

SOMEWHAT CONTINUITY OF κ-OPERATION ON TOPOLOGICAL SPACES

R. JAYASHREE and K. SIVAKAMASUNDARI

Department of Mathematics Avinashilingam Institute for Home Science and Higher Education for Women Coimbatore-641043, Tamilnadu, India

Department of Mathematics Avinashilingam Institute for Home Science and Higher Education for Women Coimbatore-641043, Tamilnadu, India

Abstract

In this paper, we introduce the notion of somewhat (κ, κ') - continuity under the operation κ . Here κ and κ' are mapping from *gs*-open sets of (X, τ) and (y, σ) respectively to the power set, P(X). Thus its properties and characterizations are studied with κ -dense and κ -equivalent defined.

1. Introduction

In 1979, Kasahara introduced the concepts of operation in topological spaces and operation-closed graph of a function. Several known characterization of compact spaces, *H*-closed spaces and nearly compact spaces are unified by generalizing the notion of compactness with the help of a certain operation of a topology τ into the power set P(x), by choosing some special mappings $\gamma : \tau \to p(X)$ such as γ the identity mapping, the closure operation or the interior closure operation. In 1983, Jankvoic introduced and

2010 Mathematics Subject Classification: 54A40, 54A99, 03E72.

Keywords: topological spaces, a κ closure point, somewhat (κ, κ') - (κ, κ') - continuity, κ -equivalent.

Received July 14, 2019; Accepted September 22, 2019

1414 R. JAYASHREE and K. SIVAKAMASUNDARI

studied the concept of operation-closures of a subset, operation closed sets in a topological space and several related topics using the concept of α -closed sets and the α -closed graphs. Here in this paper the author has introduced a new concept called somewhat continuity of κ -operation where κ is the operation from *gs*-open sets to power set p(X).

3. Preliminaries

Definition 3.1. Let (X, τ) be a topological space. A subset A of a space (X, τ) is called generalized semi closed gs-closed) set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .

Definition 3.2. Let (X, τ) be a topological space. A subset A of a space (X, τ) is called generalized semi open (gs-open) set if $X \setminus A$ is gs-closed. The collection of all gs-open sets is denoted by $GSO(X, \tau)$. Clearly $\tau \subseteq GSO(X, \tau)$.

Definition 3.3. Let (X, τ) be a topological space. An operation $\gamma : \tau \to P(X)$ is a mapping from τ into the power set of X such that $V \subseteq V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V.

Definition 3.4. A subset A of a space (X, τ) will be called a γ -open set of X, τ if for each $x \in A$, there exists an open set U such that $x \in U$ and $U^{\gamma} \subset A$. τ will denote the set of all γ -open sets. Clearly we have $\tau \supset \tau_{\gamma}$.

Definition 3.5 [7]. A subset *B* of (X, τ) is said to be γ -closed in (X, τ) if $X \setminus B$ is γ -open in (X, τ) .

Definition 3.6 [7]. A point $x \in X$ is in the γ -closure of a set $A \subseteq X$ if $U^{\gamma} \cap A \neq \phi$ for each open set U of x. The γ closure of a set A is denoted by $Cl_{\gamma}(A)$.

Definition 3.7 [7]. An operation $\gamma : \tau \to P(X)$ is a mapping from τ into the power set P(X).

$$\tau_{\gamma} - Cl(A) = \bigcap \{F : A \subseteq F, X \setminus F \in \tau_{\gamma} \}.$$

Where τ_{γ} denotes the set of all γ -open sets in (X, τ) .

Definition 3.8 [4]. Let (X, τ) be a topological space. A mapping $\kappa : GSO(X, \tau) \to P(X)$ from the family of generalized semi open sets $GSO(X, \tau)$ to the power set of P(X) such that $V \subseteq V^{\kappa}$ for every $V \in GSO(X, \tau)$ where V^{κ} denotes the value of V under the operation κ .

Definition 3.9 [4]. A subset A of a space (X, τ) will be called a κ -open set of (X, τ) if for each $x \in A$, there exists a *gs*-open neighbourhood U of x and $U^{\kappa} \subseteq A$.

Definition 3.10 [4]. A κ -operation $\kappa : GSO(X, \tau) \to P(X)$ is called regular κ operation given $x \in X$ and for each pair of *gs*-open neighbourhoods A and B of x, there exists a *gs*-open neighbourhood C of x such that $A^{\kappa} \cap B^{\kappa} \supseteq C^{\kappa}$.

Definition 3.11 [4]. A topological space (X, τ) is called κ -regular if for given $x \in X$ and each *gs*-open neighbourhood U of x, there exists a *gs*-open neighbourhood V of x such that $V^{\kappa} \subseteq U$.

Definition 3.12 [4]. A subset A of a topological space (X, τ) is called κ -closed whenever X - A is κ -open.

Definition 3.13 [4]. Let κ be an operation on $GSO(X, \tau)$. A point $x \in X$ is said to be a κ -closure point of the set A if $U^{\kappa} \cap A \neq \phi$ for each gs-open neighbourhood U of x. $gs Cl_{\kappa}(A) = \{x \in X/U^{\kappa} \cap A \neq \phi, \forall U, gs$ -open neighbourhood of $x\}$.

Definition 3.14 [4]. Let κ be an operation on $GSO(X, \tau)$. Then $gs_{\kappa}Cl(A)$ is defined as the intersection of all κ -closed sets containing $gs_{\kappa}Cl(A) = \bigcap \{F \subseteq X/A \subseteq F \text{ and } X/F \in \kappa O(X, \tau)\}.$

Definition 3.15 [4]. An operation κ on $GSO(X, \tau)$ is said to be open κ operation if for every *gs*-open neighbourhood U of $x \in X$, there exists a κ -open set V such that $x \in V$ and $V \subset U^{\kappa}$.

Definition 3.16. A subset A of (X, τ) is said to be κ -g-closed if $gscl_{\kappa}(A) \subseteq U$ whenever $A \subseteq U$ and U is κ -open in (X, τ) .

4. Somewhat (κ , κ')- Continuity

Definition 4.1. A function f is said to be somewhat (κ, κ') - continuity if for κ -open set V of (Y, σ) and $f^{-1}(V) \neq \emptyset$, there exists a non empty κ -g-open set U in (X, τ) such that $U \subseteq f^{-1}(V)$.

Example 4.2. Let $X = Y = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}, \sigma = \{X, \emptyset, \{a\}, \{a, b\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ such that f(a) = b, f(b) = a and f = (c) = a. Here κ -g-open sets are $X, \emptyset, \{a\}, \{b\}, \{c\}$ and κ' -open sets are $X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}$. Then f is somewhat (k, k')-continuity.

Example 4.3. Let $X = Y = \{a, b, c\}, \quad \tau = \{X, 0, \{a\}, \{a, b\}\},$ $\sigma = \{X, 0, \{a\}, \{a, b\}, \{a, c\}\}.$ Let $f : (X, \tau) \rightarrow (Y, \sigma)$ such that f(a) = c, f(b) = band f(c) = c. Here κ -g-open sets are $X, 0, \{a\}, \{a, b\}, \{a, c\}$ and κ -open sets are $X, 0, \{a, b\}.$ Here the function is not f is somewhat (k, k')-continuity. Since for $f^{-1}(a, b) = \{b\}$ there is no κ -g-open set contained in $\{b\}.$

Remark 4.4. Composition of two somewhat (κ, κ') - continuous functions need not be somewhat (κ, κ') - continuous in general and is shown in the following example.

Theorem 4.5. If f is somewhat (κ, κ') - continuous and g is $gs-(\kappa, \kappa')$ continuous then $g \circ f$ is somewhat (κ, κ') - continuous.

Proof. Let V be κ -open set, then $g^{-1}(V)$ is κ -open set in Y. Since g is gs-(κ , κ') continuous, now f is somewhat (κ , κ')-continuous. Thus $f^{-1}(g^{-1}(V))$ will contain a non empty κ -g-open set U. That is $\subseteq f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$. Therefore $g \circ f$ is somewhat (κ, κ')-continuous.

Corollary 4.6. If f is somewhat (κ, κ') -continuous and g is super

 (κ, κ') -continuous then $g \circ f$ is somewhat (κ, κ') -continuous.

Proof. Let V is κ -open in Z. Since is g is super (κ, κ') -continuous, $g^{-1}(V) = \{A^{\kappa'} \text{ for same } A \in GSO(Y, \sigma)\}$. Since $A^{\kappa'}$ is κ -open, $g^{-1}(V)$ is κ open (from lemma that every U^{κ} is κ -open). Since f is somewhat (κ, κ') -continuous, $f^{-1}(g^{-1}(V))$ contain a κ -open set U in X such that $U \subseteq f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$. Therefore $g \circ f$ is somewhat (κ, κ') -continuous.

Definition 4.7. A subset $A \subseteq X$ is called κ -dense in (X, τ) if $X = gs_{\kappa} cl(A)$.

Lemma 4.8. A subset A of (X, τ) is κ -dense in (X, τ) if there is no proper κ -closed set C in (X, τ) such that $A \subseteq C \subseteq X$.

Proof. Suppose there is a proper κ -closed set in X such that $A \subsetneq C \subsetneq X \dots 1$.

Since A is κ -dense, $X = gs_{\kappa}cl(A)$.

 $gs_{\kappa}cl(A) = \bigcap \{M \mid A \subseteq M \text{ and } M \text{ is } \kappa \text{-closed in } X \} \dots 2$

1 and 2 implies C is one set in the intersection of 2. Implies X = C.

Therefore *C* is not proper subset satisfying condition that $A \subseteq C \subseteq X$.

Theorem 4.9. For a surjective function f the following statements are equivalent.

(a) f is somewhat (κ, κ') -continuous

(b) if C is κ -closed subset of (Y, σ) such that $f^{-1}(C) \neq \emptyset$ there exists a proper κ -g-closed subset D of (X, τ) such that $f^{-1}(C) \subseteq D$.

(c) If A is a κ -dense subset of (X, τ) then f(A) is a dense subset of (Y, σ) .

Proof. $(a) \Rightarrow (b)$ Given *f* is somewhat (κ, κ') -continuous function and *C* is a κ' -closed subset of (Y, σ) then Y - C is a κ' -open subset such that

1418

 $f^{-1}(C) \neq \emptyset$. Since f is somewhat (κ, κ') -continuous there is a proper κ -g-open set of (X, τ) such that $U \subseteq f^{-1}Y - C = X - f^{-1}(C) \neq \emptyset$. That is $f^{-1}C \subseteq X - U = D$ say, where D is κ -g-closed set.

(b) \Rightarrow (c) Let $V \in_{\kappa} O(Y, \sigma)$ such that $f^{-1}V = \emptyset, Y - U = X - f^{-1}(U) \neq X$. By condition (b), there exists κ' -closed set D such that $f^{-1}(Y - U) \subset D$. Implies $X - f^{-1}(U) \subseteq D$. Thus $X - D \subseteq f^{-1}(U)$ where X - D is κ -g-open. Hence f is somewhat (κ, κ') -continuous.

(b) \Rightarrow (c) we have to prove f(A) is dense in Y. Suppose f(A) is not κ' -dense in Y, there exists a proper κ' -closed set C in Y such that $f(A) \subsetneq C \subsetneq Y$. Thus $f^{-1}(C) \neq X$. There exists a κ -g-closed set D such that $A \subseteq f^{-1}(C) \subseteq D \subseteq X$. Since A is dense there should not be any proper subset which is contained in X other than X. Hence a contradiction.

(c) \Rightarrow (b) Suppose (b) is not true implies, for closed set C in Y such that $f^{-1}(C) \neq X$, there is no proper closed subset D in X such that $f^{-1}(C) \subseteq D$. This means $f^{-1}(C)$ is κ -dense in (X, τ) . By (c) we get $f(f^{-1}(C))$ is κ' -dense. That is C is κ' -dense in Y. But C is a closed set in Y which is a contradiction.

Definition 4.10. Let X be a set with two topologies τ and σ . Then τ is said be equivalent to κ -provided if a non-empty subset $U \in \kappa O(X, \tau)$ then there exists a non-empty κ_{σ} -g-open set V such that $V \subseteq U$ and if for a non-empty subset $U \in \kappa O(Y, \sigma)$ then there exists a non-empty κ_{τ} -g-open set V such that $V \subseteq U$.

Theorem 4.11. Let X be a set, τ and σ are κ -equivalent topologies on X. When f is identity then $f: (X, \tau) \to (X, \sigma)$ and $f^{-1}: (Y, \sigma) \to (X, \tau)$ are somewhat (κ, κ') -continuous. Conversely if the identity function f is somewhat (κ, κ') -continuous in both the directions, then τ and σ are κ -equivalent.

Proof. Let f be identity and τ and σ are κ -equivalent. To prove: f and f^{-1} are somewhat (κ, κ') -continuous function. Let V be a κ -open set and $f^{-1}(V)$ since f is identity. By the definition of κ -equivalent there exists κ -open set W

such that $W \subseteq V = f^{-1}(V)$.

Proof of the Converse. Let f and f^{-1} be identity mapping and somewhat (κ, κ') -continuous function.

To Prove: τ and σ are κ -equivalent.

(i) Let f be somewhat (κ, κ') -continuous function. By the definition of somewhat (κ, κ') -continuity, for every κ -open set V of (Y, σ) and $f^{-1}(V) \neq \emptyset$, there exists a non empty $\kappa \cdot g$ -open set U in (X, τ) such that $U \subseteq f^{-1}(V) = V$ since it is an identity mapping.

(ii) Let f^{-1} be somewhat (κ, κ') -continuous function. By the definition of somewhat (κ, κ') -continuity, for every κ -open set V of (Y, σ) and $f^{-1}(V) \neq \emptyset$, there exists a non empty κ -g-open set U in (X, τ) such that $U \subseteq f^{-1}(V) = V$ since it is an identity mapping.

Theorem 4.12. Let $f : (X, \tau) \to (Y, \sigma)$ be a somewhat (κ, κ') -continuous surjective function and τ^* be a topology for X which is κ -equivalent to τ . Then the function $f : (X, \tau^*) \to (Y, \sigma)$ is somewhat (κ, κ') -continuous function.

Proof. Le V be κ -open set of (Y, σ) such that $f^{-1}(V) \neq 0$. Since $f:(X, \tau) \to (Y, \sigma)$ be a somewhat (κ, κ') -continuous there exists a κ -g-open set U in (X, τ) such that $U \subseteq f^{-1}(V)$. To show $f:(X, \tau^*) \to (Y, \sigma)$ is somewhat (κ, κ') -continuous function we have to prove that there exists a κ -g-open set W in (X, τ) such that $W \subseteq V = f^{-1}(V)$. Since τ^* and τ are equivalent, there exists a κ -open set W such that $W \subseteq U$ but $U \subseteq f^{-1}(V)$. Implies $W \subseteq V = f^{-1}(V)$. Therefore function $f:(X, \tau^*) \to (Y, \sigma)$ is somewhat (κ, κ') -continuous function.

Theorem 4.13. $f:(X, \tau) \to (Y, \sigma)$ be a somewhat (κ, κ') -continuous

subjective function and σ^* be a topology for Y which is κ -equivalent to σ . Then the function $f:(X, \tau) \rightarrow (Y, \sigma^*)$ is somewhat (κ, κ') -continuous function.

Proof. Let $V^* \in \sigma^*$ such that $f^{-1}(V) \neq \emptyset$ since σ^* is κ -equivalent to σ , there exists a non-empty κ -open set V in (Y, σ) such that $V \subseteq V^*$. This implies $\emptyset \subseteq f^{-1}(V) \subseteq f^{-1}(V^*)$. Since $f: (X, \tau) \to (Y, \sigma)$ is somewhat (κ, κ') -continuous function there exists a non empty κ -g-open set U in (X, τ) such that $U \subseteq f^{-1}(V)$. Then $U \subseteq f^{-1}(V^*)$, hence $f: (X, \tau) \to (Y, \sigma^*)$ is somewhat (κ, κ') -continuous function.

References

- S. P. Arya and T. M. Nour, Characterizations of S-normal spaces, Indian J. Pure. Appl. Math. 21 (1990), 717-719.
- [2] C. Carpintero, N. Rajesh and E. Rosas, Operation approaches on b-open sets and applications, Bol. Sci. Paran. Mat. 30 (2012), 21-33.
- [3] D. S. Jankovic, On functions with α-closed graphs, Glasnic Mat. 18 (1983), 161-169.
- [4] R. Jayashree and K. Sivakamasundari, Operation approaches on gs-open sets in topological spaces, Journal of Emerging Technologies and Innovative Research (JETIR), September (2018), Volume 5, Issue 9, 225-229.
- [5] S. Kasahara, Operation-compact spaces, Math. Japon. 24 (1979), 97-105.
- [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly. 67 (1960), 269-275.
- [7] H. Ogata, Operations on topological spaces and associated topology, Math. Japon. 36 (1991), 175-184.
- [8] Sanjay Tahiliani, Operation approach to β-open sets and applications, Math. Commun. 16 (2011), 577-591.

Advances and Applications in Mathematical Sciences, Volume 18, Issue 11, September 2019

1420