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Abstract

In this paper, we introduce the notion of compatible of type (E) in L-fuzzy metric space and
prove a common fixed point theorem of self maps with the property of (C) in the complete L-
fuzzy metric space.

1. Introduction

In 1986, the concept of fuzzy set was introduced by Zadeh [20]. Then
fuzzy metric space was initiated by Kramosil and Michalek [9]. George and
Veeramani [7] modified the notion of fuzzy metric space with the help of
continuous {-norm. Using to idea of L-fuzzy set [8] Saadatietal, introduced the
notion of L fuzzy metric spaces with the help of continuous ¢-norms as a

generalization of fuzzy metric space due to George and Veeramani. In 2007,
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M. R. Singh and Y. M. Singh introduced the concept of compatible mappings
of type (E) in metric space. The aim of this paper, we introduce the notion of
compatible of type (E) in L-fuzzy metric space and prove a common fixed
point theorem of self mapping with the property of (C) in the complete L-
fuzzy metric space.

2. Preliminaries

Definition 2.1. Let £ = (L, <;,) be a complete lattice and U be a non
empty set is called universe. An L-fuzzy set A on U is defined as a mapping
A :U — L. For each u in U, A(u) represents the degree to which u satisfies
A.

Definition 2.2. A triangular norm (¢norm) on L is a mapping

T:I? > L satisfying the following conditions.

@) T(x,1,) = x for all x € L (boundary condition)
(i) T(x, y) = T(y, x) for all x, y € L? (commutativity)

(i) T(x, T(y, 2)) = T(T(x, y), z) forall x, y, z € L? (associativity)
(iv) x <7, x" and y <, ¥ = T(x, y) <, T(x', y') (monotonicity)

Definition 2.3. A t-norm T on L is said to be continuous if for any
x, ¥y € L and any sequences {x,} and {y,} which converges to x and y. We

have lim T(x,, y,) = T(x, y)
—>00

n

For example, T(x, y) = min(x, y) and T(x, y) = xy are two continuous ¢-

norms on [0, 1].
A ¢-norm can also be defined recursively as an (n +1)-ary operation

(mneN) by T'=T and T"(xy, ..., xp41) = T(T" (xq, ..., %), %,,,1) for

n =2 and x; € L.

Definition 2.4. The 3-tuple (X, M, T') is said to be an L-fuzzy metric
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space if X is an arbitrary (nonempty) set, 7' is a continuous ¢{-norm on £ and
M is an L-fuzzy set X 2 % (0, + ) on satisfying the following conditions for
every x, y, z in Xand ¢, s in (0, + )

(@) M(x, y,t) >, Of

() M(x, y,¢) =1, forall ¢ > 0 ifand only if x = y

(c) Mlx, y, t) = Mlx, y, t)

(d) T(M(x, v, t), M(x, y, 8) <p M(x, 2, ¢t + 3)

() M(x, ¥, -): (0, + ©) — L is continuous. In this case M is called an £-
fuzzy metric. If M = My n is an intuitionistic fuzzy set, then the 3-tuple
(X, Mys, v, T) is said to be an intuitionistic fuzzy metric space.

Example 2.5. Let (X,d) be a metric space. Denote 7(a,b)
= (ayb, min(ay + by, 1)) for all a = (a;, as) and b = (b, by) in L* and let

M and N be fuzzy sets on X? x (0, + ) defined as follows.

My N(x, 3, t) = (M(x, y, t), N(x, y, 1)) = ( ht" md(x, y) J

ht" + md(x, y) ht" + md(x, y)
for all ¢, h, m, n € R*. Then (X, My N> T), is an intuitionistic fuzzy metric
space.

Definition 2.6. A sequence {x,},.n is an L-fuzzy metric space

(X, M, T) is called a Cauchy Sequence, if for each ¢ € L\ {0} and ¢ > 0,
there exists nyge N such that for all m>n>ny(n=>m=ny),

M( x,,,, x,,t) >1, N(€).

The sequence {x,},_n is said to be convergent to x € X in the L-fuzzy

M
metric space (X, M,7T) (denoted by x,—>x) if M(x,,x,t)

=M(x,x,,t) >1, as n — +oo for every ¢ > 0.
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An L-fuzzy metric space is said to be complete if and only if every Cauchy

sequence is convergent.

Henceforth, we assume that T is a continuous ¢-norm on the lattice £

such that for every pe L/{0;, 1.} there is a A e L/{O;, 1.} such that
TN, ..., NOV) >7 N(w).

Definition 2.7. An £-fuzzy metric space (X, M, T) has the property (C)
if it satisfies the following condition M(x, y, ) = C for all ¢ > 0 implies
C=1,.

Lemma 2.8. Let (X, M, T) be an L-fuzzy metric space. If we define
Ey X% 5 RTU{0) by E, n(x, y) = inf{t > 0: M(x, y, t) >, N(L)} for
each . € L/{0;, 1.} and x, y € X. Then

() For any w e L/{0;, 1} there exists . € L/{0,, 1.} such that

By n(x1, xp) < By (e, x2) + By ilocg, x3) + .o+ By (%1, ) for
any xi, ..., x, € X.

(i) The sequence {x,, }neN is convergent w. r. t. L-fuzzy metric space M if
and only if E; y(x,, x) = 0. Also the sequence {x,},_n is Cauchy w. r. t. L-

fuzzy metric space M if and only if it is Cauchy with E; .

Lemma 2.9. Let (X, M, T7) be an L-fuzzy metric space which has the
property (C). If for all x,ye X,t>0 and for a number ke (0,1),
M(x, y, kt) =1, M(x, y, t). Then x = y.

3. Compatible Maps of Type (E)

Definition 3.1. Let S and T be two mapping from an L-fuzzy metric
space (X, M, T) into itself and {x,,} be a sequence in X such that

lim Sx,, = lim Tx, = © for some u € X. Then the mapping S and T are
n—oo n—o

said to be Compatible of type (E)
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iff lim M(SSx,, ST, t) = 1.,

n—0

lim M(SSx,,, Tx, t) = 1.,

n—

lim M(STx,, Tx, t) = 1.,

n—

lim M(TTx,, TSx,, t) = 1.,

n—o

lim M(TTx,, Sx, t) = 1.,

n—

lim M(TSx,,, Sx,t) =1, forall ¢ > 0.

n—ow

Proposition 3.2. If S and T are compatible mappings of type (E) on a L-
fuzzy metric space (X, M, T) into itself. If one of S and T is continuous, {x,,}

is a sequence in X such that lim Sx,, = lim Tx, = x for some x € X.
n—oo n—oo

Then (i) S(x) = T(x) and

lim SSx,, = lim T7x, = lim STx, = lim TSx,

n—oo n—oo n— n—oo
(ii) If there exists u € X such that Su = Tu = x, then STu = TSu.

Proof. Let {x,,} be a sequence in X such that lim Sx,, = lim Tx, = x
n—0 n—»0

for some x € X.
Then by definition of compatible of type (E), we have
lim SSx, = lim STx, = T(x)

n— n—0

If S is a continuous mapping. Then we get lim SSx, = S( lim Sx,,)
n—»oo n—>o0o

= S(x) = T(x) = S(x)

Also lim SSx, = lim TTx, = lim STx, = lim TSx,.

n—>w n—oo n—> n—»oo
Similarly, if T'is continuous, we get the same result.

Again, suppose Su = Tu = x for some u € X.
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Then STu = S(Tu) = S(x) and TSu = T'(su) = T(x)
From (i) we have S(x) = T'(x). Hence STu = TSu [

Theorem 3.3. If (X, M, T) is a complete L fuzzy metric space with the
property of (C). If one of the self mappings (A, S) and (B, T) of X is

continuous such that
i) AX <« TX, BX < SX
(1) M(Ax, By, kt) =7, M(Sx, Ty, t) for all x, y € X and k € [0, 1]

(i) If (A, S) and (B, T) compatible of type (E). Then A, B, S and T

have a unique common fixed point.

Proof. Let x3 € X from condition (i) there exists a point x;, xg9 € X

such that Axy = Tx; = y9 and Bx; = Sxg =

Therefore by induction, we construct a sequence {x,} and {y,} in X such

that yy, = Tx9,, .1 = Axg, and yg,, .1 = Sxg9,,,9 = Bxg,,; for n =0,1, 2, ...
We first prove {y,} is a Cauchy sequence in (X, M, 7))
M(y2n> Yons1, £) = M(Axgy,, Brgyy1, t)
2, M(Sx2n7 Tx2n+1’ t/k)
= M(y2n-1, Yon, t/k)

M(¥n» Yns1s t) 2 M(Yp-1> Yn» t/R)
2L M(yn—27 Yn-1> t/kz)'-' 2L M(yO, 1 t/kn)
This implies Ey ¢ (¥n> Ynt1) < R Ey, v(0s 21)

Therefore, for every pe L/{O,,1,} there exists y e L/{0,, 1.} such
that EH,M(yn’ ym)SEy,M(yn’ yn+1)+Ey,M(yn+1’ yn+2)+"'+Ey,M(ym—1’ ym)

SknJrl’:'y,m(yo,3’1)+kn+1Jrli'y,;,\,[(yo,y1)+...+km_1+EY’M(yO,y1)
SEL,M(yO:yl)Z?:n k' >0 as m,n - w.
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Then by lemma 2.8, {y,} is a Cauchy sequence.

Since (X, M, T) is complete, {y,} converges to some point z € X and so

that

Yon = Axgp = Tx9y 1 —> 2, Yop41 = Bxgyiq = Sxgpi9 > 2

If A and S are compatible of type (E), one of the mapping of the pair
(A, S) continuous.

Then by proposition 3.2, we have Az = Sz.

Since AX < TX, there exists a point ® in X such that Az = T
To prove Az = Tw

Using condition (i) put x = z, y = w;

M(Az, Bw, kt) 25, M(Sz, To, t) = M(Az, Az, t) =1,

M(Az, Bw, kt) = 1;, and we get Az = Bo

Now to prove Sz = Az = z

Put x =z, y = x9,,1 in () M(Az, Bxy,.1, kt) =27, M(Sz, Txo,,,1,t) as

n — o
M(Az, z, kt) 25, M(Az, z, t)
Hence we get Sz = Az = z
z1s a common fixed point of A and S.

Again if B and T are compatible of type (E) and one of the mappings of
(B, T) discontinuous, Bw = To = Az = z. By proposition 3.2, BBo = BTo
=TBw = TTw. Thus Bz = Tz

Put x = x9,,, y = z in (ii) M(Axy,,, Bz, kt) >;, M(Sxy,,, Tz, t) as n — ©
M(z, Bz, kt) >; M(z, Bz, t)
We have Bz =Tz =z

z is common fixed point of B and 7.
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For uniqueness, suppose that Aw® 1s another common fixed point of

A, B, S and T.

Then using (i1), we put x = Az, y = Aow;
M(AAz, BAo, kt) = M(Az, Aw, kt) >;, M(SAz, TAo, t) >;, M(Az, Ao, t)
Therefore Az = Ao = z

Thus z is a unique common fixed point of A, B, S and 7.

Corollary 3.4. If (X, M, T) is a complete L fuzzy metric space with the

property of (C). If one of the self mappings (A, B) of X is continuous such that
M(Ax, By, kt) =1, M(x, y,t) forall x, y e X and k € [0, 1] and if (A, B) is
compatible of type (E). Then A and B have a unique common fixed point.

3.2,

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

[10]

Proof. If we take S =7 = I, an identity mapping of X in the theorem

we get the result.
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