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Abstract 

In this work we concern with the approximate solution of the linear equation fAf   where 

A is injective and compact operator, this equation admits a unique solution in direct sense or in 

the least square sense provided the right-hand side f is in  AR  or in     , ARAR  respectively. 

Due to the nonclosed range  AR  the solution is not stable. Besides, if A is positive de.nite we can 

replace the original equation by the auxiliary one fA    where its solution   exist, 

stable and converges to the exact solution  of the original equation as  tends to zero. 

1. Introduction 

The inverse problem takes a considerable part in the domain of 

differential and partial differential equations. As prominent example of the 

ill posed problem we find integral equation of the first kind where the most 

problems of engineering and mathematical physics can be modelled in this 

equation, many methods study its approximation solution and stability. In 

[1] the authors solved the integral equation of the first kind by Chebyshev 

wavelet constructed in the bounded interval and used the Galerkin technical 

in order to reduce the integral equation into an algebraic linear system. On 
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the other hand, in [3, 4] the collocation method with Legendre wavelets are 

used directly for this equation and convert it to an algebraic linear system. 

The use of the since basis functions method for solving the first kind integral 

equation was find in [5]. The method proposed by authors in [10] is to use 

the Hermite polynomial with least square method in order to solve integral 

equation of the first kind with degenerate kernel supported by Galerkin and 

collocation methods. 

Let A be a linear compact operator de.ned from Hilbert space H to itself 

over the field .  We explicit the linear inverse problem of a first kind by 

,fA   (1) 

where f is the data function and  the unknown potential one, suppose that 

A is injective, then the equation (1) admits a unique solution in direct sense 

or in the last square sense provided the right-hand side f is in  AR  or in 

    ,


 ARAR  respectively. Due to the nonclosed range  AR  the solution 

is not stable. Besides, if A is positive definite we can replace the original 

equation by the auxiliary one 

,fA    (2) 

where we add the term   to the operator A  for  positive and small, the 

equation (2) admits a stable solution .  Noting that the function   

converges to the exact solution  of equation (1) as  tends to zero [8]. 

Lavrentiev method 

The Lavrentiev method for the equation (1) is to replace the equation by 

the following one ,  fA  with , ff  if the right-hand side f  is 

not in the range  ,AR  Lavrentiev changes the equation  fA  by its 

auxiliary equation 

.0,   fA  (3) 

It is clear that, if the operator A is positive definite, the problem of the 

second kind (3) is well-posed. Lavrentiev proves that the solution   of the 

equation (3) tends to the exact solution  of the equation (1) with conditions 

 and  tend to zero. 
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Tikhonov Regularization Method 

The Tikhonov regularization of the equation (1) corresponds to the 

regularization operators 

  ,
1 

  AAAIR  for ,0  (4) 

which approximates the unbounded operator 1A  on  .AR  Noting that, the 

solution fR   represents the unique solution of the equation 

,fAAA 



   (5) 

and depends continuously on f, for all Hf   and .0  Also this solution is 

the unique minimum of the Tikhonov functional 

  ,
22

 fAXJ  for H  and .0  

2. Main Results 

In this work we focus our study to the Fredholm integral equations of the 

first kind 

        
b

a
bxaxfdtttxkxA ,,  

where  txk ,  and f are given continuous functions and     baHx ,  is 

the unknown potential function to be determined. 

Lemma 1 [9]. The problem (2) is well posed with the norm 

  











 11
OAI  provided A is injective and positive definite 

operator. 

Proposition. The injectivity and the positivity of the compact operator A 

lead to the existence and uniqueness of the solution of the auxiliary problem 

(2) 

.0,   fA  

Besides, the solution   converges to the exact solution  of the initial 

problem (1), as  goes to zero, say 
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.0lim
0

 


 

Proof. 

Indeed, 

  fAI
1

   

  


AAI
1  

  .
1



AI  

Therefore 

  



1

AI  

 .  O  

Nyström method 

Using the quadrature rule to approximate     
b

a
dtttxk ,  say 

          



b

a

n

j

jjj ttxkwdtttxkxA

1

.,,   

So, the equation (1) can be replaced by 

       




n

j

jjjn xxfttxkwxA

1

.10,,  (6) 

In the collocation method the values of   njt j ,,2,1,   are found so 

that the equation (6) is verified for all points ,,,, 21 mxxx   in [0, 1]. It is 

not necessary to take ,nm   but often m and n are chosen to be equal, and 

ix  is chosen as .,,2,1, nitx ii   
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     




n

j

ijjj nixfttxkw

1

.,,2,1,,   (7) 

Taking  ija  the nn  matrix such that  jijij txkwa ,  for ,,1 nji   

the unknown vector         Tn
T

nttt  ,,,,,, 2121 


 and the 

right-hand side vector          ,,,,,,, 2121
T

n
T

n fffxftfxfF 


  Then 

the auxiliary equation (2) can be approximated by the matrix equation 

  .FI


   (8) 

The algebraic system (8) admits a unique solution   converges to the 

solution   of the system F


  as .0  

Lemma 2. The norm  



 11

AI  provided A is positive definite 

operator. Indeed, A is positive and injective, it follows 

        
 11

,, AIAIAIAI  

        
 1111

, AIAAIAIAAI  

      
 112122

,2 AIAIAAI  

    .,
212221




AIAIA  

Therefore, we obtain 

  .
11





AI  

Lemma 3. The operator  nAI   is invertible on the Hilbert space H to 

itself if   .2 nn AAA  Besides, if   fAI nn   and 

  ,fAI   then 

 . On  

Indeed, 
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           nnnnn AAAIIAAIIAIAAII
111 11 







 

       nnn AAAIAIAAII 



 11 1

 

      nnn AAAIAIAAII 



 11 1

 

    .
1 1








 





nn AAAAII  

Noting that, the right side of the last expression is invertible, for 

        .1
11 11








nnnn AAAAIAAAAI  

The injectivity of the right side involves the one of  nAI   and so its 

bijectivity. For the error, we get 

    fAIAI nn
11 

  

      fAIAAAI nn
11 

  

    nnAAAI 
1

 

    nnAAAI 
1

 

 . O  

3. Explanatory Examples 

Example 1. Consider the first-kind integral equations of Fredholm 

   
 

 




1

0
,

1

11exp
exp

x

x
dttxt  

where ,1,0  xt  and the function  xf  is chosen so that the exact 

solution is given by 

   .exp xx   
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Table 1. We present the exact solution  and its approximate one   as 

well as the absolute error   of the example 1 in some arbitrary 

points for 10N  and ,10 6  the error is compared with the Chebyshev 

Wavelet Method [1] and the Haar wavelets method [6]. 

Val of x Exact sol  App sol     Error [1] Error [6] 

0.000 1.00e+00 9.99e-01 1.21e-06 1.46e -

05 

7.85e-03 

0.200 1.22e+00 1.22e+00 8.22e-07 1.73e -

05 

5.69e-03 

0.400 1.49e+00 1.49e+00 3.09e-07 1.57e -

05 

2.31e-03 

0.600 1.82e+00 1.82e+00 1.05e-06 1.30e -

06 

2.86e-03 

0.800 2.22e+00 2.22e+00 1.80e-06 1.52e -

05 

1.04e-02 

1.000 2.71e+00 2.71e+00 7.95e-06 1.04e -

05 

4.98e-03 

Example 2. Consider the first-kind integral equations of Fredholm 

        ,sin1sinsin1cossinexp
sin1

1
sinexp

2

1

0
xxx

x
dttxt 


  

where ,1,0  xt  and the function  xf  is chosen so that the exact 

solution is given by   .cos xx   

Table 2. We present the exact solution  and its approximate one   as 

well as the absolute error   of the example 2 in some arbitrary 

points for 10N  and ,10 6  the error is compared with Legendre 

wavelets collocation method [3]. 

Val of x Exact sol  App sol     Error [3] 
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0.000 1.000e+00 9.991e-01 8.828e-04 1.488e-03 

0.200 9.800e-01 9.803e-01 2.667e-04 2.531e-03 

0.400 9.210e-01 9.207e-01 3.320e-04 4.740e-03 

0.600 8.253e-01 8.255e-01 2.007e-04 2.920e-03 

0.800 6.967e-01 6.966e-01 4.073e-05 4.951e-03 

0.900 5.816e-01 5.815e-01 9.163e-05 1.239e-03 

Example 3. Consider the first-kind integral equations of Fredholm 

    
1

0

2
22 ,

4

1

3

2

2
2

xx
dttttxx  

where ,1,0  xt  and the function  xf  is chosen so that the exact 

solution is given by   .xx   

Table 3. We present the exact solution  and its approximate one   as 

well as the absolute error   of the example 3 in some arbitrary 

points for 10N  and ,10 6  the error is compared with Hermite 

polynomial method [9]. 

Val of x Exact sol 

 

App sol     Error [10] 

0.000 0.000e+00 1.781e-07 1.781e-07 1.6e-03 

0.200 2.000e-01 2.000e-01 2.158e-08 6.0e-04 

0.400 4.000e-01 4.000e-01 4.687e-08 5.0e-04 

0.600 6.000e-01 5.999e-01 8.356e-08 5.0e-04 

0.800 8.000e-01 8.000e-01 7.016e-09 4.0e-04 

1.000 1.000e+00 1.000e+00 1.140e-07 1.7e-03 

Example 4. Consider the first-kind integral equations of Fredholm 
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     ,2cos
4

1
sin

2

1
cos

4

1
cos

1

0
 xxxdtttx  

where ,1,0  xt  and the function  xf  is chosen so that the exact 

solution is given by   .sin xx   

Table 4. We present the exact solution  and its approximate one   as 

well as the absolute error   of the example 4 in some arbitrary 

points, the error is calculated for 10N  and ,10 6  

Val of x Exact sol  App sol     

 0.000 0.000e+00 1.384e-08 1.384e-08 

0.200 1.986e-01 1.986e-01 8.067e-09 

0.400 3.894e-01 3.894e-01 5.170e-09 

0.600 5.646e-01 5.646e-01 1.680e-08 

0.800 7.173e-01 7.173e-01 1.941e-08 

1.000 8.414e-01 8.414e-01 3.261e-08 

Example 5. Consider the first-kind integral equations of Fredholm 

              ,2exp2exp2exp32expexp
8

1
sinh

1

0
xxxdtttx   

where ,1,0  xt  and the function  xf  is chosen so that the exact 

solution is given by   .cosh xx  

Table 5. We present the exact solution  and its approximate one   as 

well as the absolute error   of the example 5 in some arbitrary 

points, the error is calculated for 10N  and ,10 6  

Val of x Exact sol  App sol     

0.000 1.000e+00 9.999e-01 5.193e-08 

0.200 1.020e+00 1.020e+00 3.413e-08 
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0.400 1.081e+00 1.081e+00 2.062e-08 

0.600 1.185e+00 1.185e+00 1.546e-09 

0.800 1.337e+00 1.337e+00 2.289e-08 

1.000 1.543e+00 1.543e+00 2.962e-08 

4. Conclusion 

This numerical technique for solving Fredholm integral equations of first 

kind, concentrated on the few modification of Lavrentiev classical method 

supported by the modified Simpson approximation [7], the approximate 

solution   is measurably close to the exact solution  of the given equation 

on the whole interval [0, 1]. This method is tested by solving some examples 

for which the exact solution is known and proves its efficiency compared 

with other methods. 
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