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Abstract 

This paper deals with the propagation of waves at imperfect interface Micropolar Elastic 

Solid (MES) and Electro-microelastic Solid (EMS) half-spaces. A longitudinal (LD) wave is 

considered to be incident on the interface through micropolar elastic solid half space and this 

wave bumps obliquely at the interface. Amplitude ratios of various reflected and refracted 

waves are deduced using appropriate boundary conditions and results are represented 

graphically using the MATLAB software. 

Introduction 

The micropolar theory of elasticity constructed by Eringen and his co-

workers intended to be applied on such materials and for problems where the 

ordinary theory of elasticity fails because of microstructure in the materials. 

Micropolar elastic materials, roughly speaking, are the classical elastic 

materials with extra independent degree of freedom for the local rotations. 

These materials respond to spin inertia, body and surface couples and as a 
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consequence they exhibit certain new static and dynamic effects, e.g. new 

types of waves and couples stresses. 

A micropolar elastic solid is distinguished from an elastic solid by the fact 

that it can support body and surface couples. These solids can undergo local 

deformations and micro-rotations such materials may be imagined as bodies 

which are made of rigid short cylinders or dumbbell type molecules. 

From a continuum mechanical point of view, micropolar elastic solids may 

be characterized by a set of constitutive equations which define the elastic 

properties of such materials. A linear theory as a special case of the nonlinear 

theory of micro-elastic solids was first constructed by Eringen and Suhubi [3, 

11]. Later, Eringen (1965) and (1966) recognized and extended this theory.  

Eringen (1966a, 1990) developed the theories of ‘micropolar continua’ and 

‘microstructures continua’ which are special cases of the theory of 

‘micromorphic continua’ earlier developed by Eringen and his coworkers 

(1964). Thus, the Eringen’s ‘3M’ theories (Micromorphic, Microstretch, 

Micropolar) are the generalization the classical theory of elasticity. In 

classical continuum, each particle of a continuum is represented by a 

geometrical point and can have three degree of freedom of translation during 

the process of deformations. 

Eringen’s theory of micropolar elasticity keeps importance because of its 

applications in many physical substance for example material particles 

having rigid directors, chopped fibres composites, platelet composites, 

aluminium epoxy, liquid crystal with side chains, a large class of substance 

like liquid crystal with rigid molecules, rigid suspensions, animal blood with 

rigid cells, foams, porous materials, bones, magnetic fields, clouds with dust, 

concrete with sand and muddy fluids are example of micropolar materials. 

Generalization of the theory of micropolar elasticity is linear theory of 

thermo-microstretch elastic solids developed by Eringen (1971, 1990) and 

extended this theory in (2004) including with electromagnetic interactions 

and known as electromagnetic theory of microstretch elasticity.      

The present paper is concerned with wave propagation in micropolar 

elastic solid and Electro-microelastic Solid half-spaces. Computed the 

amplitude ratios of various reflected and refracted waves for a specific model 
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and results are represented graphically according to angle of incidence of 

incident wave. 

Fundamental equations and constitutive relations 

For medium 1M  (Micropolar elastic solid half-space) 

Eringen’s (1968), equation of motion in micropolar elastic medium are as 

under: 
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Considering the two dimensional problem by taking the following components 

of displacement and micro-rotation as 

   ,0,,0,,0, 2 wuU  (7) 
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For medium 2M  (Electro-microelastic solid half-space) 

Electromagnetic fields in the continuum theory of microstretch elasticity 

introduced by Eringen (2004) and the absence of thermal effect, magnetic flux 

vector and microstretch continuum will be subjected only to electric field. So 

such type of continuum materials are known as eletro-microelastic solid 

medium are given by 

     ,,,,,0 rklrklkllkklrrkl uuuut   (12) 

,,0,,, rlkmkllkklrrkl bm   (13) 
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where  ,,;,,;,,;,,,;,;,,, 32000 kk
E

kkklkl ubDmmt  

and kE  are force stress tensor, couple stress, microstretch vector, dielectric 

displacement vector; Lame’s constants; micropolar constants; microstretch 

constants; dielectric susceptibility, coupling constants; displacements, 

micropolar rotation vector, scalar microstretch and electric field vector 
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respectively. The field equations under the section (7) of Eringen (2004) for 

an isotropic and homogeneous electro-microelastic solid medium are given by  
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Now, introducing the scalar potentials ,q  and ;  the vector potentials 

,U  as defined below: 
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where 
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Here the equations (23) and (24) are coupled in scalar potentials q  and 

,  equation (28) also coupled in scalar potentials  and .  Equations (25) 

and (26) are coupled in vector potentials and Equation (27) is uncoupled in 

scalar potential U  and .  Equation (27) is uncoupled in scalar potential . 

Formulation of the Problem 

Assume the form of plane wave propagation in the positive direction of a 

unit vector n  as given below: 
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It can be seen that from equations (23) and (29) the constants 1a  and 1b  

are related to each other through the relation 

11 ab   (32) 
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Here, discussed the reflection and refraction phenomena of longitudinal 

wave at  0Z  plane interface between micropolar elastic solid and electro-

microelastic solid half-spaces. The problem is two dimensional xz-planes. So 

x-axis and z-axis are taken along the interface and along the directional 

vertically downward respectively. Taking the lower half-space as medium 

 01 ZM for the micropolar elastic solid half-space and upper half-space as 

medium  02 ZM  for the electro-microelastic solid half-space. 
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Figure 1. Geometry of the Problem. 
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where 3210 ,,, BBBB  are amplitudes of incident longitudinal wave, reflected 

longitudinal wave, reflected coupled transverse and reflected micro-rotation 
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waves and 4321 ,,, BBBB  are amplitudes of refracted two coupled 

longitudinal waves, two sets of coupled transverse waves respectively. 

In medium 2M  

For the two dimensional plane using 
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and the expressions of i  are computed by applying curl operator in equation 
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(26) and then using the equations (44) and (45). These expressions are 

defined as  
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Boundary Conditions 

The suitable boundary conditions at the interface between micropolar 

elastic solid halfspace and electromicroelastic solid half-space are: continuity 
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Prticular cases. 

Case I: Transverse force stiffness  .0,  tn KK  

In this case, a system of seven non homogeneous equations as those given 

by equation (48) is gained with changed ija  as given below 
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Case II: Welded contact  .0,  tn KK  In this case, we obtained 

with changed ija  in equation (48) as 
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Discussion and Numerical Results 

To solve the equations of stresses, microstretch, displacements and 

microrotations with the help of equations of displacements, potentials of 

various reflected and refracted waves, Snell’s Law and boundary conditions. 

After that, write these equations in the matrix form such that     ,jjij YZa   

where     1777 ,  iij Za  and   17iY  are matrices of respective order. Making a 

program using the coefficients  ija  in the computer software MATLAB and 

execute. 

Consequently, obtain the various graphs with respects to amplitude ratios 

 .7,6,5,4,3,2,1iZi  Following Gauthier (1982), the physical values of 

constants for MES halfspace are   
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the physical constants for EMS half-space are given as 
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Figures (2)-(17) show the variations of amplitude ratios  3,2,1, iZi  for 

reflected and  4,3,2,1, jZ j  for refracted waves, when the incident wave 

is (LD) wave. 
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Figure (2) shows that the minimum values of amplitude ratio 1Z  are 

approximately at angle 4  and 90  and maximum values are attained 

approximately at angle 1  for the GEN and WD cases, while values are 

unaltered in the case of TFS from the corresponding angles. The values of 1Z  

are speedily decreasing from the angles 1  to 10 and after that from the 

angles 10  to 90  values have minor changing. 
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Figure (3), shows that the minimum values of amplitude ratio 2Z  are 

approximately at angle 0  and 90 and maximum values are attained 

approximately at angle 1  for the GEN case but the values of 1Z  are speedily 

decreasing from the angles 1  to 20 and after that from the angles 20  to 

90  values are slowly decreasing.  
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Figure (4) shown that the minimum values of amplitude ratio 2Z  are same as 

the figure (3) at angles 0  and .90  The maximum value attains at angle 1  

for the TFS case and after that the values are decreasing from the angles 1  

to ,89  while values are suddenly down from 89  to .90  
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Figure (5) shows that maximum value amplitude ratio 2Z  attained at angle 

1  for the TFS case and after that the values are decreasing from the angles 

1  to 90  and the minimum values are same as the figure (3) at angles 0  

and .90  
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In the figure (6), behavior the values of amplitude ratio 3Z  for the GEN case 

are just like the figure (3). 
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Figure (7) shows that the values of amplitude ratio 3Z  for the TFS case, are 

increasing from the angles 0  to 1  and then decreasing from the angles 1  

to 14  and again increasing from the angles 14  to 89  and to reach their 

maximum value at the angle .89  The minimum values are same as the 

figure (3) at angles 0  and .90  
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Figure (8) shows that the behavior of values of amplitude ratio 3Z  for the 

WD case are just like the figure (7) from the angles 0  to 14  and after that 

the values are increasing from the angles 14  to 52  and to get maximum 

value at the angle .52  But the values are again decreasing form the angles 

52  and .90  
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Figure (9) shows that the values of amplitude ratio 4Z  for the TFS and 

WD cases are decreasing from the angles 0  to 39  and then increasing from 

the angles 39  to 61  and decreases and approaches to its minimum value at 

90  for WD case, whereas in the case of TFS values are increasing from the 

angles 39  to 89  and decreases and approaches to its minimum value. 
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Figure (10) depicts that the maximum values of amplitude ratio 4Z  are just 

near about the angle 0 and after that values are speedily decreasing from 

the angles 0  to 1  for the GEN case while in the other values of 4Z are 

negligible changes from the angles 1  to .90  
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In the figure (11), behavior the values of amplitude ratio 5Z  are same as the 

figure (9). 
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Discussion about the figure (12) for the values of amplitude ratio 5Z  is 

just like the figure (10). 
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Figure (13) shows that the minimum values of amplitude ratio 6Z  are lies at 

angle 0  and 90  and maximum values are attained approximately at angle 

1  for the GEN case but the values of 1Z  are speedily decreasing from the 

angles 1  to 10  and after that from the angles 10  to 90  values are slowly 

decreasing.  
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In the figure (14), the minimum values of amplitude ratio 6Z  are same 

the value of the figure (3) and maximum values are attained at angle 1  to 

.89  
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Figure (15) depicts that maximum values of amplitude ratio 6Z  are from the 

angle 1 to 45  and after that the values are decreasing from the angles  

45 to 90 and the minimum values are same as the figure (3) at angles  

0 and .90  
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Discussions about the figures (16-18) for the values of amplitude ratio 7Z  

are just like the figures (13-15) respectively. 

Conclusion 

In the present paper, we have discussed about the plane wave 

propagation obliquely at an imperfect interface between MES and EMS half-

spaces.  Reflection and refraction coefficients of various reflected wave and 

refracted waves has been derived for transverse force stiffness (TFS) and 

welded contact (WD). The results are considered to be useful in further 

theoretical and observational studies of propagation of waves in more models 

of MES. Making the use of appropriate set of boundary conditions, the system 

of simultaneous equations giving the amplitudes of various reflected and 

refracted waves are obtained. 

a.  The amplitudes of various reflected and refracted waves are found to 

be complex valued. 

b. The modulus of amplitudes of various reflected and refracted waves 

depend upon angle of incidence, stiffness of forces and elastic properties of 

materials of the medium. 
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c. The minimum values of almost amplitude ratios lies at the angles 0  

and .90  

d. All the amplitude ratios have different values but some of them have 

same behave. 
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