

Advances and Applications in Mathematical Sciences
Volume 21, Issue 6, April 2022, Pages 3303-3313
© 2022 Mili Publications, India

2020 Mathematics Subject Classification: 68T01.

Keywords: Connect 4, board games, Minima (alpha-beta pruning), dynamic programming,

“Monte Carlo Tree Search (MCTS)”, artificial intelligence.

*Corresponding author; E-mail: pratish.pushparaj16@gmail.com

 Received September 20, 2021; Accepted December 1, 2021

SOLVING CONNECT 4 USING OPTIMIZED MINIMAX

AND MONTE CARLO TREE SEARCH

KAVITA SHEORAN, GEETIKA DHAND, MAYANK DABASZS,

NISHTHAVAN DAHIYA and PRATISH PUSHPARAJ*

 Department of Computer Science

Maharaja Surajmal Institute of Technology

Janakpuri, New Delhi, India-110058

E-mail: kavita.sheoran@msit.in

geetika.dhand@msit.in

mayankdabas2401@gmail.com

nishthavandahiya7@gmail.com

pratish.pushparaj16@gmail.com

Abstract

Training AI agents for playing and mastering sophisticated board games has come a long

way, but it is still a challenging task to excel at. Connect-4 is such a board game with moderate

complexity and several trillions of different board configurations. We have trained two other

agents in search of a superior agent for playing connect-4 using algorithms “Monte Carlo Tree

Search (MCTS)” and Minimax (alpha-beta pruning and dynamic programming), where MCTS

and Minimax are game tree search-based algorithms, but we have optimised the Minimax

(“alpha-beta” pruning) by using dynamic programming to perform marginally faster, and as a

result, it can go deeper in the game tree to give better results. The MCTS agent lost to minimax

as because of dynamic programming, minimax could go deeper in the game tree and was able to

perform a better tree search.

1. Introduction

Many board games are complex decisive problems where an action in the

present results later when the game ends in the form of a win or lose. Now,

because all these complex networks of moves lead to a win/lose, it becomes

KAVITA SHEORAN, et al.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022

3304

tough for humans to visualise and master the game in a short amount of

time. Whereas on the other hand, an AI agent can perform significantly

better by visualising future moves or by learning patterns in the games [1].

Connect 4, shown in Figure 1, is a similar board game where winning or

losing is dependent on moves performed in the past. This game consists of 2

players and two different types of discs assigned to each player. There is a

matrix-like board composed of six rows and seven columns, and each player

turn-by-turn put their respective discs in any of the seven columns

maximising their chance of winning. Winning is defined as if a player

manages to align 4 same types of discs either horizontally, vertically or

diagonally, the player wins. Approximately 4.5 trillions board configurations

are possible for this game and are categorised as a moderate complexity

game.

Figure 1. Connect-4 board game.

This paper is an extension of our previous paper [2] in which we trained

three different agents in search of a superior agent for playing connect-4

using algorithms Double DQN, “Monte Carlo Tree Search (MCTS)” and

Minimax (“alpha-beta” pruning) and we played them against each other.

MCTS beat both Double Dqn and Minimax, and further Double Dqn beat

minimax. So, Minimax was the worst agent among the three, and MCTS [13]

was the best. Now, as we know, the complexity of connect 4 is not very high

where we have to choose among seven different moves, the performance of

minimax can be significantly improved if we can increase the capability of our

agent to look ahead into the future states of our game tree and improve our

heuristics for static evaluation of our game state.

So, Our contribution is:

Two different agents are implemented using game tree search-based

SOLVING CONNECT 4 USING OPTIMIZED MINIMAX …

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022

 3305

algorithms; namely, minimax (“alpha-beta” pruning) “Monte Carlo tree

search (MCTS)” to play connect 4.

Minimax is optimised using dynamic programming, and additional

advanced evaluation metrics are implemented for better results.

Both the agents compete against each other to choose the most optimal

one.

2. Related Works

2.1 Connect 4 using Minimax/MCTS/Double Dqn

This is the previous iteration of this paper [2]. Here, we trained three

different agents using algorithms Minimax, “Monte Carlo Tree Search

(MCTS)” and Double Dqn (Deep Q learning) to solve connect 4. Minimax and

MCTS[15] work by generating a game tree representing current state and

future moves and finding the most optimal move by searching the tree and,

Double Dqn is a self play algorithm that plays with itself and improves over

time by playing numerous episodes of games. Given the same resources all

these agents were made to play against each other. our minimax agent was

consistently beaten by Double Dqn and MCTS as it was not able to explore

higher depth in the game tree and further Double Dqn was beaten by MCTS.

So, as a result of our experiments, MCTS was the best and minimax was the

worst among the three agents.

2.2 Supervised Connect 4 using Neural Network. Neural Networks

have applications in a lot of fields where data is abundant as NNs train on

data and learn by adjusting weights. As NNs learn from the data the

performance is directly dependent on the quality of data and in case of

connect 4 the quality of games saved for training [3]. In this paper, a

multilayer artificial neural network [17] model is made with an input layer

where board configuration is given as input in the form of 168 neurons as

there are 4 options from 1 to 4 for every 42 cells in connect 4 describing

empty, my disc, opponent disc, void respectively. Further, a hidden layer with

336 neurons is chosen for better learning and finally an output layer with 7

neurons each denoting the probability of choosing that column. The data is

supplied using some explicitly implemented algorithms to play the game. It

was also noticed that carefully chosen games were much better training data

KAVITA SHEORAN, et al.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022

3306

for the neural network as expected. Finally, the neural network connect 4

comes out to be on top of all the explicitly programmed algorithms.

3. Methodology

The objective of this paper is to optimize the Minimax algorithm so that

the agent could look ahead in more depth at the game tree and improve its

performance against agents like MCTS which is one of best performing

agents to solve board games. This section provides an overview of the

approach to solving the connect-4 using optimized minimax and MCTS and

then doing the comparative analysis by making the agents compete against

each other. This approach provides us with an effective and efficient way to

employ the best model to solve the game.

3.1 Environment. Connect-x Kaggle-environment was used for the

episode evaluation (training agents). Kaggle environment [5] was used

because it focuses on the episode evaluation, configurable environments,

simplified agent and environment creation and cross-language compatibility

[6]. All of this made the kaggle environment ideal for training and evaluation

of the agents. Also, the Connect-x environment already possessed 2 agents,

namely, random (naive agent) and negamax (a variant of minimax) for

individual testing of 2 agents before the final comparative analysis. The

Nvidia tesla p100 16GB VRAM GPU and 2-core Intel Xeon CPU and 13 GB of

RAM were used for training and evaluating performance.

3.2 Methods. The problem was approached by optimizing Minimax using

dynamic programming, and “Monte Carlo tree search (MCTS)” which was the

best performing agent in our previous paper. Negamax and random agents,

that were pre-equipped with the environment, were used for primary testing

and then we finally conducted the comparative analysis by making the agents

compete against each other. This approach helped us gauge the effectiveness

of optimized minimax against MCTS under similar computation constraints

as before [2].

3.2.1 Solving Connect 4 with optimized Minimax. The Minimax is an

“adversarial search algorithm” [6] responsible for creating the game [12]

search tree and helps the agent to look ahead into the future state in the

game tree up to depth ‘n’ to choose its best move. All nodes in the tree

SOLVING CONNECT 4 USING OPTIMIZED MINIMAX …

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022

 3307

represent a game state, edges represent different possible moves from a given

state, and each level of the tree represents the turn of one of the two players.

Two players are denoted by maximizer and minimizer. The maximizer is our

agent which aims to maximize its score. The minimizer is our opponent and

its goal is to minimize the score of the maximizer, our agent. Once we have

exhausted our chosen depth „n‟ or if we reach the leaf node, we perform a

static evaluation of our node via a heuristic. The heuristic function is

different for a different game.

Consider the game tree in Figure 2. For simplicity, we will consider each

player to have two possible moves. In the actual game tree, each player has

seven possible moves. The depth „n‟ is considered as 4 here. Upon depth is

exhausted and static evaluation is performed, the score is backtracked to the

rooted node of the game tree. The agent does not have complete control of the

game. If the agent chooses the left branch, the opponent can force a score of -1

onto the agent. On the contrary, if the agent chooses the right branch, it ends

up with at least 10a score with absolute certainty. Hence, the agent is

inclined to choose a move that will be propitious for it and opponents will

choose a move to reduce our agent‟s score as much as possible. The opponent

plays optimally [4].

Figure 2. Game tree.

The elementary Minimax does too much unnecessary searching of the

game tree; hence mini-max starts to slow up. This is dealt with “alpha-beta”

pruning. Applying “alpha-beta” pruning over the minimax [11] algorithm

reduces the evaluation of the unnecessary nodes, hence reducing the

computation time. The name “alpha-beta pruning” [9] comes from the use of

the two parameters, namely, “alpha” and “beta”. These two parameters are

passed into the function. The agent gets a maximum score stored by the

“alpha” parameter, and the opponent tries to minimize the agent‟s score,

KAVITA SHEORAN, et al.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022

3308

which is stored by the “beta” parameter. To begin with, the “alpha” and “beta”

are assigned with the worst possible value for both the agent and the

opponent. The algorithm maintains the values of these parameters.

Our previous model couldn‟t see the future state of the game beyond the

depth of 3. This was due to the computation limitations, and for some nodes,

the evaluation function calculated the score more than once. This

unnecessary re-evaluation of the same states was dealt with Dynamic

Programming. A 2-D array of dimensions 52 was created. The rows

represent two players. The player at row 0 is our agent and the opponent is at

row 1. The index “j” ranges from 0 to 4 and starts from .1j The index “j”

represents “ 1j ” aligned discs. The value “table [i] [j]” represents the total

count of the number of “j” discs aligned by the “ith” player. The discs are

counted by creating a window and traversing over the board. Hence, the

evaluation function evaluates by taking the values from this table. The agent

uses the following scheme [8] for choosing the search depth “n”.

4n if the empty slots are greater than one-third

5n if the empty slots are less than one-third

The heuristic/evaluation function is described below:

Points for 1 disc aligned: table [i] [1]

Points for 2 discs aligned: table [i] [2] * 3

Points for 3 discs aligned: table[i] [3] * 9

Points for 4 discs aligned: table[i] [4] * 81

The opponent also follows the same heuristic but has a negative sign

instead of a positive. Hence reducing the score of our agent.

3.2.2 Solving Connect 4 with Monte Carlo Tree Search. “Monte

Carlo tree search (MCTS)” [14] is a heuristics-based search algorithm. The

heuristics-based search approach makes MCTS an ideal algorithm to solve

decision-making board game-like connect-4. The famous “AlphaGo” uses the

same MCTS to play “GO” [9]. The major problem with minimax is, it can‟t be

used for more complex games like „GO‟ where the branching factor is

approximately 300. The MCTS heavily relies on randomness making its

evaluation function more reliable for complex games [10].

SOLVING CONNECT 4 USING OPTIMIZED MINIMAX …

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022

 3309

The principle behind the algorithm [16] is simple: build a search tree node

by node based on the simulation playouts. The process can be broken down

into 4 sub-processes:

Selection: This sub-process is responsible for selecting the child node based

on our upper confidence bound (UCB) value. UCB is calculated using the

following formula:

i
i n

N
VUCB

ln
2

Where iV represents the average rewards of all the children of the parent.

N represents the number of times the parent is visited and ,in represents the

number of times the, ith, the child node is visited.

Expansion: If the current leaf node is not the terminating node, i.e. the

node which represents the end game state, then we expand all of the children

of the current node and select one of them based on the UCB value.

Simulation/Rollout: Run a simulated playout, i.e. choose a random move,

until we‟ve reached the terminating node. This part is generally performed

during exploration.

Backpropagation: Backpropagate the result achieved during the

simulation and update the current UCB value.

We put a constraint on our agent to choose its move (denoted by T). This

was done to analyze the performance of your MCTS agent [18] against other

agents under the effect of the constraint. This gave us the benchmark from

where the MCTS was able to outsmart the other agents.

4. Results

4.1. Minimax Vs Random/Negamax

Firstly, the Minimax agent played 100 rounds numerous times each

against random and negamax (another variation of minimax) agents which

were available in the kaggle environment for individual testing of our agent.

Before optimization of minimax, it could not go deeper in the game tree (up to

3N) and hence was not able to get good results against negamax but was

KAVITA SHEORAN, et al.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022

3310

able to defeat random agents in all of the games consistently as it was a naive

agent. Now, when the minimax was optimized with dynamic programming it

was able to explore deeper in the game tree i.e. 54N depending on the

configuration of the board and as a result of that, the optimized minimax

improved its performance significantly and beat negamax in 93.75% of the all

games played and won against a random agent in all of the games. The

winning percentage of minimax against random and negamax is shown in

Figure 3.

Figure 3. Winning Percentage of Minimax against negamax and minimax

agents with increasing depths of lookahead.

4.2 MCTS Vs Random / Negamax. Now, MCTS agent played 100

rounds numerous times each against random and negamax (another

variation of minimax) agents for individual testing of this agent. There was a

time limit (in milliseconds) for MCTS to choose its move. So MCTS was tested

on different time limits and as expected, as the time limit to choose the move

increases the winning accuracy of our agent against negamax and random

agents increases as well. Figure 4 shows the winning percentages of “MCTS

vs random and negamax” with varying time limits.

SOLVING CONNECT 4 USING OPTIMIZED MINIMAX …

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022

 3311

Figure 4. Winning percentage of “MCTS vs negamax and random agents”

with increasing .max msT

4.3 Minimax Vs MCTS. Finally, Minimax is put to test against MCTS.

250 games were played at each time limit (Tmax) of “MCTS” with all depths

of minimax i.e. 54,3,2,1N for generalizing the results. Now, when the

allowed time limit (Tmax) is less to choose a move for MCTS, Minimax even

at a lower level of depths beats it easily but as the time limit for MCTS

increases it starts to show its dominance over minimax upto only 3N

depth but, as the optimized minimax can also go till 54N and because of

that even at larger (Tmax) minimax shows exemplary results as compared to

other depths i.e. 3,2,1N with an average win rate of 79%. Figure 5

shows the winning percentage of Minimax with MCTS with various depths

and varying Tmax.

Figure 5. Winning percentage of Minimax against MCTS with increasing

 .max msT

KAVITA SHEORAN, et al.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022

3312

5. Conclusion

As connect 4 is not a very complex paper, algorithms like minimax should

play the game efficiently and effectively. Due to lack of computation power

our minimax agent was not able to look ahead beyond the depth of 3 as a

result it was not able to win against MCTS. This problem was tackled using

dynamic programming and tweaking the heuristics and then we made it play

against MCTS which was the best performing agent from our previous paper

[2] and was able to defeat both minimax and Double DQN.

As we can see in Figure 5 in the results section MCTS was able to easily

beat Minimax up to the depth 3n given sufficiently enough time to choose

its moves. But, once we optimized it using dynamic programming the

algorithm was able to look ahead up to the depth of .5n As a result,

minimax showed excellent results against MCTS by maintaining an average

winning rate of 79%. Minimax was able to outperform MCTS because

minimax was able to look more deeply into the game tree and was able to

choose winning moves with surety. On the other hand, MCTS introduced a

little bit of randomness in the algorithm to balance the exploration-

exploitation trade-off. Although this trade-off and randomness perform an

important role in more complex games, like GO, Monopoly etc, for simple

games like connect 4, chess etc, it proved as a disadvantage against optimized

minimax.

Hence to conclude, if games have low complexity then algorithms like

minimax can perform sufficiently well. We can use an optimization paradigm

like dynamic programming to improve its capability to look more deeply into

the game tree.

6. References

 [1] https://www.pnas.org/content/116/30/14785\

 [2] M. Dabas, N. Dahiya and P. Pushparaj, Solving Connect 4 Using Artificial Intelligence,

Advances In Intelligent Systems And Computing (2021), 727-735.

 [3] Marvin Oliver Schneider, João Luís Garcia Rosa: Neural Connect 4 -A Connectionist

Approach to the Game, VII Brazilian Symposium on Neural Networks, 2002.

 [4] Medium, 2021, Creating the (nearly) perfect connect-four bot with limited move time and

file size, [online] Available at:https://towardsdatascience.com/creating-the-perfect-

connect-four-ai-bot-c165115557b0[Accessed 17 November 2021]

SOLVING CONNECT 4 USING OPTIMIZED MINIMAX …

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022

 3313

 [5] Connect X. (n.d.), from https://www.kaggle.com/c/connectx.

 [6] https://pypi.org/project/kaggle-environments/

 [7] Donald E. Knuth Ronald W. Moore, An analysis of alpha-beta pruning, Artificial

Intelligence 6(4) (1975), 293-326.

 [8] Xiyu Kang, Yiqi Wang and Yanrui Hu, Research on Different Heuristics for Minimax

Algorithm Insight from Connect-4 Game, Journal of Intelligent Learning Systems and

Applications 11(02) (2019).

 [9] N. Rijul, D. Rishabh, M. Shubhranil and K. Vipul, Alpha-Beta Pruning in Mini-Max

Algorithm- An Optimized Approach for a Connect-4 Game, International Research

Journal of Engineering and Technology (IRJET) 5(4) 1637-1641.

 [10] Monte Carlo tree search, (2020, September 26), Retrieved December 06, 2020, from

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search.

 [11] Medium, 2021, Artificial Intelligence at Play—Connect Four (Minimax algorithm

explained), [online] Available at: https://medium.com/analytics-vidhya/artificial-

intelligence-at-play-connect-four-minimax-algorithm-explained-3b5fc32e4a4f [Accessed

17 November 2021].

 [12] [online] Available at: http://www.geeksforgeeks.org/category/algorithm/game-theory/.

[Accessed 17 November 2021].

 [13] Guillaume Chaslot, Sander Bakkes, Istvan Szita, Pieter Spronck: Monte-Carlo Tree

Search: A New Framework for Game AI, Proceedings of the Fourth Artificial Intelligence

and Interactive Digital Entertainment Conference.

 [14] Monte Real-Time Connect 4 Game Using Artificial Intelligence 1Q learningCarlo tree

search, (2020 September 26), Retrieved December 06, 2020, from

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search.

 [15] https://towardsdatascience.com/game-ais-with-minimax-and-monte-carlo-tree-search-

af2a177361b0.

 [16] B. Cameron Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I.

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,

Simon Colton: A Survey of Monte Carlo Tree Search Methods, IEEE Transactions on

Computational Intelligence and AI in Games 4(1) (2012).

 [17] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria Dada,

Nachaat AbdElatif Mohamed, Humaira Arshad: State-of-the-art in artificial neural

network applications: A survey, Heliyon 4(11) (2018).

 [18] Prateek Agrawal, Harjeet Kaur, Gurpreet Singh, Indexed Tree Sort: An Approach to

Sort Huge Data with Improved Time Complexity, International Journal of Computer

Applications (0975-8887), 57(18) (2012), 26-32.

