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Abstract 

Training AI agents for playing and mastering sophisticated board games has come a long 

way, but it is still a challenging task to excel at. Connect-4 is such a board game with moderate 

complexity and several trillions of different board configurations.  We have trained two other 

agents in search of a superior agent for playing connect-4 using algorithms “Monte Carlo Tree 

Search (MCTS)” and Minimax (alpha-beta pruning and dynamic programming), where MCTS 

and Minimax are game tree search-based algorithms, but we have optimised the Minimax  

(“alpha-beta” pruning) by using dynamic programming to perform marginally faster, and as a 

result, it can go deeper in the game tree to give better results. The MCTS agent lost to minimax 

as because of dynamic programming, minimax could go deeper in the game tree and was able to 

perform a better tree search.  

1. Introduction 

Many board games are complex decisive problems where an action in the 

present results later when the game ends in the form of a win or lose. Now, 

because all these complex networks of moves lead to a win/lose, it becomes 
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tough for humans to visualise and master the game in a short amount of 

time. Whereas on the other hand, an AI agent can perform significantly 

better by visualising future moves or by learning patterns in the games [1].  

Connect 4, shown in Figure 1, is a similar board game where winning or 

losing is dependent on moves performed in the past. This game consists of 2 

players and two different types of discs assigned to each player. There is a 

matrix-like board composed of six rows and seven columns, and each player 

turn-by-turn put their respective discs in any of the seven columns 

maximising their chance of winning. Winning is defined as if a player 

manages to align 4 same types of discs either horizontally, vertically or 

diagonally, the player wins. Approximately 4.5 trillions board configurations 

are possible for this game and are categorised as a moderate complexity 

game.  

 

Figure 1. Connect-4 board game. 

This paper is an extension of our previous paper [2] in which we trained 

three different agents in search of a superior agent for playing connect-4 

using algorithms Double DQN, “Monte Carlo Tree Search (MCTS)” and 

Minimax (“alpha-beta” pruning) and we played them against each other. 

MCTS beat both Double Dqn and Minimax, and further Double Dqn beat 

minimax. So, Minimax was the worst agent among the three, and MCTS [13] 

was the best. Now, as we know, the complexity of connect 4 is not very high 

where we have to choose among seven different moves, the performance of 

minimax can be significantly improved if we can increase the capability of our 

agent to look ahead into the future states of our game tree and improve our 

heuristics for static evaluation of our game state. 

So, Our contribution is: 

Two different agents are implemented using game tree search-based 
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algorithms; namely, minimax (“alpha-beta” pruning) “Monte Carlo tree 

search (MCTS)” to play connect 4. 

Minimax is optimised using dynamic programming, and additional 

advanced evaluation metrics are implemented for better results. 

Both the agents compete against each other to choose the most optimal 

one. 

2. Related Works 

2.1 Connect 4 using Minimax/MCTS/Double Dqn 

This is the previous iteration of this paper [2]. Here, we trained three 

different agents using algorithms Minimax, “Monte Carlo Tree Search 

(MCTS)” and Double Dqn (Deep Q learning) to solve connect 4. Minimax and 

MCTS[15] work by generating a game tree representing current state and 

future moves and finding the most optimal move by searching the tree and, 

Double Dqn is a self play algorithm that plays with itself and improves over 

time by playing numerous episodes of games. Given the same resources all 

these agents were made to play against each other. our minimax agent was 

consistently beaten by Double Dqn and MCTS as it was not able to explore 

higher depth in the game tree and further Double Dqn was beaten by MCTS. 

So, as a result of our experiments, MCTS was the best and minimax was the 

worst among the three agents. 

2.2 Supervised Connect 4 using Neural Network. Neural Networks 

have applications in a lot of fields where data is abundant as NNs train on 

data and learn by adjusting weights. As NNs learn from the data the 

performance is directly dependent on the quality of data and in case of 

connect 4 the quality of games saved for training [3]. In this paper, a 

multilayer artificial neural network [17] model is made with an input layer 

where board configuration is given as input in the form of 168 neurons as 

there are 4 options from 1 to 4 for every 42 cells in connect 4 describing 

empty, my disc, opponent disc, void respectively. Further, a hidden layer with 

336 neurons is chosen for better learning and finally an output layer with 7 

neurons each denoting the probability of choosing that column. The data is 

supplied using some explicitly implemented algorithms to play the game. It 

was also noticed that carefully chosen games were much better training data 



KAVITA SHEORAN, et al.  

Advances and Applications in Mathematical Sciences, Volume 21, Issue 6, April 2022 

3306 

for the neural network as expected. Finally, the neural network connect 4 

comes out to be on top of all the explicitly programmed algorithms.  

3. Methodology 

The objective of this paper is to optimize the Minimax algorithm so that 

the agent could look ahead in more depth at the game tree and improve its 

performance against agents like MCTS which is one of best performing 

agents to solve board games. This section provides an overview of the 

approach to solving the connect-4 using optimized minimax and MCTS and 

then doing the comparative analysis by making the agents compete against 

each other. This approach provides us with an effective and efficient way to 

employ the best model to solve the game. 

3.1  Environment. Connect-x Kaggle-environment was used for the 

episode evaluation (training agents). Kaggle environment [5] was used 

because it focuses on the episode evaluation, configurable environments, 

simplified agent and environment creation and cross-language compatibility 

[6]. All of this made the kaggle environment ideal for training and evaluation 

of the agents. Also, the Connect-x environment already possessed 2 agents, 

namely, random (naive agent) and negamax (a variant of minimax) for 

individual testing of 2 agents before the final comparative analysis. The 

Nvidia tesla p100 16GB VRAM GPU and 2-core Intel Xeon CPU and 13 GB of 

RAM were used for training and evaluating performance. 

3.2  Methods. The problem was approached by optimizing Minimax using 

dynamic programming, and “Monte Carlo tree search (MCTS)” which was the 

best performing agent in our previous paper. Negamax and random agents, 

that were pre-equipped with the environment, were used for primary testing 

and then we finally conducted the comparative analysis by making the agents 

compete against each other. This approach helped us gauge the effectiveness 

of optimized minimax against MCTS under similar computation constraints 

as before [2]. 

3.2.1 Solving Connect 4 with optimized Minimax. The Minimax is an 

“adversarial search algorithm” [6] responsible for creating the game [12] 

search tree and helps the agent to look ahead into the future state in the 

game tree up to depth ‘n’ to choose its best move. All nodes in the tree 
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represent a game state, edges represent different possible moves from a given 

state, and each level of the tree represents the turn of one of the two players. 

Two players are denoted by maximizer and minimizer. The maximizer is our 

agent which aims to maximize its score. The minimizer is our opponent and 

its goal is to minimize the score of the maximizer, our agent. Once we have 

exhausted our chosen depth „n‟ or if we reach the leaf node, we perform a 

static evaluation of our node via a heuristic. The heuristic function is 

different for a different game. 

Consider the game tree in Figure 2. For simplicity, we will consider each 

player to have two possible moves. In the actual game tree, each player has 

seven possible moves. The depth „n‟ is considered as 4 here. Upon depth is 

exhausted and static evaluation is performed, the score is backtracked to the 

rooted node of the game tree. The agent does not have complete control of the 

game. If the agent chooses the left branch, the opponent can force a score of -1 

onto the agent. On the contrary, if the agent chooses the right branch, it ends 

up with at least 10a  score with absolute certainty. Hence, the agent is 

inclined to choose a move that will be propitious for it and opponents will 

choose a move to reduce our agent‟s score as much as possible. The opponent 

plays optimally [4]. 

 

Figure 2. Game tree. 

The elementary Minimax does too much unnecessary searching of the 

game tree; hence mini-max starts to slow up. This is dealt with “alpha-beta” 

pruning. Applying “alpha-beta” pruning over the minimax [11] algorithm 

reduces the evaluation of the unnecessary nodes, hence reducing the 

computation time. The name “alpha-beta pruning” [9] comes from the use of 

the two parameters, namely, “alpha” and “beta”. These two parameters are 

passed into the function. The agent gets a maximum score stored by the 

“alpha” parameter, and the opponent tries to minimize the agent‟s score, 
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which is stored by the “beta” parameter. To begin with, the “alpha” and “beta” 

are assigned with the worst possible value for both the agent and the 

opponent. The algorithm maintains the values of these parameters. 

Our previous model couldn‟t see the future state of the game beyond the 

depth of 3. This was due to the computation limitations, and for some nodes, 

the evaluation function calculated the score more than once. This 

unnecessary re-evaluation of the same states was dealt with Dynamic 

Programming. A 2-D array of dimensions 52   was created. The rows 

represent two players. The player at row 0 is our agent and the opponent is at 

row 1. The index “j” ranges from 0 to 4 and starts from .1j  The index “j” 

represents “ 1j ” aligned discs. The value “table [i] [j]” represents the total 

count of the number of “j” discs aligned by the “ith” player. The discs are 

counted by creating a window and traversing over the board. Hence, the 

evaluation function evaluates by taking the values from this table. The agent 

uses the following scheme [8] for choosing the search depth “n”. 

4n  if the empty slots are greater than one-third 

5n  if the empty slots are less than one-third 

The heuristic/evaluation function is described below: 

Points for 1 disc aligned: table [i] [1] 

Points for 2 discs aligned: table [i] [2] * 3 

Points for 3 discs aligned: table[i] [3] * 9 

Points for 4 discs aligned: table[i] [4] * 81 

The opponent also follows the same heuristic but has a negative sign 

instead of a positive. Hence reducing the score of our agent. 

3.2.2   Solving Connect 4 with Monte Carlo Tree Search. “Monte 

Carlo tree search (MCTS)” [14] is a heuristics-based search algorithm. The 

heuristics-based search approach makes MCTS an ideal algorithm to solve 

decision-making board game-like connect-4. The famous “AlphaGo” uses the 

same MCTS to play “GO” [9].  The major problem with minimax is, it can‟t be 

used for more complex games like „GO‟ where the branching factor is 

approximately 300. The MCTS heavily relies on randomness making its 

evaluation function more reliable for complex games [10]. 
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The principle behind the algorithm [16] is simple: build a search tree node 

by node based on the simulation playouts. The process can be broken down 

into 4 sub-processes: 

Selection: This sub-process is responsible for selecting the child node based 

on our upper confidence bound (UCB) value. UCB is calculated using the 

following formula: 

 

i
i n

N
VUCB

ln
2   

Where iV  represents the average rewards of all the children of the parent. 

N represents the number of times the parent is visited and ,in  represents the 

number of times the, ith, the child node is visited. 

Expansion: If the current leaf node is not the terminating node, i.e. the 

node which represents the end game state, then we expand all of the children 

of the current node and select one of them based on the UCB value. 

Simulation/Rollout: Run a simulated playout, i.e. choose a random move, 

until we‟ve reached the terminating node. This part is generally performed 

during exploration. 

Backpropagation: Backpropagate the result achieved during the 

simulation and update the current UCB value. 

We put a constraint on our agent to choose its move (denoted by T). This 

was done to analyze the performance of your MCTS agent [18] against other 

agents under the effect of the constraint. This gave us the benchmark from 

where the MCTS was able to outsmart the other agents. 

4. Results 

4.1. Minimax Vs Random/Negamax  

Firstly, the Minimax agent played 100 rounds numerous times each 

against random and negamax (another variation of minimax) agents which 

were available in the kaggle environment for individual testing of our agent. 

Before optimization of minimax, it could not go deeper in the game tree (up to 

3N ) and hence was not able to get good results against negamax but was 
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able to defeat random agents in all of the games consistently as it was a naive 

agent. Now, when the minimax was optimized with dynamic programming it 

was able to explore deeper in the game tree i.e. 54N  depending on the 

configuration of the board and as a result of that, the optimized minimax 

improved its performance significantly and beat negamax in 93.75% of the all 

games played and won against a random agent in all of the games. The 

winning percentage of minimax against random and negamax is shown in 

Figure 3. 

 

Figure 3. Winning Percentage of Minimax against negamax and minimax 

agents with increasing depths of lookahead. 

4.2   MCTS Vs Random / Negamax. Now, MCTS agent played 100 

rounds numerous times each against random and negamax (another 

variation of minimax) agents for individual testing of this agent. There was a 

time limit (in milliseconds) for MCTS to choose its move. So MCTS was tested 

on different time limits and as expected, as the time limit to choose the move 

increases the winning accuracy of our agent against negamax and random 

agents increases as well. Figure 4 shows the winning percentages of “MCTS 

vs random and negamax” with varying time limits.  
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Figure 4. Winning percentage of “MCTS vs negamax and random agents” 

with increasing  .max msT   

4.3 Minimax Vs MCTS. Finally, Minimax is put to test against MCTS. 

250 games were played at each time limit (Tmax) of “MCTS” with all depths 

of minimax i.e.  54,3,2,1N   for generalizing the results. Now, when the 

allowed time limit (Tmax) is less to choose a move for MCTS, Minimax even 

at a lower level of depths beats it easily but as the time limit for MCTS 

increases it starts to show its dominance over minimax upto only 3N  

depth but, as the optimized minimax can also go till 54N  and because of 

that even at larger (Tmax) minimax shows exemplary results as compared to 

other depths i.e.  3,2,1N  with an average win rate of 79%. Figure 5 

shows the winning percentage of Minimax with MCTS with various depths 

and varying Tmax. 

 

Figure 5. Winning percentage of Minimax against MCTS with increasing  

 .max msT  
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5. Conclusion 

As connect 4 is not a very complex paper, algorithms like minimax should 

play the game efficiently and effectively. Due to lack of computation power 

our minimax agent was not able to look ahead beyond the depth of 3 as a 

result it was not able to win against MCTS. This problem was tackled using 

dynamic programming and tweaking the heuristics and then we made it play 

against MCTS which was the best performing agent from our previous paper 

[2] and was able to defeat both minimax and Double DQN. 

As we can see in Figure 5 in the results section MCTS was able to easily 

beat Minimax up to the depth 3n  given sufficiently enough time to choose 

its moves. But, once we optimized it using dynamic programming the 

algorithm was able to look ahead up to the depth of .5n  As a result, 

minimax showed excellent results against MCTS by maintaining an average 

winning rate of 79%. Minimax was able to outperform MCTS because 

minimax was able to look more deeply into the game tree and was able to 

choose winning moves with surety. On the other hand, MCTS introduced a 

little bit of randomness in the algorithm to balance the exploration-

exploitation trade-off. Although this trade-off and randomness perform an 

important role in more complex games, like GO, Monopoly etc, for simple 

games like connect 4, chess etc, it proved as a disadvantage against optimized 

minimax. 

Hence to conclude, if games have low complexity then algorithms like 

minimax can perform sufficiently well. We can use an optimization paradigm 

like dynamic programming to improve its capability to look more deeply into 

the game tree. 
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