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Abstract

Combination of n-Dirichlet and m-Schwarz is studied and an explicit representation of

solution of inhomogeneous polyanalytic equation of order (m +n) is given on the upper half

plane H.

1. Introduction

In this article, a combination of n-Dirichlet and m-Schwarz is studied and
an explicit representation of solution of inhomogeneous polyanalytic equation

of order (m + n) is given on the upper half plane. Earlier 1-Dirichlet and n-

Schwarz and reverse combinations were studied [2] but here a generalised
result for every order is given. Dirichlet and Schwarz BVP’s along with other
similar BVP are studied independently on different domains like Upper Half
Plane [1], Quarter Plane [5, 12, 13, 14, 15] and Unit Disc [5] etc. These type of
boundary conditions are also studied on different- different domains and
solved via different techniques [4, 5, 9, 10, 11]. The area integral written in
Cauchy-Pompeiu formula is known as Pompeiu operator, was studied by
Vekua see [7]. For a regular domain D, if f e L,(D,C), p>1, (where,

L,(D, C) is the space of all equivalence classes of Lebesgue measurable
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functions f on D for which | f|P is integrable) then the Pompeiu operator Tf

possesses weak derivatives and
0 0
a_,(Tf) =, 6_—(Tf) =I1f
z 4

where [If represents singular integral in the principal value sense. In case

of upper half plane if w : H — C satisfies w(x) < C|x | for |x| > K, e >0
and w; € L;(H, C), then the Cauchy-Pompeiu formula [3] is given by

we) =g [ w2 1] wp©F

T JOo<Im ¢

w(e) = 5 f‘;w(t)

a1 ddn
— w e
t—z mJo<Img ©

where z € H. In case of upper half plane H, the Pompeiu operator T has the

following form:

1) =3 [ 10 E0

and 7 satisfies the properties 6i (Tf) = f, ai (Tf) = I1 f where
z

z

d&dn

(s

here derivatives are taken in distributional sense. We observe that for

z=x+iyeH,ye PR, C), p=>1

) = -+ [ 0=

R B dt
lim = | yo) —2%— = yo(to)-

z2ty T J—oo |t -z

For regular domains higher order of Pompeiu operators were studied in

[6] and for upper half plane in [1].
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2. Dirichlet-Schwarz Mixed Boundary Value Problem for Polyanaltic
Functions

Theorem 1. For m, n > 1, the mixed n-Dirichlet and m-Schwarz problem

for the inhomogeneous polyanalytic equation in half plane

o M w) = finH 2.1)
lw=y;,on R O<i<n-1, 2.2)
Re(ag”w) =Bjon R (2.3)
Im(o2 w(i)) = C;, 0< j<m -1 (2.4)

is uniquely solvable for f e Lp,z(H, C), p > 2 satisfying regularity
conditions above and thy; () e IP(R, C)NC(R, C), 0 <i<n-1,

thj(t) e IP(R, C)NC(R, C), 0 < j < m—1 and may be expressed as

n-1 5 5
w(z) =1 5 (z+2)
S

S poo
’ z%(_;') J-_Oo BS(S)((Siz) + (S2S+ 1)j(2s_2—§)8d8

n - +00 A
S s [ {yx(t)z 3 CHNa, b, n-L2) (-1

r=0(a,b)eT(n-1)
Za+b+k—r+1 _ Za(z)k+b—r+1 . 1 gt
A+b-r+1)(t-2) (t+i)(a+1)

n+m m-1 )
(— 1) % J.H f(C)Z Z (_ 1)n+m—r—2 C;n_l (z)r N(a, b,n-1; z)

+ —_—
(m = 1) 1) r=0 (a,b)eT(n-1) m+b-r

a+b+m-r a(zym+b-r
{(§a+b+m—r _Ca(z)m+br)(c2€ _ 1 J(Z -z (Z) JHdédH

+1 €-z -z
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)™ 1 nim-r—2,,. N(a, b, n —1;2)
"Dl Diw ff@ 2 TR SR
r=0 (a, b)eT(n-1)
a+b+m-r a+m-r(7\b 1 z 1
e sgemogp Lo i) Dl s
where
P e A1 Vil (19
N(L’]’nC)QC»J_ l']'(r—L—])’ >
T(r)=1{@G j) e NgxNg : i +j <r}. (2.6)
and

8' a+b 9 r—a—b
(L J, r, C)Q C_> ((11 by)(S _(aS)_ b)‘ >

T@®) ={(a,b) e Ny xNy : a+b < §}. 2.7

if and only if

S 1 () o d
Z_)z— CU " -7 52

)n v+m+l 1 a b -1
%)
(n 1-v)(m-1)=n .[ (@ o) T(m N

nl-v,  \n-1-v-p B
Z (;{T(ga+b+p+1 _ Ca(g)b+p+1)f(§)ZZ§Tde_] _0 ©.8)

p=0

Proof. We will break the equation into two equation first of order-n and
second of order m and use substitution method to write the solution of given

problem.
o7 =07 (0Fw) = f
Let
otw =W (2.9)
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OTW = f
Solution of equation (2.9) is given by
n-1

we) = Y S V" 06-2)

xdt

1 ——n-1 dé&dn
S LRGSR =

If and only if

A=t oo
2271:1 (xl) o)l J. 7. @) (¢ _2)7» v dtz

( l)n v IJ‘ W(C)(E_Z)n—l—v d&dn ~o.
) du z

-1y C-2)

Solution of equation (2.10) is given by

W(z) = LZ (z+2)p

(C-2z+(C~2)" "dedn

Re-writing the above equation, we have

W(e) = ‘Z (c+2)

F2 S Lot oo

1605

(2.10)

(2.11)
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RECEVEpY [ = B4
Tm-1lw {m[c 2 EZ+1J M{E—z ?HD

~ ———m-1
(C-C+(C-¢)) d&dn (2.13)

Now substituting the value from (2.13) in area integral of equation (2.11),

we have

6=0

m-1
L o= E L [iz%mzf’

CSER [ (-t Jes-e-tras

VA O PN 4 4
<m—1>!w[’”“>(5-c =) f“)[c_z zJJ

E-c+(- c))’"‘ldzdn} ((2 Z)) dedn @.11)

i
=
a
g
2}
(I

m-1
_:\N"6 1 =7 _ =y-1 _dédn
—zgzzomjﬂ(mc)(c 2y £

m— 1 5 . B __2
ST SR

5=0

L[ 1y (D) @) T oplgian |62
gt {m i (c < J(C_C”;_g) 1dad”J G-z

" CF(EC = ~ -1
H (( 25 (é o g(CiJ(E—C+E—c)m‘1dédﬁ](Q(gf)z) d&dn
+

(m-1ln
m-1 38 n-1
. Cs ~Spm-lzn—-p-1, 1yp-p-1 1 r‘—8—r+pm
_Laoz(;zéscrc R ] R
=0r=0p
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m— 1 5 -5 —
-1 (25-¢-C) s _5)(@-2)
+SZ ! '[ ole (){ ‘[ ( §-G _32+1(28_C_C) J (€-2) d&dﬂ:lds

m N ran + m—1 an
o] f@[ﬂ e é;))(c . dgdnjdgd”

g Ef(i)[ . Z-¢+2 Z;C)’" =D ldadnjdadn

(m_l)!n-HEZ-i—l _2)

B N = S (R G ()
T n.Hf(g)(nI R didn]d&dn

Ly %[g (TS () dédangdﬁ

(m=1) = H?+1 TJH €-2)
m-1 38 n-— 165 S 1— 1 —n-p-1 nep-1
=i > Gaee Ry a)
3=0r=0 p=0
m-1 m
S EU pomas « EX L[ @) maEan
5=0
Qf(C) D™ 1 [ e
(m 1)’ .[ {F Ed - _1)!;L{(C)(G)dédn

GV @ ~
e Hz2+1{H)d§dn @14

Solving the above substitutions one by one we have the following

expressions:

_1(rperip _ 1 ggoPH ) dedn
J.QC’ b= Hag(S—r+p+1j§—2
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s 1 (2s - €~ 5)8(5 - Z)n_l dtdn

s2+17mJm C-z
-1, - -TrE-ay ]
e ORISR (2.1

Using Cauchy Integral and Gauss theorem over H, we may write the

following values while evaluating integrals from domain towards its

boundary.
C+T-¢-8 = D.NG jr LT (2.16)
@@, j)eT'(r)
where
NG i DT < HEUEEr )
T(r) = {G, j) e Ny xNg : i +j < 7. 2.17)
and
(2s—¢-CpP = Z N(a, b, 5, 5)£°C° (2.18)
(a, H)eT(5)
where

agb _ 1 P25y
N(a, b, 8, 8)CC° = alb(8—a-b) ’

T@®) ={(a,b) e Ny xNy : a+b < §}. (2.19)

Using Cauchy integral and Gauss theorem over H, we may write:
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n-1
@-2" = 3 (TGP .20

p=0

Using above results we can write B as:

n-1
B Z N(a, b, 5, s)zo(n—lcp)(_z)n—l—p SL
p=

-z
(a, b)eT(5)

|: I C Cb-%—p (Zédz)__.[ C Cb"'P dadnj|

n-1
- Z N(a, b, 8, s)l;)(”lcp)(_z)n—l—p s [ J.CC(HP dgdn)}

(a, b)eT(5)

n-1 azb+p+l
_ n-1 —\n—-1- 1 1 C_a C d&dn

(a, b)eT'(8)

n-1 Fb+p+1
n-1 N s |1 o A dédn
- D, Nabs, 8);::0( Cp)(=2)"F 52 +1|:EJ.Hi( b+p+l j(C—Z)}

(a, b)eT(8)

- Z N(abSS)Z(nlc)( _)nlp(s_z_ 28 j

(a, b)eT(5) s+l

1 0 Sa+b+p+1 ds zazb+p+1
2mi) o b+p+1(s—2z) b+p+1

- Z N(abSS)Z(nlc)( _)nlp(s_z_ 28 j

(a, )eT(5) s+l
Za§b+p+1 Za§b+p+1
(b+p+1_b+p+1J (2.21)
S (T e e () " dedn
H c-0)(¢-2)
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~

_ 1 j1p (E+C-c-omNE-a) !
T - z){ﬁ -[H C-2 adn

RN N )
. €9 -

1

n-1 .
C—zl( DTt 1)N(a’b’m_1’ Q)Z(n_lcp)(_g)mp_l{ .
a,o)el (m— p,O

dédn 1 b+p _d&dn
C-2) ICQ (¢- CH

4 zb+p+1
(b+p+1J

m||®

P—‘

azb+p+l
N(a,b,m-1,C (" 1o —\yn+p-1]1 i cec
c-z [(Ct, b)eT(m-1) (@b Z_: ) ?) {TC I o¢ b+p+1

dedn 1 0 ¢CP P dedn
(C-2) mlmwaoC b+p+1 (g-7)

1 el N a+b+p+1
—E_Z{ Mabm 1,93 (e o 5
(a, b)eT(m-1) p=0
Lazb+p+l za+b+p+1 ZaZb+p+1
_b+p+1 B b+p+1 - b+p+1
- = (z—C +E_~Z)m_l(z _E)n_l dédn
T C-0)(E-2)
C-¢+E-9m'@-2r" oy
(C [ J. ( —Z) g 1

L C-¢+T-9m 1(@—2)”1d§dnj
¢-9)
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-1 Z N(a, b, m -1, z)nz_l Cp(_z)n+p—1

(z - 2) (a, b)eT(m-1) p=0
b+p d&dn 1 b+p didn}
{jcf; 3 jc(c) T

n-1
S > Na,b,m-1,0 (") (=)
(€ = 2) (q, b)eT(m-1) p=0

za+b+p+1 ~ Za2b+p+1
b+p+1 b+p+1

R (T ()
F=1], €-2) dedn

= ZN(a b, m-1, C)ZC (- z)yr+P 1J. cagbrp (Zédn)

(a, b)eT(m-1)

{2a+b+p+1 Za+p§b+1}

n-1
— 1 7 _ _\n+p-1 _
= ) N@bm-1,0)) Cp-2) B

(a, b)eT(m-1) p=0

11 C-c+2-0mE-z"
H- H C-2) didns

d&dn

= ZN(a b, m-1, C)ZC (-z)P 1J. S C-2)

(a, b)eT(m-1) p=0

- ) N bm- 1@)2 Cp(-2)" P!

{ a+b+p+1 Za+pzb+1}
(a, b)eT(m-1) p=0

b+p+1 b+p+1

Substituting the values of A, B, E, F and G in equation (2.14), we have

1 —— -1 _d&édn
2 woc T &4
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m-1 38 n-1 d+p+1 rz0-r+p+l
_ s 3 n-1 sn—p-1/_q\yn—p-1 4 _Zz
- Z (CC)(TCp 2 1) {8—r+p+1 6—r+p+1}
6=0r=0 p=0
mfl( 1)5 © n-1
— n-1 _z\yn-1-p
2 B Y Nabs ) ")
5=0 (a, b)eT(3) p=0

1 s Za+b+p+1 Za§b+p+1
(3—2_82+1] b+p+l b+p+1 ds

SV ()

n-1
z n —\n-p-1
m-Dnlu?-2 N(a, b, m=1,8)) "Cyp(-2)""

[(a, b)eT(m-1) p=0

Satbrp+l B Lazbip+l ~ ga+b+p+l ~ Zazbﬂ’” A
b+p+1 b+p+1 b+p+1 b+p+1

YT E(E)

(m-1nlaz2 4

n-1
[ N(a’ b’ m — 19 E)Z ncp(_g)n7p71
(a, b)eT(m-1) p=0

2a+b+p+1 2a2b+p+1 ~
{ b+1  b+1 d&dn

(_ 1)m 1 Ef(z) [ = S n —\n—-p-1
+ - = N(a, b, m -1, () C,(-z)
(m =D I8 22 41 ) ,;) 3

Za+b+p+1 Za2b+p+1 -
_ n 2.22
{b+p+1 b+p+1} d&dn ( )

Similarly, we can evaluate the following integrals using Cauchy-Pompeiu

and Gauss theorem over H.

1( (25-¢-C (C-2)'
nJy s—C (C-2) dedn

s 1 (2s-C-0P(C-2)
2 +1mlm (C—E) dedn
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S . S7 _ _\n—1-v dédn
(S_z)[ j(2s DT

L[ es-c-ppE e

_ S _ 57 nlvdidﬂ _
et MGl (S e TR

|
ey
+
IR
|
e
N—
3
LN
L~
A
|
N
N
S
o
<
Q
|
=

10 (@
HIH (C-0)(c-2)

1613

(2.23)

C-z|m -z
1 G- E o
-1 - dzdn
n-1-v
| > Nabm-10) (= ”1”’{ ac"“’didﬂ}
C-2 (a, b)eT(m-1) p=0 ¢-¢
n-l-v Tatb+p+l  FaFb+p+l
-1 17 _—y-1-v-p| € _c°¢
Z-z Z Ma, b, m I’C)Z( ?) p(b+p+1 b+p+1J
(a,b)eT(m-1) p=0

(2.25)

Equation (2.3) can be obtained from (2.7) using the similar technique

used in equation (2.6). Verification of solution can be done using the similar

techniques used in see [1], Cauchy-Pompeiu operators of higher order [5].
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