
 

Advances and Applications in Mathematical Sciences 
Volume 18, Issue 11, September 2019, Pages 1413-1420 
© 2019 Mili Publications 

 

2010 Mathematics Subject Classification: 54A40, 54A99, 03E72. 

Keywords: topological spaces, a  closure point, somewhat  -,  continuity, -

equivalent. 

Received July 14, 2019; Accepted September 22, 2019 

SOMEWHAT CONTINUITY OF -OPERATION ON 

TOPOLOGICAL SPACES 

R. JAYASHREE and K. SIVAKAMASUNDARI 

Department of Mathematics  

Avinashilingam Institute for Home Science  

and Higher Education for Women  

Coimbatore-641043, Tamilnadu, India 

Department of Mathematics 

Avinashilingam Institute for Home Science 

and Higher Education for Women  

Coimbatore-641043, Tamilnadu, India 

Abstract 

In this paper, we introduce the notion of somewhat  -,  continuity under the operation 

. Here  and ’ are mapping from 𝑔𝑠-open sets of  ,X  and  ,y  respectively to the power 

set,  .XP  Thus its properties and characterizations are studied with -dense and -equivalent 

defined. 

1. Introduction 

In 1979, Kasahara introduced the concepts of operation in topological 

spaces and operation-closed graph of a function. Several known 

characterization of compact spaces, H-closed spaces and nearly compact 

spaces are unified by generalizing the notion of compactness with the help of 

a certain operation of a topology  into the power set  ,xP  by choosing some 

special mappings  Xp :  such as  the identity mapping, the closure 

operation or the interior closure operation. In 1983, Jankvoic introduced and 
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studied the concept of operation-closures of a subset, operation closed sets in 

a topological space and several related topics using the concept of 𝛼-closed 

sets and the -closed graphs. Here in this paper the author has introduced a 

new concept called somewhat continuity of -operation where  is the 

operation from gs-open sets to power set  .Xp  

3. Preliminaries 

Definition 3.1. Let  ,X  be a topological space. A subset A of a space 

 ,X  is called generalized semi closed gs-closed) set if   UAscl   

whenever UA   and U is semi-open in  ,X . 

Definition 3.2. Let  ,X  be a topological space. A subset A of a space 

 ,X  is called generalized semi open (gs-open) set if AX \ is gs-closed. The 

collection of all gs-open sets is denoted by  ., XGSO  Clearly 

 .,  XGSO  

Definition 3.3. Let  ,X  be a topological space. An operation 

 XP :  is a mapping from τ into the power set of X such that γVV   

for each ,V  where V  denotes the value of   at V. 

Definition 3.4. A subset A of a space  ,X  will be called a -open set of 

,X  if for each ,Ax   there exists an open set U such that Ux   and 

 .AU  will denote the set of all -open sets. Clearly we have .  

Definition 3.5 [7]. A subset B of  ,X  is said to be -closed in  ,X  if 

BX \  is 𝛾-open in  ., X  

Definition 3.6 [7]. A point Xx   is in the -closure of a set XA   if 

 AU   for each open set U  of x. The  closure of a set A is denoted by 

 .ACl  

Definition 3.7 [7]. An operation  XP :  is a mapping from τ into 

the power set  .XP  

   .\,:   FXFAFACl   
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Where   denotes the set of all -open sets in  ., X  

Definition 3.8 [4]. Let  ,X  be a topological space. A mapping 

   XPXGSO  ,:  from the family of generalized semi open sets 

 ,XGSO  to the power set of  XP  such that  VV  for every 

  ,XGSOV  where V  denotes the value of V under the operation . 

Definition 3.9 [4].  A subset A of a space  ,X  will be called a -open 

set of  ,X  if for each ,Ax   there exists a gs-open neighbourhood U  of x  

and .AU   

Definition 3.10 [4]. A -operation    XPXGSO  ,:  is called 

regular  operation given Xx   and for each pair of gs-open neighbourhoods 

A and B  of x, there exists a gs-open neighbourhood C of x such that 

.  CBA   

Definition 3.11 [4]. A topological space  ,X  is called -regular if for 

given Xx   and each gs-open neighbourhood U of x, there exists a gs-open 

neighbourhood V of x such that .UV   

Definition 3.12 [4]. A subset A of a topological space  ,X  is called -

closed whenever AX   is -open. 

Definition 3.13 [4]. Let  be an operation on  ., XGSO  A point Xx   

is said to be a -closure point of the set A if  AU   for each gs-open 

neighbourhood U of x.    -,, gsUAUXxAClgs  
  open 

neighbourhood of x}. 

Definition 3.14 [4]. Let  be an operation on  ., XGSO  Then  AClgs  

is defined as the intersection of all -closed sets containing 

   FAXFAClgs    and  .,0  XFX  

Definition 3.15 [4]. An operation  on  ,XGSO  is said to be open  

operation if for every gs-open neighbourhood U of ,Xx   there exists a -

open set V such that Vx   and  . UV  
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Definition 3.16. A subset A of  ,X  is said to be -g-closed if 

  UAgscl   whenever UA   and U  is -open in  ., X   

4. Somewhat  -,  Continuity 

Definition 4.1. A function f is said to be somewhat  -,  continuity if 

for -open set V of  ,Y  and   ,01  Vf  there exists a non empty -g-open 

set U in  ,X  such that  .1 VfU   

Example 4.2. Let        ,,,,,,0,},,, cabaaXcbaYX   

    .,,,0, baaX   Let     ,,: YXf  such that     abfbaf  ,  

and   .acf   Here -g-open sets are      cbaX ,,,0,   and -open sets 

are        .,,,,,,0, cababaX   Then f is somewhat  -, kk  continuity. 

Example 4.3.  Let  },,, cbaYX       ,,,,0, baaX   

      .,,,,,0, cabaaX   Let     ,,: YXf  such that     bbfcaf  ,  

and   .ccf   Here -g-open sets are      cabaaX ,,,,,0,   and -open sets 

are  .,,0, baX   Here the function is not f is somewhat  -, kk  continuity. 

Since for    bbaf  ,1  there is no -g-open set contained in {b}. 

Remark 4.4. Composition of two somewhat  -,  continuous functions 

need not be somewhat  -,  continuous in general and is shown in the 

following example. 

Theorem 4.5. If f is somewhat  -,  continuous and g is gs-  ,  

continuous then fg   is somewhat  -,  continuous. 

Proof. Let V be -open set, then  Vg 1  is -open set in Y. Since g is gs-

 ,  continuous, now f is somewhat  -,  continuous. Thus   Vgf 11   

will contain a non empty -g-open set U. That is       .111 VfgVgf
    

Therefore fg   is somewhat  -,  continuous. 

Corollary 4.6. If f is somewhat  -,  continuous and g is super 
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 -,  continuous then fg   is somewhat  , -continuous. 

Proof. Let V is -open in Z. Since is g is super  -,  continuous, 

     AVg 1  for same  .,  YGSOA  Since A  is -open,  Vg 1  is -

open (from lemma that every U  is -open). Since f is somewhat 

 -,  continuous,   Vgf 11   contain a -open set U in X such that 

      .111 VfgVgfU
    Therefore fg   is somewhat 

 -,  continuous. 

Definition 4.7. A subset XA   is called -dense in  ,X  if 

 .AclgsX    

Lemma 4.8. A subset A of  ,X  is -dense in  ,X  if there is no proper 

-closed set C in  ,X  such that .XCA   

Proof.  Suppose there is a proper -closed set in X such that 

.1XCA   

Since A is -dense,  .AclgsX   

   MAMAclgs  |  and M is -closed in X}2 

1 and 2 implies C is one set in the intersection of 2. Implies .CX    

Therefore C is not proper subset satisfying condition that .XCA   

Theorem 4.9. For a surjective function f the following statements are 

equivalent. 

(a) f is somewhat  -,  continuous 

(b) if C is -closed subset of  ,Y  such that   01  Cf  there exists a 

proper -g-closed subset D of  ,X  such that   .1 DCf   

(c) If A is a -dense subset of  ,X  then  Af  is a dense subset of  ., Y  

Proof.     ba   Given f is somewhat  -,  continuous function and C 

is a - closed subset of  ,Y  then CY   is a - open subset such that 
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  .01  Cf  Since f is somewhat  -,  continuous there is a proper 

--g open set of  ,X  such that   .011   CfXCYfU  That is 

DUXCf 1  say, where D is --g closed set. 

(b)  (c) Let   ,YOV  such that   .,0 11 XUfXUYVf    By 

condition (b), there exists - closed set D such that   .1 DUYf   Implies 

  .1 DUfX    Thus  UfDX 1  where DX   is -g-open. Hence f is 

somewhat  -,  continuous. 

(b)  (c) we have to prove  Af  is dense in Y. Suppose  Af  is not 

- dense in Y, there exists a proper - closed set C in Y such that 

  .YCAf   Thus   .1 XCf   There exists a -g-closed set D such that 

  .1 XDCfA    Since A is dense there should not be any proper 

subset which is contained in X other than X. Hence a contradiction. 

(c)  (b) Suppose (b) is not true implies, for closed set C in Y such that 

  ,1 XCf   there is no proper closed subset D  in X such that   .1 DCf   

This means  Cf 1  is -dense in  ., X  By (c) we get   Cff 1  is - dense. 

That is C is - dense in Y. But C is a closed set in Y which is a contradiction. 

Definition 4.10. Let X be a set with two topologies  and . Then  is said 

be equivalent to -provided if a non-empty subset   ,XOU  then there 

exists a non-empty --g open set V such that UV   and if for a non-empty 

subset   ,YOU  then there exists a non-empty -g- open set V such 

that .UV   

Theorem 4.11. Let X be a set,  and  are -equivalent topologies on X. 

When f is identity then     ,,: XXf  and     ,,:1 XYf  are 

somewhat  -,  continuous. Conversely if the identity function f is somewhat 

 -,  continuous in both the directions, then  and  are -equivalent.  

Proof. Let f be identity and  and  are -equivalent. To prove: f and 
1f  

are somewhat  -,  continuous function. Let V be a -open set and  Vf 1  

since f is identity. By the definition of -equivalent there exists -open set W 
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such that  .1 VfVW   

Proof of the Converse. Let f and 1f  be identity mapping and 

somewhat  -,  continuous function. 

To Prove:  and  are -equivalent. 

(i) Let f be somewhat  -,  continuous function. By the definition of 

somewhat  -,  continuity, for every -open set V of  ,Y  and   ,01  Vf  

there exists a non empty -- g open set U in  ,X  such that 

  VVfU  1  since it is an identity mapping. 

(ii) Let 1f  be somewhat  -,  continuous function. By the definition of 

somewhat  -,  continuity, for every -open set V of  ,Y  and   ,01  Vf  

there exists a non empty --g open set U in  X,  such that 

  VVf  1U  since it is an identity mapping. 

Theorem 4.12. Let     ,,: YXf  be a somewhat  -,  continuous 

surjective function and   be a topology for X which is -equivalent to . Then 

the function    


,,: YXf  is somewhat  -,  continuous function. 

Proof. Le V be -open set of  ,Y  such that   .01  Vf  Since 

    ,,: YXf  be a somewhat  -,  continuous there exists a --g open 

set U in  X,  such that  .U 1 Vf   To show    


,,: YXf  is 

somewhat  -,  continuous function we have to prove that there exists a 

--g open set W in  X,  such that  .1 VfVW   Since   and  are 

equivalent, there exists a -open set W such that UW   but  .1 VfU   

Implies  .1 VfVW   Therefore function    


,,: YXf  is 

somewhat  -,  continuous function. 

Theorem 4.13.     ,,: YXf  be a somewhat  -,  continuous 
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subjective function and   be a topology for Y which is -equivalent to .  

Then the function     ,,: YXf  is somewhat  -,  continuous 

function. 

Proof. Let  V  such that   01  Vf  since   is -equivalent to ,  

there exists a non-empty -open set V in  ,Y  such that . VV  This 

implies    .0 11   VfVf  Since     ,,: YXf  is somewhat 

 -,  continuous function there exists a non empty -g-open set U in  ,X  

such that  .1 VfU   Then  ,1  VfU  hence     ,,: YXf  is 

somewhat  -,  continuous function. 

References 

 [1] S. P. Arya and T. M. Nour, Characterizations of S-normal spaces, Indian J. Pure. Appl. 

Math. 21 (1990), 717-719. 

 [2] C. Carpintero, N. Rajesh and E. Rosas, Operation approaches on b-open sets and 

applications, Bol. Sci. Paran. Mat. 30 (2012), 21-33. 

 [3] D. S. Jankovic, On functions with -closed graphs, Glasnic Mat. 18 (1983), 161-169. 

 [4] R. Jayashree and K. Sivakamasundari, Operation approaches on gs-open sets in 

topological spaces, Journal of Emerging Technologies and Innovative Research (JETIR), 

September (2018),Volume 5, Issue 9, 225-229. 

 [5] S. Kasahara, Operation-compact spaces, Math. Japon. 24 (1979), 97-105. 

 [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. 

Monthly. 67 (1960), 269-275. 

 [7] H. Ogata, Operations on topological spaces and associated topology, Math. Japon. 36 

(1991), 175-184. 

 [8] Sanjay Tahiliani, Operation approach to -open sets and applications, Math. Commun.  

16 (2011), 577-591. 


