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Abstract 

The tumour suppressor gene gives instructions on how to make the tumour protein that 

controls cell division in a specified manner. If any changes in its structure or function occur, the 

cell division results in either malignant cell growth or benign cell growth. Malignant cell growth 

can cause many forms of cancer. A model for mutated genes has been established in this paper, 

which will help to detect whether or not the embedded gene is mutated. If detected earlier, steps 

can be taken to reduce the malignancy of the disease in advance. Hidden Markov Models are a 

stochastic model commonly used to analyse biological sequences. Profile Hidden Markov Model 

can be used to compare a single sequence to a profile or to coordinate multiple sequences. 

Modeling the mutant genes and matching the new gene with them would become a cost-effective 

primary method of prevention against various chronic diseases and drug resistance. 

Introduction 

There may be 20000 to 25000 genes in the human body, according to 

Human Genome Project report. Every gene in every human body has two 

copies of it. Gene on chromosome 17 associated with cancer that insisted on 

making protein is called a tumour suppressor. The tumour protein p53 

controls the division of cells and uncontrollably prevents growth and division 

(proliferation) this protein is attached directly to the DNA in the nucleus of 

every cell. If the hereditary material can damage agents such as toxic. 

Chemicals, the abnormal division of cell will result in UV rays of sunlight. 

This leads to malignant or benign cell growth if the gene is damaged. The 
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Tp53 gene mutations could occur primarily through missense substitutions. 

This adds to the number, 75 percent. Nonsense mutations then contribute 9 

percent and 7 percent to the insertion and deletion of frame shift. Silent 

mutations and several other rare modifications are the remainder of the 

mutations [1], [6], [15]. 

Cancer is the second leading cause of death in the world and is 

responsible for an estimated 9.6 million deaths in 2018. Globally, about 1 in 6 

fatalities have been linked to cancer. In nations with low and medium 

incomes, about 70 percent of cancer deaths occur. Lung cancer, breast cancer, 

colorectal cancer and skin cancer are the most common cancers. (WHO 

report). 

Review of Related Research 

Analysis of Biological sequence by Hidden Markov Models has improved 

from the work of Rabiner [8]. In this paper, Hidden Markov Models for speech 

recognition are discussed in the theoretical practical aspect and it 

implemented. On the basis of this work, Eddy et al. proposed the uses of 

Hidden Markov models to the Computational Biology [3]. He has elucidated 

Hidden Markov Models and also discussed the applications of HMM for 

multiple sequence alignment, homolog recognition and its assumptions while 

using HMM for computational biology as well as biological sequence analysis. 

Hughey et al. Also discussed about the applications of HMM in computational 

biology. In [4] they have examined about the mathematical extensions and 

heuristics of HMM and explore it to the SH2 domain. By finding the three 

major principles in [2], Eddy proposed Profile Hidden Markov models to 

analyse the biological sequence. After few years, some of the additional 

features of HMM is discussed and introduced gene-HMM [11]. The usage of 

HMMER and SAM packages are discussed and some other open areas for 

biological research are listed. The study of Yoon perceiving the improvements 

made in HMM [14]. Many researchers have introduced and improvised the 

works discussed above for different diseases and have contributed their ideas.  

Data Description 

Mutated TP53 gene sequences of five cancer patients are used for this 

study. This dataset was collected from the HGMD database, which is 

available with some limitations. 
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The above-mentioned sequence is the combination of amino acids in the 

mutated TP53 gene. The alphabet ‘A’ represents the amino acid alanine. ‘C’, 

‘G’, ‘T’ is represented Cytosine, Guanine, Thymine respectively. 

Methodology 

Multiple Sequence Alignment 

Progressive alignment is the widely used method to align the DNA 

sequence. These alignment methods are heuristic algorithms where the 

optimization process is governed by the objective for minimization of overall 

pairwise scores. Most algorithms implementing progressive alignment 

methods use a guide tree for establishing an order in which the sequences are 

merged into the progressively growing multiple alignment. A guide tree is 

formed by taking all the sequences and applying the principles of 

agglomerative clustering to construct a binary tree. The leaves and internal 

nodes represent sequences and alignments respectively  

The construction of the guide tree for a set of N sequences essentially 

proceeds as follows: 

Step 1. The pair wise similarity (or distance) score matrix is computed.  

Step 2. Each of the N sequences is considered to be a singleton group. 

The intergroup similarity (or distance) is identical to the pair wise similarity 

computed in the previous step. 

Step 3. Groups are merged such that each successive merge step chooses 

the most similar groups and recomputes the new group’s similarity (or 

distance) to all of the other groups. 

Step 4. The merging process stops when all sequences belong to one large 

group containing all N sequences. 

Step 5. The order in which the sequence and groups are merged provides 

the guide tree. Sequence alignments are performed as dictated by the guide 

tree. 

Upon the alignment of the original seed pair wise alignment, any stage of 

following the guide tree will result in requiring one of the two possible 

alignments to be performed. Either a sequence might need to be aligned to a 
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group of sequences, or a group of sequences might need to be aligned to 

another group of sequences. When a single sequence is required to be aligned 

to a group of sequences, dynamic programming algorithm is applies to 

compute the score (or distance) of the new sequence and all the sequences in 

the group. The highest scoring alignment is used to determine how the new 

sequence is subsequently aligned to the group. And when a group of sequence 

is to be aligned with another group, the highest pair wise score between each 

member of the two groups is used to establish how the two groups align with 

each other. As progressive alignments are formed, the gaps introduced in a 

pair wise alignment are replaced with a special character, such as an X. This 

allows the gaps to progress till the end when all X’s in the alignment 

constructed are replaced with the gap character -. Underlying principle in 

progressive alignment may therefore be stated as “once a gap, always a gap.” 

The dynamic programming alignment algorithms must also be adjusted to 

accommodate the special symbol X such that there is no cost associated with 

aligning an X with anything including other X characters [12]. 

Hidden Markov Model 

In a Markov model, all states in a linear sequence are directly observable. 

In some situations, some non-observed factors influence state transition 

calculations. To include such factors in calculations requires the use of more 

sophisticated models: HMMs. An HMM combines two or more Markov chains 

with only one chain consisting of observed states and the other chains made 

up of unobserved states that influence the outcome of the observed states 

[13]. 

HMM utilizes a set of hidden states with an emission of the symbols 

associated with each state. From a symbol generation perspective, the state 

sequence executed by the model is not observed. An N-state HMM is 

parameterized using the set  .,, = BA  Individual elements of this set 

are defined as follows: 

1. A: The NN   matrix  ijaA =  represents the state transition 

probabilities. 

  .,1|1Pr NjiSqsqa ixjxi ==+=  
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2. B: The Q  emission probabilities corresponding to the emitting 

states. As we discuss below a subset of the N states have emissions 

associated with them. The elements of this matrix,  ,)(beE k=  are defined 

as follows: 

( )   .1,1|Pr === bQkSqbObe kxxk  

3. :  The initial state distribution probabilities, 

      .1.Pr, 1 NiSq iiiii ====  

As a first step towards inducing the model, the topology of the HMM is 

established using the consensus sequence. The aligned columns of symbols 

correspond to either emission from the same match state or to emissions from 

the same insert state. In this formalism therefore, the columns that 

correspond to the match state are established to define the match states of 

the HMM architecture [2], [12]. 

 

Figure 3.1. The consensus columns are used to define the match states M1, 

M2 and M3 for the HMM.  

Transition Probabilities. The value of each transition probability is 

computed using the frequency of the transitions as each sequence is 

considered. The model parameters are computed using the state transition 

sequences. 

Emission Probabilities. Having thus specified the state transition 

sequence, the emission probabilities for each of the symbol,   is 

computed for each match and insert state, k, in the model. The emission 

probability is computed using the formula. Thus an emission probability is 

associated with each state, and specifies the probability of emitting each of 
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the symbols in   in the state k [12].  
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Viterbi Algorithm  

Once the HMM topology is set and its parameters trained, we can use it 

to find genes in a newly unlabelled DNA sequence X. In other words, we seek 

an appropriate state path H  that best explains how the model could have 

produced X; this process is called HMM decoding. The simplest measure of 

“best” is to find the path that has the maximum probability in the HMM, 

given the sequence X. Recall that the model gives the joint probabilities 

( )XH ,Pr  for all sequence/annotation pairs, and as such, it also gives the 

posterior probability ( ) ( ) ( ),Pr,PrPr XXHXH =  for every possible state 

path H through the model, conditioned on the sequence X. We will seek the 

path with maximum posterior probability. Given that the denominator 

( )XPr  is constant in the conditional probability formula for a given sequence 

X, maximizing the posterior probability is equivalent to finding the state path 

H  that maximizes the joint probability ( ).,Pr XH   The most probable 

state path can be found in time linear in the sequence length by the Viterbi 

algorithm. This simple dynamic programming algorithm computes the 

optimal paths for all prefixes of X; when we move from the i-length prefix to 

the ( )-1+i length prefix, we need only add one edge to one of the recomputed 

optimal paths for the i-length prefix. For every position i in the sequence and 

every state k, the algorithm finds the most probable state path ihh ,,1   to 

generate the first i symbols of X, provided that .khi =  The value  kiV ,  

stores the joint probability )( ii xxhh ,,,,,Pr 11   of this optimal state 

path. Again, if ihh ,,1   is the most probable state path generating 

ixx ,,1   that ends in state hi, then 11 ,, −ihh   must be the most probable 

state path generating 11 ,, −ixx   and ending in state .1−ih  To compute 

 ,, kiV  we consider all possible states as candidates for the second-to-last 

state, 1−ih  and select the one that leads to the most probable state path, as 



STOCHASTIC MODELLING FOR IDENTIFYING … 

Advances and Applications in Mathematical Sciences, Volume 20, Issue 9, July 2021 

1929 

expressed in the following recurrence [5]: 
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Baum-Welch Algorithm 

The Baum-Welch algorithm starts from an initial set of model 

parameters .0  In each iteration, it changes the parameters as follows: 

Step 1. Calculate the expected number of times each transition and 

emission is used to generate the training set T in an HMM whose parameters 

are .k  

Step 2. Use the frequencies obtained in step 1 to re-estimate the 

parameters of the model, resulting in a new set of parameters .1+k  

The first step of the algorithm can be viewed as creating a new annotated 

training set ( ),kT  where for each unannotated sequence ,TX   we add 

every possible pair ( )HX ,  of the sequence X and any state path, weighted by 

the conditional probability ( )kXH ,Pr  of the path H in the model with 

parameters ,k  given the sequence X. The second step then estimates new 

parameters 1+k  as in the supervised scenario, based on the new training set 

( ).kT  The Baum-Welch algorithm achieves the same result in ( )2
nmO  time 

per iteration using the forward and backward algorithms to avoid explicitly 

creating this exponentially large training set [5]. 

Profile Hidden Markov Model 

Profile HMM use position-specific scoring. It allows HMMs to 

characterize entire families of sequences by modelling the extent to which the 

regions should be conserved in a multiple alignment. The probability of a gap 

or insertion is position specific. A ‘profile’ can be thought of as a series of 

amino acid probability distributions, one for each M-state. Each delete state 

adds a delete character to the sequence with probability 1. 

In the standard notation view, 
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m-Match state (output), I-insert state (output), d-delete state (no output)  

In addition to the start and end states, there can be 3 other classes of 

states: main, delete, insert. The graphical representation of a typical profile 

HMM is shown below. 

 

Figure 3.1. Graphical representation of profile HMM. 

The model generated from multiple alignment consists of a linear 

sequence of nodes with a begin state (B) and an end state (E). Each node 

between the beginning and end states corresponds to a column in a multiple 

alignment. Each node has a match state (M), insert state (I) and delete state 

(D) with position-specific probabilities for transitioning into each of these 

states from the previous node. Each match, insert, delete state have position-

specific probabilities for match, insert, delete a particular residue. These 

probabilities indicate the probability of transitioning. 

The overall training method used is as follows:  

Step 1. The model is initialized with estimates of transition probabilities 

and amino acid composition for each match and insert state.  

Step 2. All possible paths through the model for generating each 

sequence are examined.  

Step 3. A new version of the HMM is produced that uses the results in 

the previous step to generate new transition probabilities and match-insert 

state compositions. 

Step 4. The previous two steps are repeated up to 10 more times until 

the parameters do not change significantly. 

Step 5. The trained model is used to provide the most likely path for each 

sequence. 
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The model is then used to search a sequence database for additional 

sequences that share the same sequence variation. This gives a type of 

distance score of the sequence from the model, thus providing an indication of 

how well a new sequence fits the model and whether the sequence may be 

related to the sequences used to train the model [5]. 

Results and Discussion 

Initially, DNA sequences are aligned using the Clustal Omega alignment 

tool. The multiple sequence alignment by the tool has been based on the 

distance matrix. Which is also organized as a guide tree. The phylogenetic 

tree for aligning the taken DNA sequences is shown below. 

 

Figure 4.1. phylogenetic trees for the alignment of five DNA sequences. 

There is sequence-sequence, sequence-profile, profile-profile alignment 

might be done respectively. 

Based on the above-mentioned phylogenetic tree, the multiple sequence 

alignment might have been done as follows: the first mutated sequence and 

the fourth one was going under the sequence-sequence pair wise alignment, 

and the second and third sequence also aligned using the sequence-sequence 

alignment. Then the remaining sequence has been inclusively aligned with 

the first generated profile. We might have two profiles of DNA sequence 

alignment. With this, the profile-profile alignments have been applied and 

the below mentioned alignment has been generated.  
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Figure 4.2. Multiple sequences alignment for five DNA sequences. 

The aligned sequences might be visualized using the consensus logos 

which were introduced by Schneider and Stephen. There are several tools are 

available to generate to sequence logo. Skylign, online tool in the visual 

representation of DNA sequences is used to visualize the MSA. How each 

residue at each position be predominating and how much predominating can 

be studies from this logos. The below mentioned logo anticipating much 

information. Frequently occurred residues are identifying and allows to form 

consensus sequences.  

 

Figure 4.3. Consensus sequence Logo for Multiple Sequence Alignment. 

Also, we can construct the percentage identity matrix for the DNA 

sequence alignment. It represents the similarity among the taken DNA 

sequences. 

 

Figure 4.4. Percentage identity matrix of the DNA sequences. 
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From this, the similarity of DNA sequences among the five cancer 

patients can be studied. Also, it represents that there may be mutations 

might happen in any position of a particular gene but the same thing among 

all is the mutation leads to malignant which tends to cancer. The next step is 

to develop Hidden Markov Model. 

The Hidden Markov Model deals with the visible states and hidden 

states. In the DNA sequence alignment, the visible states are nucleotides 

such as Adenine, Thymine, Guanine, and Cytosine. The hidden states are 

Match state, insert state, and Delete State respectively. We can estimate the 

Transition Probability Matrix and Emission Probability Matrix for the visible 

states and hidden states using Baum-Welch algorithm.  

TPM gives the state wise transition probability between each visible 

state. On the other hand, EPM expresses the transition probability between 

each visible state to each hidden state. Generally, In Markov model the 

transition probability for one state to another state is strictly depends upon 

the previous state only. 

We may predict the next aligned state using the Viterbi algorithm. The 

subsequent hidden states which have been computed are listed below. 

 

Figure 4.5. Predicted Viterbi Path of DNA sequences. 

Using the aligned sequence which has been done by multiple sequence 

alignment, we have to construct the profile. In this profile, a part of aligned 

sequences has been shown. There are ten Match, Insert and Delete states. 

The emission probability is noted in the square, which can be measured using 

the thickness of the line near the residual. The match, delete and insert 

states are joined with other by straight lines of thickness according to their 

probability. 

The profile HMM derived from the Multiple Sequence Alignment by 

Laplace’s rule is visualized below: 
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Figure 4.6. Profile HMM for the aligned DNA sequences. 

The derived profile HMM from the MSA has a match state for each 

residue .iy  Here we show only ten aligned amino acids of the entire DNA 

sequence of our study. This is the alignment of a part of our DNA data; 

Emission probabilities are shown as bars opposite the different amino acids 

for each match states, and transition probabilities are indicated by the 

thickness of the lines. The bar near each amino acid indicates the emission 

probability. 

Once the profile was constructed, we have to train the model. Among the 

five DNA sequences, we randomly choose one sequence as training set. In our 

model we have select the DNA sequence of the first patient to train. Training 

of model and iterations are as follow.  

Iteration 1 log likelihood = – 241.0646 

Iteration 2 log likelihood = – 221.3798  

Iteration 3 log likelihood = – 207.8868  

Iteration 4 log likelihood = – 202.9593  

Iteration 5 log likelihood = – 201.2624  

Iteration 6 log likelihood = – 200.2661  

Iteration 7 log likelihood = – 199.4311  

Iteration 8 log likelihood = – 198.6151  

Iteration 9 log likelihood = – 197.7914  

Iteration 10 log likelihood = – 197.0278  

Iteration 11 log likelihood = – 196.4073  

Iteration 12 log likelihood = – 195.8262  

Iteration 13 log likelihood = – 195.1387  

Iteration 14 log likelihood = – 194.6063  
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Iteration 15 log likelihood = – 194.3908  

Iteration 16 log likelihood = – 194.3195  

Iteration 17 log likelihood = – 194.2907  

Iteration 18 log likelihood = – 194.2738  

Iteration 19 log likelihood = – 194.2604  

Iteration 20 log likelihood = – 194.2486  

Iteration 21 log likelihood = – 194.2378  

Iteration 22 log likelihood = – 194.228  

Convergence threshold reached after 22 EM iterations  

This shows that the 22nd iteration we can have the profile. By following, 

the above-mentioned procedure, we might have been identified and detect the 

DNA sequence of a new person whether the mutation in TP53 has leads to 

malignant disease or not. 

The trained model is used to provide the most likely path for each 

sequence by using the Viterbi algorithm. The probability is computed by the 

forward-backward algorithm. Thus providing an indication of how well a new 

sequence fits the model and whether the sequence may be related to the 

sequences used to train the model [11]. 

Conclusion 

In biological sequence Analysis, multiple sequence alignment is the vast 

using technique to analyze the DNA/Protein sequences. It will be helpful to 

detect and identify various diseases. If the gene mutation is identified earlier, 

it will become a cost-effective primary prevention method from malignant 

diseases and resilience to drugs. When we consider the population, which 

require this testing, the time and the cost reduction will work out to be huge 

savings for the policymaker and society, says the study. The model developed 

by this study using stochastic methods will make the gene-sequence teaching 

faster, cost effective and simple, it says. The study will be useful to analyze 

the Genome, identifying and detecting the malignant disease arise by gene 

mutation. The DNA bar-coding, DNA recognition and speech recognition will 

follow the same method. The launch of a profile that hides the Markov model 

[10] also detects Android malware recently. In speaking recognition, the 

model can also be useful. 
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