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Abstract 

In certain practical situations dealing with machine learning, the input data and the output 

data are generally known, however the governing model of the problem is unknown. In such 

cases a hypothetical mathematical function called a hypothesis function is used to represent the 

unknown model of the machine learning problem and this hypothesis function is formulated on 

the basis of domain knowledge of input/output. This paper deals with the problem of optimizing 

the values of parameters occurring in the hypothesis function, so as to improve the given 

machine learning model. It has been shown that the problem of finding the best parameters for 

a given model can be solved by considering the corresponding optimization problem. For the 

solution of the corresponding optimization problem, the first order numerical optimization 

method/algorithm discussed in this paper is the gradient descent method. Both scalar and 

vector case for gradient descent method have been discussed.  

1. Introduction 

Machine learning which a part of artificial intelligence is focused on 

developing of computer algorithms that are capable of improving themselves 

by experience and by the use of sample data (training data). Machine 

learning finds its application for a variety of situations, be it image 

recognition, speech recognition, email spam, malware filtering, online fraud 

detection and so on.  

In certain types of machine learning problems [1], [17] the input and 
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output data is known, but the model of the problem which governs the input/ 

output data is unknown. This model is formulated by representing it in the 

form of a hypothetical mathematical function often called hypothesis 

function, which is constructed on the basis of domain knowledge (that is the 

knowledge of the specific field or discipline in context of input/output data). 

This hypothetical function representing the so far unknown machine learning 

model has some particular user defined form involving parameters/ 

unknowns. This model is continuously trained or improved upon, till it 

reaches the required accuracy. The training of the model is done by the 

availability of more and more training data and by improving upon the value 

of the parameters occurring in the hypothesis function. A lot of literature is 

available on machine learning problems [12], [2], [18].  

The improving or optimizing of the parameters occurring in the hypothesis 

function can be done by using mathematical optimization algorithms, which 

work on the principle of selection of the best choice, on the basis of some 

criteria, out of the available options. Since the exact form of the function 

governing the model is not known, but is being improved upon constantly, 

one has to totally rely on the numerical input/output data for optimization of 

parameters in the function. It is therefore appropriate to use numerical 

techniques/algorithms that can make use of this input/output data for 

optimization of parameters. Thus obtaining the optimized value of 

parameters occurring in the hypothetical function/machine learning model 

primarily rests on two factors: the sample data available and the 

method/algorithm used for optimization [22].  

Obtaining a meaningful collection of data or a dataset [19] which can be 

readily used in an optimization method is a difficult and expensive procedure. 

Producing meaningful data requires tremendous effort, as it needs a large 

amount of time and manpower to convert a raw/unlabeled data in the form of, 

say, medical reports of patients or collection of photos of people or articles in 

a newspaper, in a useful form as input/output variables with respect to the 

context of the machine learning model being constructed. Therefore for 

meeting the requirement of a meaningful/labeled dataset for optimizing the 

hypothetical function, such dataset can either be created from raw/unlabeled 

data obtained from random collection of data from reliable sources like 

hospitals/laboratories/banks/internet etc. (at the cost of the time involved) or 
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by using already created repositories of data sets like UK government public 

data,healthdata.gov, Google trends, google finance, Amazon web services 

public data sets, gap minder and many more such repositories [14], [8], [24], 

[25].  

Out of the several optimization algorithms available in literature, with 

each algorithm having its own advantages and disadvantages, the choice 

made for a particular algorithm is a trade-off between various factors such as 

availability of suitable dataset, computational time used etc. [4], [20], [23]. 

The numerical algorithm discussed in this paper for optimizing the 

hypothetical function is the gradient descent algorithm or the method of 

steepest descent, with Cauchy as its original attributor [10]. Gradient descent 

method is a popular, easy to implement, first order optimization algorithm 

that can be used for optimizing a linear as well as a nonlinear hypothesis 

function. Several variants of the gradient descent algorithm are available in 

literature. The choice of the variant used for optimization depends upon the 

amount of input/output data used for updating the parameters in the 

hypothesis function [16]. A lot of literature is available on the discussion of 

gradient descent and the recent trends in its regard [15], [13], [21].  

The paper studies the machine learning mechanism for which the 

optimization method, namely the gradient descent method discussed can be 

suitably used. It is described how the problem of determining a suitable 

machine learning model gets reduced to an optimization problem, which can 

be solved by mathematical methods/optimization algorithms. The gradient 

descent method which is used for finding the optimal parameters occurring in 

the hypothesis function representing the machine learning model, has been 

described for both scalar and vector case.  

2. Mechanism of Machine Learning 

2.1. Steps in determination of machine learning model  

In the traditional or classical programming, the input data is provided to 

the system along with the program/rules to be implemented to get the 

solution/output data. However, in certain types of machine learning 

problems, namely, supervised learning problems [1], [17] both input data and 

output data are provided to the system to figure out the governing rules or 
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more precisely to find out the corresponding model which describes the 

relation between input and output data.  

Here we consider those machine learning problems in which the user has 

input and output data, in possession as numerical values, obtained by 

experimentation etc. What is required is to construct an appropriate model or 

precisely a mathematical function which can appropriately establish the 

relation between the input and output data. For this purpose, the following 

broad steps are used in the machine learning process.  

Step 1. Collection of large data pairs.  

The first step is choosing a large data set consisting of pairs of the form 

 yx,  where ‘x’ is the input vector and ‘y’ is the output vector. It is worth 

mentioning here, that ‘y’ denotes the ground truth or the factual truth, which 

is the value of output that exists in reality and has been obtained by 

experimentation or observation etc.  

Step 2. Guessing the model or the form of hypothesis function.  

This step involves guessing a model or mathematical function called 

hypothesis function denoted by  wxh ,  where ‘x’ is the input vector and ‘w’ is 

the vector of parameters. The model or hypothesis function is guessed or 

rather constructed by the user on the basis of his/her domain knowledge or 

experience. The significance of this hypothesis function is that it describes the 

possible relationship between the input data ‘x’ and output data ‘y’. The model 

or hypothesis function  wxh ,  may involve parameters/unknowns  

321 ,, www  which are also called weights. As an example, a hypothesis 

function  wxh ,  may look like, say,  

  212110, xxwxwwwxh   

where  txxx 21,  is input vector;  twwww 321 ,,  is parameter vector  

The hypothesis function may be linear or non linear or quadratic or 

exponential function etc. Once the hypothesis function has been decided upon 

by the user, it remains fixed during the learning process. The only task which 

remains to be done is improving upon the values of parameters 321 ,, www  

occurring in the hypothesis function to make the model or the hypothesis 
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function better. This improvising of parameters is done using appropriate 

algorithms and this whole process can be called as a training the machine. 

Thus a typical machine learning model learns only the parameters or 

weights.  

Step 3. Learning the parameters through feedback. 

In this step, an iterative method is used to optimize the parameter ‘w’ 

occurring in the user defined hypothesis function  ., wxh  For this an 

arbitrary guess ‘w’ is made first and then for input data ‘x’ and this guessed 

‘w’ the corresponding value ŷ  is calculated from the hypothesis function 

 wxh ,  i.e.,  .,ˆ wxhy   Generally, this ŷ  obtained from hypothesis is a 

different from the ground truth y. So an objective function   wyyJ ˆ,  

representing the difference between y and ŷ  is defined. This objective 

function  ,wJ  sometimes called the cost function or loss function needs to be 

minimized. Thus using an iterative algorithm such as the gradient descent 

algorithm starting with an initial guess ‘w’, the iterative method is applied 

successively to improve upon the value of ‘w’ so that the objective function is 

minimized. Ideally, yy ˆ  is the condition that is required i.e.,   .0wJ  

However achieving the optimal value of ‘w’ so that this condition is satisfied 

is practically difficult. So the iterative method is stopped, when the desired 

accuracy is reached and in that case the machine learning model is said to be 

trained.  

3. Optimizing Parameters via the Gradient Descent Method 

It has already been seen in the previous section that the problem of 

finding the right model for machine learning is finally reduced to 

optimization problem of minimizing the objective/cost function  wJ  of 

parameter (s) ‘w’.  

In machine learning problems, the function  wJ  representing the 

difference between the ground truth ‘y’ and hypothetical output ŷ  is not 

known generally as an analytical function that is, the explicit form of  wJ  is 

not known.  wJ  is known in the form of numerical values and therefore 

optimizing  wJ  for the parameter ‘w’ is done by using numerical iterative 



 URVASHI ARORA 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022 

3498 

techniques/algorithms rather than analytical methods for optimization [11], 

[9]. The iterative method discussed here is the gradient descent method 

which can be used efficiently to find the optimal value of ‘w’ when  wJ  is 

just known as black box (i.e., the form of  wJ  is hidden or not readily 

available). The gradient descent method with Cauchy as its original 

attributor is also called the method of steepest descent [10]. A similar method 

was proposed by Hadamard in 1907 [7]. The gradient descent method is a 

first order method in the sense that it uses the first order derivative(s) 

related to the objective function [5], [3]. We discuss the gradient descent 

method for two cases when ‘w’ is a scalar (i.e., a number) and ‘w’ is a vector.  

3.1. Gradient Descent method (for scalar case) 

For a scalar value of ‘w’ the iterative formula for the gradient descent 

method is: 

   









dw

dJ
ww kk 1  (1) 

where  is a positive arbitrary parameter called learning rate and is chosen 

suitably by the user so that the method in (1) converges (i.e., the cost function 

 wJ  gets minimized, or equivalently  dwdJ  tends to zero, as the method 

proceeds;  dwdJ  on the right hand side of (1) is calculated at   .kw   

Thus in this method, the task is to improve upon the guess ‘w’ by starting 

with an initial guess  0w  in the beginning and then obtaining 

     321 ,, www  by the use of equation (1) successively, till the desired 

accuracy is reached.  

3.2. Gradient descent method (for vector case)  

As a generalization of the scalar case, if ''w  is a vector, that is, ''w  has 

more than one component, then the general gradient descent algorithm 

formula is:  

     Jww w
kk 1   (2) 

where  kw  is the value of ''w  at the kth iteration,  1kw  is the value of ''w  
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at the  th1k  iteration, ‘a’ which is called the learning rate is an arbitrary 

positive constant chosen by user so that the method in (2) converges to the 

optimal value of w, the vector Jw  or grad J is gradient of J with respect to 

Jw w;  on the right hand side of (2) is calculated at   .kw   

The method specified in (2) is applied as follows:  

Step 1. Fixing ,  and the stopping criteria  

In this step three things are fixed:  

(i) The parameter   

 is a hyper parameter that must be set before the learning starts. An 

appropriate value of ‘a’ is chosen so that either  wJ  decreases or vector 

Jw  tends to 0 as the method (2) is applied. Choosing an appropriate hyper 

parameter ‘α’ is a problem in its own right.  

(ii) Choosing the accuracy ε and the stopping criteria.  

After choosing the value ε as, say, 10-6 i.e., up to 6 decimal places, the user 

is required to choose a stopping criteria which can be chosen in any of the 

following forms:  

Applying the method till        kk wJwJ 1   

or applying the method till     k
w wJ   

or applying the method till      kk ww 1  

for a suitable norm chosen by the user.  

Step 2. Starting the method using an initial guess  0w  

Using an initial guess  0w  which is guessed by the user and the formula 

in (2),  1w  is calculated as:     Jww w 01   

Since J in machine learning is only available as a black box i.e., no explicit 

expression is available for J, therefore Jw  which is grad J is generally 

calculated numerically by approximating it using finite difference 

approximations for calculating  iwJ   where 321 ,, www  are 

components of vector w.  
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Step 3. Calculating successive values of w  

Using 
 ,1w  the value of  2w  is calculated by use of formula (2). 

Successive values of  kw  are calculated till the stopping criterion is satisfied.  

3.3. Illustration of the gradient descent method  

We illustrate the gradient descent method for an arbitrary cost function 

 wJ  whose analytical form is known. Let   ;42
2

2
1  wwwJ  

  ., 21
t

www 


 It can be noted that the minimum of the cost function  wJ  is 

4 and it is attained for 0,0 21  ww  i.e., for    tt
www 0,0, 21 


  

Now vector   




































2

1

2

1

2

2

w

w

w

J

w

J

wJw  (3)  

Now using (3) in the iterative formula for gradient descent method for the 

vector case, that is, using (3) in formula (2), we get the corresponding 

iterative method in equations (4) and (5) taken together as:  

       kkk www 11
1

1 2


 (4) 

       kkk www 22
1

2 2


 (5) 

Choosing    tw 4,30   and ,1.0a  say, On applying the method given 

in equations (4) and (5), we have the following results as shown in Table 1 

Table 1. Iterative values of the parameter. 

k  kw1  
 kw2  

 1
1

kw  
 1
2
kw  J 

0 3 4 2.4 3.2 29 

1 2.4 3.2 1.92 2.56 20 

2 1.92 2.56 1.536 2.048 14.24 

It can be noted from the last column of Table 1 that for the value of 

,1.0  taken arbitrarily the cost function J gets minimized with each 
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iteration. In fact after thirty iterations the value of J gets optimized. For this 

particular value of  the method converges, but in general for an arbitrary 

value of , the method may diverge, or even oscillate.  

4. Conclusion 

In this paper we have discussed the machine learning mechanism for 

which the optimization method, namely the gradient descent method which is 

a first order iterative method for finding the local minimum of a function 

(whether linear or nonlinear) can be suitably used. It has been described how 

the problem of determining a suitable machine learning model from a 

hypothetical mathematical function with parameters gets reduced to a 

numerical optimization problem, which can be solved by using sample data 

and the gradient descent optimization algorithm. It has been discussed as to 

how gradient descent method can be used efficiently to find the optimal 

values of parameters, when the objective function to be optimized is unknown 

or not readily available. It has been seen that the application of the numerical 

optimization gradient descent algorithm requires setting of hyper parameter 

. Choosing the right value of ‘a’ is a part of algorithm design because the 

optimization method may converge (slowly/rapidly), diverge or oscillate 

depending upon the value of learning rate ‘a’ chosen. In neural networks and 

deep learning research problems, the design of hyper parameter and finding 

the optimal hyper parameters is problem open to future research [6], [16].  
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