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Abstract 

For a graph G, the general position problem aims to obtain a general position set S of 

maximum number of vertices in G, in which no three vertices lie on a same geodesic in G. Such 

a general position set is referred to as a gp-set of G. The gp-number of  GgpG,  denotes the 

cardinality of a gp-set S in G. In this paper, we solve the general position problem of hexagonal 

derived networks such as hexagonal, honeycomb, silicate and oxide networks and compute their 

general position numbers i.e.,  .Ggp  

1. Introduction 

Given a graph G, the general position problem is to find a general 

position set S of maximum number of vertices in which no three vertices lie 

on a same geodesic in G. The set S is referred to as a gp-set of G and the gp-

number,  Ggp  denotes the cardinality of S. General Position Subset 
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Selection Problem [5, 15] and the no-three-in-line problem [4], motivated the 

authors to introduce the concept of general position problem in [10]. Also, in 

[10] they have proved the NP-completeness of the above problem in general. 

Recently general position problem has been studied in [1, 6, 8, 11]. 

Honeycomb, hexagonal networks are known as natural architectures as 

they bear resemblance to atomic or molecular lattice structures. Hexagon 

tessellations are used to build honeycomb networks recursively [16]. 

Honeycomb networks are extensively applied in image processing [2], cellular 

phone base station [14], computer graphics [9] and as the representation of 

Carbon Hexagons of Carbon Nanotubes [7] and benzenoid hydrocarbons [16] 

in chemistry. The largest and the hardest class of minerals are silicates so 

far. Fusing metal carbonates or metal oxides with sand, silicates were 

obtained. 

Throughout this article,  EVG ,  represents a simple and connected 

graph. We refer [3] for the basic definitions. In the following sections, we 

solve the general position problem of hexagonal, honeycomb, silicate and 

oxide networks and compute their gp-numbers. 

2. Hexagonal Networks 

  1, nnXH  denotes a hexagonal network of dimension n.  2HX  

consists of six triangles.  nHX  is constructed by adding triangles over the 

boundary edges of  .1nHX   nHX  consists of six three degree vertices 

called as corner vertices and from each of the corner vertices there is a center 

vertex at a distance .1n  In  ,nHX  there are   13 2  nn  vertices and 

 2533 2  nn  edges. There are exactly 6 three degree vertices, 126 n  four 

degree vertices and 793 2  nn  six degree vertices [12]. 

For our convenience we call the vertices on the boundary of  nHX  as the 

boundary vertices and the remaining vertices as the interior vertices. The set 

of interior vertices in  nHX  is called its interior and is denoted as 

  .int nHX  

Lemma 2.1. Let H be a subgraph of  nHX  induced by the vertices of a 
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path of hexagons parallel to a major axis. Then   .4Hgp  

Proof. Let H be a subgraph of  nHX  induced by the vertices of a path of 

hexagons along the Z-axis in  nHX  and S be a general position set of H. 

Consider the 3 parallel paths 321 ,, PPP  of H (Refer Figure 2). Since 

    .2,2 1  PVSPgp n   Without loss of generality, assume 

  .21 PVS   Denote the two vertices as a and c respectively. One can 

easily verify that,   .12 PVS   Further, if   ,12 PVS   then 

  3PVS  and if   ,2 PVS  then   .23 PVS   Hence   .4Hgp  

Choose two vertices, say b and d on 3P  such that db,  is the mirror image 

about the Z-axis of a, c respectively (Refer Figure 2). Now  dcba ,,,  is the 

required gp-set of H. Hence the proof. 

Lemma 2.2. Let S be a general position set of  nHX  and suppose 

Srp ,  such that rp,  do not lie on a same path parallel to the major axes. 

Let H be the triangular grid subgraph of  nXH  bounded by the 

parallelogram pqrs. Then any vertex of H lies on a -, rp geodesic. 

Proof. The proof can be easily verified by completing the parallelogram 

pqrs (Refer Figure 1). 

 

Figure 1. Vertices in red form a gp-set of  .4XH  

Lemma 2.3. For    .6,3  nHXgpn  
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Proof. Let S be a general position set of  .nXH  Consider the subgraph 

H of  nXH  induced by the vertices of the central path of hexagons along the 

Z-axis. By Lemma 2.1,   .4HVS   Without loss of generality, assume 

  4HVS   and denote the four vertices by .,,, dcba  Denote the right 

hemisphere of  -nHX that is, the subgraph of  nHX  on the plane 0Z  by 

R. Suppose any other vertex, say e in R belongs to S. Then consider the two 

intersecting lines, say 1l  and 2l  passing through e in R (Refer Figure 2). 

Denote the two boundary vertices in R lying on 21, ll  by nm,  respectively. 

Consider the triangular grid subgraph of  nHX  bounded by the triangle 

emn, denoted by T. 

Claim:      .\ TVRVS   

On the contrary, assume that there exists a vertex    TVRVx \  above 

.1l  Then e will lie inside the parallelogram formed with xc,  as diagonally 

opposite vertices (Refer Figure 2). Similarly if there exists a vertex 

   TVRVy \  below ,2l  then e will lie inside the parallelogram with ya,  

as diagonally opposite vertices. Lemma 2.2 completes the proof of our claim. 

Consider the subgraph T of R. We claim that   .1int ST   Suppose 

on the contrary it contains two vertices say f and h, then f will lie on a 

-, eh geodesic by Lemma 2.2. Now assume  .int Tf   

Next consider the subgraph on the other hemisphere of  nHX  denoted 

by R  on the plane .0Z  

Case 1. If ,Sf   then      .,\  ScaRV   On the contrary, suppose 

there exists a vertex, say g in      ScaRV ,\  then e lies on a 

-, fg geodesic by Lemma 2.2. 

Case 2. If ,Sf   then      .1,\  ScaRV   Suppose 

     ,2,\  ScaRV   then one vertex will lie on a geodesic between the 

other vertex and e, by Lemma 2.2. Hence 6S  and this completes the 

proof of the lemma. 
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Figure 2.  .6HX  

Theorem 2.1. If ,3n  then    .6nHXgp  

Proof. By Lemma 2.3,    .6nHXgp  Let S be a set of 4-degree 

boundary vertices, one from each face of  nHX  such that the distance 

between any two consecutive vertices is .1n  Then S is the required gp-set 

of  nHX  (Refer Figure 1). 

3. Honeycomb Networks 

Honeycomb network is based on hexagonal networks.  1HC  consist of a 

hexagon. We obtain  ,2HC  by placing hexagons on the boundary edges of 

 .1HC  Inductively, by placing hexagons on the boundary edges of  1nHC  

we obtain  nHC  (Refer Figure 3). There are 26n  vertices and nn 39 2   

edges in  .nHC  There are 6n two degree vertices and the remaining are 

three degree vertices [12]. 

Theorem 3.1. If ,2n  then    .6nHCgp  

Proof. Honeycomb network is based on hexagonal tessellations. Hence 
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the proof is similar to the proof of Theorem 2.1, because the paths induced by 

the central path of hexagons of  nHC  parallel to a major axis behave exactly 

similar to the paths 1P  and 3P  of  nHX  (Refer Figure 2 and Figure 3). 

 

Figure 3. A gp-set of  .3HC  

4. Silicate Networks 

A honeycomb network is used to construct a silicate network,  .nSL  

Consider  .nHC  On every vertex of  nHC  place silicon ions. Divide all the 

edges of  nHC  once and on the new vertices place oxygen ions. At each two 

degree silicon ions, 6n new pendant edges are introduced and at these 

pendant vertices place oxygen ions. The three adjacent oxygen ions are 

associated with every silicon ion to form a tetrahedron. 

The resultant network is  .nSL   nSL  consists of nn 315 2   vertices 

and 236n  edges. There are nn 66 2   three degree vertices and nn 39 2   six 

degree vertices. The three degree oxygen nodes are called as boundary nodes 

of  nSL  [13]. 

Lemma 4.1 [10]. The set of simplicial vertices of a graph form a general 

position set. 
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Lemma 4.2. If S is a gp-set of  ,nSL  then S does not contain any of the 6-

degree vertices of  .nSL  

Proof. Suppose on the contrary S is a gp-set of  nSL  containing a 6-

degree vertex, say v. Observe that v is incident on two axis 1l  and .2l  

Consider the axis 1l  with terminal vertices a and b (Refer Figure 4). Since 

,Sv   both a and b cannot belong to S. Without loss of generality, assume 

.Sa   Similarly since ,Sv   either one of the terminal vertices say c or d of 

2l  belongs to S. Since ., ScSa   Also v is adjacent to two silicon vertices e 

and f in the neighboring two tetrahedrons. By a similar argument, Se   and 

.Sf   Now     fdbvSS ,,\   is a general position set of  nSL  such 

that .SS   Hence the proof. 

 

Figure 4. A gp-set of  .2SL  

Theorem 4.1. If ,1n  then    .66 2 nnnSLgp   

Proof. Let S be the set of all simplicial vertices of  .nSL  Observe that S 

contains only the 3-degree vertices of  nSL  (Refer Figure 4). From Lemma 

4.1, S is a general position set of  .nSL  By Lemma 4.2, we observe that S is 

the required gp-set of  .nSL  
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Corollary 4.1. The gp-set of  nSL  is unique. 

5. Oxide Networks 

The oxide network  nOX  is obtained by deleting all the silicon ions from 

the silicate network.  nOX  consists of nn 39 2   vertices and 218n  edges 

[13]. 

Theorem 5.1. If ,1n  then    .6nnOXgp   

Proof. We first claim that any gp-set of  nOX  cannot contain any of the 

4-degree vertices of  .nOX  On the contrary, suppose S is a gp-set of  nOX  

containing a 4-degree vertex, say v. Note that v is incident on two axis 1l  and 

.2l  Let a and b be the terminal vertices of .1l  Since ,Sv   both a and b 

cannot belong to S. Without loss of generality, assume .Sa   If c and d are 

the terminal vertices of ,2l  since .,, ScSva   Now     dbvSS ,\   

is a general position set of  nOX  such that .SS   This proves our 

claim. Therefore    .6nnOXgp   

Let T be the set of all simplicial vertices of  .nOX  Observe that T 

contains only the 2-degree vertices of  nOX  and .6nT   By Lemma 4.1, T 

forms a general position set of  nOX  and T is the required gp-set of  nOX  

Refer Figure 5). 
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Figure 5. A gp-set of  .2OX  

Corollary 5.1. The gp-set of  nOX  is unique. 

6. Conclusion 

In this article, the general position problem of hexagonal derived 

networks such as hexagonal, honeycomb, silicate and oxide networks are 

solved and their general position numbers are determined. 
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