mathcal{P}V\hat{g}$ continuous mapping, $g^{-1}(\mathbb{A})$ is a vague clopen in Y. Since f is a vague continuous mapping,

 $f^{-1}(g^{-1}(\mathbb{A}))$ is a VCS in X, as well as VOS in X. Hence $g \circ f$ is a $\mathcal{P}V\hat{g}$ continuous mapping.

Theorem 5.13. The composition of two $\mathcal{P}V\hat{g}$ continuous mapping is a $\mathcal{P}V\hat{g}$ continuous mapping.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \gamma)$ be any two $\mathcal{P}V\hat{g}$ continuous mapping. Let \mathbb{A} be a $V\hat{g}CS$ in Z. By hypothesis, $g(\mathbb{A})$ is vague clopen in Y. Since every VCS is a $V\hat{g}CS$, $g^{-1}(\mathbb{A})$ is a $V\hat{g}CS$ in Y. Since f is a $\mathcal{P}V\hat{g}$ continuous mapping $f^{-1}(g^{-1}(\mathbb{A})) = (g \circ f)^{-1}(\mathbb{A})$ is vague clopen in X. Hence $g \circ f$ is a $\mathcal{P}V\hat{g}$ continuous mapping.

Theorem 5.14. Let $f: (X, \tau) \to (Y, \sigma)$ be a $\mathcal{P}V\hat{g}$ continuous mapping and $g: (Y, \sigma) \to (Z, \gamma)$ is a $V\hat{g}$ irresolute mapping, then $g \circ f: (X, \tau) \to (Z, \gamma)$ is a $\mathcal{P}V\hat{g}$ continuous mapping.

Proof. Let \mathbb{A} be a \hat{VgCS} in Z. By hypothesis, $g^{-1}(\mathbb{A})$ is a \hat{VgCS} in Y. Since f is a $\mathcal{P}V\hat{g}$ continuous mapping, $f^{-1}(g^{-1}(\mathbb{A})) = (g \circ f)^{-1}(\mathbb{A})$ is vague clopen in X. Hence $g \circ f$ is a $\mathcal{P}V\hat{g}$ continuous mapping.

Theorem 5.15. If $f : (X, \tau) \to (Y, \sigma) \mathcal{P}V\hat{g}$ continuous mapping and \mathbb{A} is a subset of X, then $g : \mathbb{A} \to (Y, \sigma) \mathcal{P}V\hat{g}$ continuous mapping.

Proof. Let V be any vague open subset of Y. Then $f^{-1}(\mathbb{V})$ is vague clopen in X. Then $f^{-1}(\mathbb{V}) \cap \mathbb{A} = g^{-1}(\mathbb{V})$ is vague clopen in \mathbb{A} . Hence g is $\mathcal{P}V\hat{g}$ continuous mapping.

References

- [1] C. L. Chang, Fuzzy topological spaces, J. Math Anal Appl. 24(1) (1968), 182-190.
- [2] W. L. Gau and D. J. Buehrer, Vague sets, IEEE Trans. Systems Man and Cybernet. 23(2) (1993), 610-614.
- [3] N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo 19(1) (1970), 89-96.

VAGUE \hat{g} FUNCTIONS IN VAGUE TOPOLOGICAL SPACES 5641

- [4] L. Mariapresenti and I. Arockia Rani, Vague generalised alpha closed sets in topological spaces, International Journal of Mathematical Archive 7(8) (2016), 23-29.
- [5] L. Mariapresenti and I. Arockiarani, On completely vague Gα continuous mappings, International Journal of Information Research and Review 03(11) (2016), 3053-3057.
- [6] A. Mary Margaret and I. Arockiarani, Generalized pre-continuous mappings, International Journal of Multidisciplinary Research and Development 3(8) (2016), 60-70.
- [7] E. L. Mary Tency and M. Pauline Mary Helen, On Vague ĝ Closed Sets in Vague topological Spaces, Int. J. Math. And Appl. 7(1) (2019), 171-176.
- [8] T. M. Nour, A note on perfectly continuous functions, European International Journal of Science and Technology 8(3) (2019), 91-93.
- [9] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15(3) (1965), 961-970.
- [10] P. Sundaram and M. Sheik John, On w-closed sets in topology, Acta Ciencia Indica 4 (2000), 389-392.
- [11] Thakur and Jyoti Pandey Bajpai, Intutionistic fuzzy W-closed sets and W-Continuity, International Journal of Contemporary Advanced Mathematics 1(1) (2010), 1-15.
- [12] M. K. R. S. Veera Kumar, On g-closed sets in topological spaces, Bulletin Allahabad Math. Soc. 18 (2003), 99-112.
- [13] L. A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338-353.