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Abstract 

In this paper we study different concepts like vertex squared interval-valued fuzzy graph, 

vertex squared cardinality, vertex squared independent set, n-split dominating set, n-split 

domination number. We likewise, investigate a relationship between n-split dominating set and 

vertex squared independent set for vertex squared interval-valued fuzzy graphs. 

1. Introduction 

Fuzzy graphs differ from the classical ones in several ways, among them 

the most prominent one is connectivity. Distance and central concepts 

additionally assume important parts in applications related to fuzzy graphs. 

In 1965 Lotfi. A. Zadeh initiated fuzzy sets and later in 1983 Krassimir T. 

Bhattacharya [3] has discussed fuzzy graphs. Kalaiarasi and Mahalakshmi 

have also expressed fuzzy strong graphs [10]. 
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Generalized theory and fuzzy logic have been concentrated by Zadeh [21] 

[22] [23]. Hongmei and Lianhun have also expressed interval-valued sub 

semigroups and subgroups [7]. Akram et al. [1] gave the idea that fuzzy 

graphs. The concept of fuzzy sets has been concentrated by Turksen [19]. 

Pradip Debnath gave the characterization for a minimal dominating set [15]. 

Manjusha and Sunitha gave the notion of strong arcs [13]. 

In this paper, we build up the idea of n-split domination in VSIVFG and 

many fascinating outcomes including these ideas are researched. 

Additionally, we talk about n-split domination number and explored their 

many intriguing outcomes. 

2. Vertex Squared Interval-Valued Fuzzy Graph 

We consider, 

IVG - Vertex Squared Interval-Valued Fuzzy Graph 

IVV - Vertices 

IVE - Edges 

Definition 2.1. An vertex squared interval-valued fuzzy set (VSIVFS) 

IVX  on a set IVV  is denoted by        2
11

2
1111 ,, iiiX

IVIV XXIV
   

,: 11 IVVi   where  2
IVX  and  2

IVX
 are fuzzy subsets of IVV  such that 

     211
2

11 ii
IVIV XX

   for all .11 IVVi   If  IVIVIV EVG ,  is a crisp 

graph, then by an vertex squared interval-valued fuzzy relation IVY  on IVV   

we mean an VSIVFS on IVE  such that     ,min
2

112211 iii
IVIV XY

   

   2
22i

IVX
  and        2

22
2

112211 ,max iiii
IVIVIV XXY

   for all 

IVEii 2211  and we write        2
2211

2
22112211 ,, iiiiiiY

IVIV YYIV
   

.: 2211 IVEii   

Definition 2.2. An VSIVFG of a graph  IVIVIV EVG ,  is a pair 
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 ,, IVIVIV YXG   where     22
,  

IVIV XXIVX  is an VSIVFS on IVV  

and   
IVIV YYIVY ,  is an vertex squared interval-valued fuzzy relation on 

.IVV  

Example 2.1. :IVG  

 

Figure 1. VSIVFG  .IVG  

In the above figure, 

 44332211 ,,, iiiiVIV   

 1144443333222211 ,,, iiiiiiiiEIV   

Here we take IVX  be an VSIVFS on IVV  and IVY  be an VSIVFS on 

IVIVIV VVE   defined by 
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Then  IVIVIV YXG ,  is an VSIVFG. 

Definition 2.3. The order IVp  and size IVq  of an VSIVFG 

 IVIVIV YXG ,  of a graph  IVIVIV EVG ,  are denoted by 
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     



 


IV

IVIV

Vi

XX
IV

ii
p

11
2

1
2

11
2

11
 and 

   
.

2

1

2211

22112211




 


IV

IVIV

Vii

XX
IV

iiii
q  

Definition 2.4. Let  IVIVIV YXG ,  be an VSIVFG on 

 IVIVIV EVG ,  and .IVIV VS   Then the vertex squared cardinality of 

IVS  is defined to be 
     

.
2

1

11

2
11

2
11




 

IV

IVIV

Vi

XX
ii

  

Definition 2.5. An arc 2211iieIV   of the VSIVFG is called a vertex 

squared effective edge if        2
22

2
112211 ,min iiii

IVIVIV XXY
   and 

       .,max
2

22
2

112211 iiii
IVIVIV XXY

   

Definition 2.6. A set IVS  of vertices of the VSIVFG is called the      

vertex squared independent set (VSIS) if     ,min
2

112211 iii
IVIV XY

   

   2
22i

IVX
  and        2

22
2

112211 ,max iiii
IVIVIV XXY

   for all 

., 2211 IVSii   

3. n-Split Domination in Vertex Squared Interval-Valued  

Fuzzy Graph 

Definition 3.1. Let  IVIVIV YXG ,  be an VSIVFG on IVV  and 

IVVii 2211,  We say ‘ 11i ’ n-split dominates ‘ 11i ’ if  


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Example 3.1. :IVG  

 

Figure 2. VSIVFG  IVG  with 2-Split Dominates. 

In the above figure, 

 332211 ,, iiiVIV   

 113333222211 ,, iiiiiiEIV   

Here we take IVX  be an VSIVFS on IVV  and IVY  be an VSIVFS on 

IVIVIV VVE   denoted by 
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Then  IVIVIV YXG ,  is an VSIVFG. 

Definition 3.2. A subset IVS  of IVV  is called a n-split dominating set 

(n-SDS) in VSIVFG if for every ,22 IVSi   there exist IVSi 22  such that 

22i  n-split dominates .22i  A n-SDS IV R of a VSIVFG is called the minimal n-

split dominating set if no proper subset of IVR  is a n-SDS of VSIVFG. 

Definition 3.3. The minimal vertex squared cardinality of a n-SDS in 
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VSIVFG is said to be n-split domination number of VSIVFG and is denoted by 

 .IVnSPD G  

Example 3.2.  

In the figure, 

 332211 ,, iiiVIV   

 113333222211 ,, iiiiiiEIV   

Here we take IVX  be an VSIVFS on IVV  and IVY  be an VSIVFS on 

IVIVIV VVE   denoted by 
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Then  IVIVIV YXG ,  is an VSIVFG. 

:IVG  

 

Figure 3. VSIVFG  IVG  with 2-Split domination number. 

In the above figure 3 having 2 -split dominating sets are 

         3322522114333222111 ,,,,,, iiDiiDiDiDiD   and 
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 ., 11336 iiD   

Then the minimal vertex squared cardinality of a 2-split dominating set is 

 22i  and   .54.02  IVSPD G  

Theorem 3.1. A vertex squared independent set is a maximal vertex 

squared independent set of a VSIVFG iff it is a vertex squared independent set 

and n-SDS. 

Proof. Let IVS  is a maximal vertex squared independent set of a 

VSIVFG. Thus for each ,IVIV SVx   the set  xSIV   is not vertex 

squared independent set. In this way, for each vertex ,IVIV SVx   there is 

a vertex IVSy   to such an extent that y is n-split dominated by x. 

Consequently IVS  is a n-SDS. Hence IVS  is an vertex squared independent 

and n-SDS. 

Conversely, let IVS  be vertex squared independent set and n-SDS. If 

conceivable, assume IVS  is not a maximal vertex squared independent set. 

Then there exists IVIV SVx   to such an extent that the set  xSIV   is 

vertex squared independent set. Then no vertex in IVS  is n-split dominated 

by x. Hence IVS  cannot be a n-SDS, which is a contradiction. Hence IVS  

should be a maximal vertex squared independent set. 

Example 3.3. :IVG  

 

Figure 4. VSIVFG  IVG  with 2-Split Dominating Set. 
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Theorem 3.2. In a VSIVFG, every maximal vertex squared independent 

set is a minimal n-split dominating set. 

Proof. Let IVS  be a maximal vertex squared independent set in 

VSIVFG. By the theorem 3.1, IVS  is a n-SDS. Assume IVS  be not a minimal 

n-split dominating set. Then there exists somewhere around one vertex 

IVSx   for which  xSIV   is a n-SDS. Yet, if  xSIV   n-split dominates 

  xSV IVIV   then at least one vertex in  xSIV   must n-split 

dominate x. This contradicts the way that IVS  is a VSIS of VSIVFG. Hence 

IVS  should be a minimal n-split dominating set. 

Example 3.4. :IVG  

 

Figure 5. VSIVFG  IVG  with 2-Split dominating set. 

Theorem 3.3. Let IVG  be a VSIVFG with n-split dominate edges. If IVS  

is a minimal n-split dominating set, then IVIV SV   is a n-SDS. 

Proof. Let IVS  be a minimal n-split dominating set of VSIVFG. Assume 

IVIV SV   is not n-SDS. Then there exist a vertex to IVSx   such an extent 

that x is not n-split dominated by anyone vertex in .IVIV SV   Since IVG  

has n-split dominate edges, x is a n-split dominate of somewhere around one 

vertex in  .xSIV   Then  xSIV   is a n-SDS, which contradicts the 

minimality of .IVS  Subsequently, every vertex in IVS  is a n-split dominate 

of no less than one vertex in .IVIV SV   Hence IVIV SV   is a n-SDS. 
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Example 3.5. :IVG   

 

Figure 6. VSIVFG  IVG  with 2-Split Dominating Set. 

Conclusion 

The new thought has been explained in this paper for vertex squared 

cardinality, vertex squared effective edge, n-split dominating set, and n-split 

domination number. Theorems identified with this concept are inferred and 

the relation between n-split domination set and vertex squared independent 

set are set up. 
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