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Abstract 

In this paper, a theorem on degree of approximation of function in the generalized 

Zygmund class by  npN ,  qE,  summability means of Fourier series has been established. 

1. Introduction 

The degree of approximation of function belonging to different classes like 

       tLWrtLiprLipLip r  ,,,,,,  have been studied by many 

researchers using different summability means (see [2], [7], [8], [9], [10], [14]). 
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The error estimation of function in Lipschitz and Zygmund class using 

different means of Fourier series and conjugate Fourier series have been 

great interest among the researcher. The generalized Zygmund class 

  1 rZr  has studied by Leindler [4], Moricz [5], Moricz and Nemeth [6] 

etc. Recently Singh et al. [16], Mishra et al. [11], Pradhan et al. [12] [15], Kim 

[3], Das et al. [1], find the results in Zygmund class by using different 

summability means. To the best of our knowledge, the degree of 

approximation of function in the generalized Zygmund class by  npN,  

 qE,  summability means of Fourier series has not been studied so far. This 

motivated us to work in this direction. 

2. Definition 

Let f be a periodic function of period 2  integrable in the sense of 

Lebesgue over  .,   Then the Fourier series of f given by 
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Let 2C  denote the Banach space of all 2  periodic, continuous function f 

on R with norm   
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The class of function  Z  is defined as 

           tOxftxftxfCfZ  
 2:: 2  

where  is a Zygmund modulus of continuity that is  is a positive,            
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Clearly 
 


p

 is a norm on  .w
pZ  As we know that  1rLr  is complete 

so the space  w
pZ  is also complete. Hence the Zygmund space  w

pZ  is a 

Banach space under the norm 
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We write through the paper 
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3. Main Result 

In this paper we prove the following theorem. 

Theorem. Let f be a 2  periodic function, Lebesgue integrable in  2,0  

and belonging to generalized Zygmund class   .1rZ w
r  Then the degree of 

approximation of function f by    qEpN n ,,  product mean of Fourier series 

is given by  
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where  t  and  tv  denote the Zygmund modulai of continuity such that 

 
 tv

tw
 is positive and increasing. 

4. Lemma 

To prove the theorem we need the following lemma. 

Lemma 4(a). For 
1

0
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Lemma 4(b). For 
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5. Proof 

Proof of Theorem. Let  xSn  denotes the partial sum of Fourier series 

given in (2.1) then we have 
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The  qE,  transform q
nE  of nS  is given by 
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 The    qEPN n ,,  transform of  xSn  is given by 
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Using Lemma 4(a) and 4(c) and the monotonically of 
 
 tv

t
 with respect to 
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For 2I  using Lemma 4(b) and 4(c), we have 
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From (5.5) (5.6) and (5.7), we get 
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From (5.8) and (5.9), we have 
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Now we write 1J  in terms of 3J  and 32, JJ  in term of .4J  
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Using the fact 
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This completes the proof. 

6. Corollaries 

Following corollaries can be derived from our main theorem. 

Corollary 1. The degree of approximation of function   1rZ w
r  by 

   1,1, EC  means  
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Corollary 2. The degree of approximation of function   1rZ w
r  by 
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7. Conclusion 

In this study, different types of results on the degree of approximation of 

periodic function belonging to the Lipschitz classes and Zygmund classes of 

function are reviewed. The established theorem in this paper, on degree of 

approximation of function in the generalized Zygmund class by  npN,  
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 qE,  summability means of Fourier series, which generalizes the several 

known results. Moreover, the result can be extended for other functions 

belonging to weighted Zygmund class. 
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