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Abstract

In this paper, a theorem on degree of approximation of function in the generalized

Zygmund class by (N, p,,) (E, ¢) summability means of Fourier series has been established.

1. Introduction

The degree of approximation of function belonging to different classes like
Lip a, Lip(a, r), Lip(&t), ), W(L,, &(¢)) have been studied by many
researchers using different summability means (see [2], [7], [8], [9], [10], [14]).
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The error estimation of function in Lipschitz and Zygmund class using
different means of Fourier series and conjugate Fourier series have been

great interest among the researcher. The generalized Zygmund class
Zﬁm)(r >1) has studied by Leindler [4], Moricz [5], Moricz and Nemeth [6]

etc. Recently Singh et al. [16], Mishra et al. [11], Pradhan et al. [12] [15], Kim
[3], Das et al. [1], find the results in Zygmund class by using different
summability means. To the best of our knowledge, the degree of
approximation of function in the generalized Zygmund class by (N, p,)

(E, g) summability means of Fourier series has not been studied so far. This

motivated us to work in this direction.
2. Definition

Let f be a periodic function of period 2m integrable in the sense of

Lebesgue over [n, —n]. Then the Fourier series of f given by
~ %0 * :
flx) = 5 * anl (a,, cos nx + b, sin nx) 2.1

Let Cy, denote the Banach space of all 21 periodic, continuous function f
on R with norm | f |, = max{ f(t)|:|t| < n} and modulus of continuity of f

is defined by

of, 1) = 0 < L% h| flx +0)+ flox 1)~ 2f()].
ForO<a<1
Ziay = 1 € Cam | x4 1)+ f(x — 1) — 2f(x)| = O( £ [*)} 2.9)
is a Banach space under the norm |- || o defined by

Ifll, = sup |f(x)|+ sup [flx+8)+ flx —t) - 2f(x)|

0<x<2n x,t, 120 [£]*

For e IP[0, 2n], p > 1
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1
o,(f, h) = sup {ijzﬁ flx+t)+ flx —t)— 2f(x) |pdx}z. (2.3)
P 0<t<h 2T Jd0
For e I”[0, 2], where 1 < p < o
olf, h) = oy(f, h) = s max| f(x +¢) + fx —¢) = 2f(x)|. (2.4)
<t< x

For f € Cyp, 0,(f, ) > 0 as f — 0.

Now
9 1
Zi,p) =11 € L]0, 2x] : (J.O [flx+2)+ flx —t) - 2f(x) |pdep =0(t|")}.

The space Z(, p), p21,0<a<1 is a Banach space under the norm

| I, ) Which is given by

I7C+)+ f(—8)-2f0)]
I N, py = 11, ¥ sup TE Eand | fly , =1£l,

The class of function Z("’) is defined as
Z©) = {f € Cop 1| f(x + 1) + f(x — 1) = 2/(x) | = O(e(t))}

where ® is a Zygmund modulus of continuity that is ® is a positive,

non-decreasing continuous function with the property, ®(0)=0,
oty +12) < o) + ofty).

Let o: [0, 2r] - R be an arbitrary function with () > 0 for 0 < ¢ < 27
lim;_,q o(t) = o(0) = O define

S+t )= 2f(-
Zgw>:={feLp:1SpSwsup||f<+>+f(<0(t)> f()||p<oo}

and
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o D+ 7 =1) =20,
P o)

A1 =1 71, p>1. 2.5)

Clearly |- ||g°) is a norm on Zg,w). As we know that L.(r > 1) is complete
so the space Zg,w) is also complete. Hence the Zygmund space Zg”) is a

Banach space under the norm |- ||EU‘°).

We write through the paper

0,(t) = flx +1) - 2f(x) + f(x —7) (2.6)

K,(t) = P P Z( )a"~ vSln(H;jt : 2.7
ZRP k= 0(1 sm(zj

3. Main Result

In this paper we prove the following theorem.
Theorem. Let f be a 2n periodic function, Lebesgue integrable in [0, 2x]

and belonging to generalized Zygmund class Zﬁw)(r >1). Then the degree of

approximation of function f by (N, p,)(E, q) product mean of Fourier series
is given by

Ey(f) = inf [ 62 = £ I} = O[J ) J

where o(t) and v(t) denote the Zygmund modulai of continuity such that

w(t)

_t) is positive and increasing.
v

4. Lemma
To prove the theorem we need the following lemma.

we have sinnt = nsint

Lemma 4(a). For 0 <t < T
n+1
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| K, ()| = o(n) (4.1)

Proof. For 0 < ¢ < - Ti 1 and sinnt = nsint then

1 sin(v+%)t
(En)| = | g Dy 22 2 (B0 —— 3

k=0 1+ q)f v=0 sin (%)

) . » B (2v+1)s1n(2j
n-k v
= 27‘[Pn Zk:o (1 + q)k szo(v)q sin (Lj

1 "o Eoa (2v +1)sin (%)
= _Ln-k v__ 0 \&)
= 27‘[Pn Zk:o (1 + q)k szo(v)q sin (%j

1 " DPpk ko Ry k-v
<o Lo e {30 (Bet]
n
= onP, Zk:op”‘k(2k+1)‘

_(@n+1)
2nP, |Zk oPn- 2

= o(n).
Lemma 4(b). For n:tLl <t<m, sm% > % and sin nt <1, we have
1
| K@) =01 ) “.2)

T .
Proof. For — <t < 7, sin
n

) 1
sm|v+—=|t
1 n Dok ko py kv ( 2)
| Ka®)| = Pack (S (g L2 a
Slng
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" DPpp ko ky kv T
Zk=o(1+q)k {szo(v)q If}

1 n
< =
- 2tP, | Zk:o Pnt |

1
onP,

Lemma 4(c). Let f < Zg,w) thenfor 0 <t<m
@ [ 6 1), = olw(®)

@) 160+, 0)+ 6 =2, 0= 26,0, = | 2

(1) If w(t) and v(t) are defined as in theorem then

036002001, = )20

where o(x, t) = f(x + )+ f(x — t) — 2f(x).
5. Proof

Proof of Theorem. Let S,(x) denotes the partial sum of Fourier series

given in (2.1) then we have

. 1
Sul) = @) = 5 | O’T@(nM dt (5.1)

The (E, q) transform E? of S, is given by

. " sin| k + 1 t
B - )= o [ 001 (b % i 62

The (N, P,)(E, q) transform of S, (x) is given by
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tNE(f) - f(x)
3

. 1
sin{v+—=1|t
Dn—k ’T L N ( 2)
2nP Zk 0 (1+q)k,|. ©) Zv:o(”)q sin(tj d

= Inm(t)kn (2).
0

Let 7,(x) = tVF — f(x) = I O”@(x, )k, (t)d¢ then

969

(5.3)

(5.4)

I+ )+ = 3) = 20,0) = [ Tole + 5. 00+ 0l = 3. )= 200, O )

Using the generalized Minkowaski’s inequality we get

" d)( +Y, t)+ (I)( -, t) - 24)(’ t) ”p

S

_ {2% J :| L(x+ )+ 1,(x — y)— 21, (x) |pdx}

1

r |p
dx

1

T 2 00+ oo = .00 2, 00 P

JO

_ {21? I 02”‘ jo"[¢(x + 9, )+ olx =y, 1) - 20(x, )]k, (¢)dt

IN

1

- .-0“|| O+, 8)+ o =y, 8) = 20(, 1) ||| Fen(t) |d

1

= [T 00 )+ 6= 0= 200 )1 ka0
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{7 1042, 0+ 03, 0) = 200, )], | Rale)

n+l
=1 + I - (say) (5.5)
Using Lemma 4(a) and 4(c) and the monotonically of % with respect to

t, we have

1
I = IO"” | oG +2, 8) + 0 =3, £) = 260, ) [ | B (t) |t

Using second mean value theorem of integral, we have

1
I < o[nv(y)J‘ n+l % dt}

0
1
n+1l
n+1 1

=0 v(y)w
U(n+1)

m(nilj
=o|v(y) ———%|. (5.6)
U(ni—l)

For I, using Lemma 4(b) and 4(c), we have

Ty = [T} 10642, 0+ 60 =3, )= 200, 0) || F0) |ds

n+l

Advances and Applications in Mathematical Sciences, Volume 22, Issue 5, March 2023



APPROXIMATION OF FUNCTION IN THE GENERALIZED ... 971

U_ (1) 28)2 dtj
aacy

From (5.5) (5.6) and (5.7), we get

" ln(' +y)+ ln(' _y)_ 2Zn(') ”p =0 U(y)

H oo, (5]

n+1

I o201, [a1)] (e o
”1 U (‘” )} (5.8)

+20 o) 1 L \a()

S

+

[y
Ne—

Again using Lemma we have

L
110, < [ 7] ] [ o &) Il Kn0)|dt
n+l

= o{nJ‘O"% w(t)dt} + OUL @ dt}

n+l1

ool o [ e

n+l

. o(m(ﬁ))m[f% Qd] 69

From (5.8) and (5.9), we have

v I 2 (- +y) + L (. =y) = 20, () |
IO, =120, +sup 70 p

y=0
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olfate) el ) o

n+1 P n+1l

4
= ;.
=1
Now we write /] in terms of /3 and Jg, J3 in term of J,.
In view of the monotonicity of v(t) we have
0)(lf)) (w(t)) (w(t))
ot u(t) <v forO<t<nmn
0 =[5 } o0 = o[ 55 ) = o[ )
therefore we can write
Jp = o(J3).

Again using monotonicity of v(t)

gy =I%@dt=jzlﬂ( E )dt_v(n)I_( )dt—o(J4).

Using the fact (( )) 1s positive and non decreasing, we have

e (o ] e

n+1

therefore we can write
= o(Jy).
So we have

IOt = o(74) = ( E )dt}

n+1l

Hence

(5.10)
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E,(f) = inf | 1,0) [}, = [j% (;”L(’?))dt]

This completes the proof.
6. Corollaries

Following corollaries can be derived from our main theorem.

Corollary 1. The degree of approximation of function Zﬁw)(r >1) by
(C,1)(E, 1) means

k
(CE), = 5 > 2= > (B

T n+

of Fourier series is given by
ol U %(“’(t))dt}

Corollary 2. The degree of approximation of function Zgw)(r >1) by
(N, p,)(E, 1) means

n
NE _ 1 1 z kg
tw = = Pn pn—k{Zk U:O(U)SU
k=0
of Fourier series is given by

oo, (1

n+l1
7. Conclusion

In this study, different types of results on the degree of approximation of
periodic function belonging to the Lipschitz classes and Zygmund classes of
function are reviewed. The established theorem in this paper, on degree of

approximation of function in the generalized Zygmund class by (N, p,,)
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(E, q) summability means of Fourier series, which generalizes the several

known results. Moreover, the result can be extended for other functions

belonging to weighted Zygmund class.
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