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Abstract 

In this paper, we introduce a new generalization of the balancing numbers which we call 

generalized bi-periodic balancing numbers as 
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1. Foreword 

Balancing numbers is a natural number n, which satisfies the 

Diophantine equation        rnnnn   21121  

where r is called balancer. A. Behara and G. K. Panda [1] introduced the 

concept of balancing numbers in 1998. The concept of balancing numbers is 

closely related to triangular numbers. The positive integer n is called 

balancing number if and only if 2n  is a triangular number or   12
8


n  is a 
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perfect square. G. K. Panda [8] generalized balancing numbers by introducing 

sequence balancing numbers, in which the sequence of numbers used in the 

definition of balancing numbers is replaced by an arbitrary sequence of real 

numbers. Thus, if  nb  be a sequence of real numbers, then na  is called a 

sequence of balancing numbers if rnnnn bbbbbb    21121  

for some natural number r. 

As is well known, the balancing sequence  nb  is generated from the 

recurrence relation 0,6 12   nBBB nnn  with initial states ,00 B  

.11 B  Many authors generalized the integer sequence in different ways. As 

a generalization of the Fibonacci sequence, Edson and Yayenie [3] introduced 

a bi-periodic Fibonacci sequence  np  defined by 
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.11 b  They also found the generating function and Binet’s formula for this 

sequence. 

2. Main Results 

Every three real numbers except zero ba,  and c, the generalized bi-

periodic balancing numbers   0
,,

n
cba

nB  is defined recursively by  
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When ,1 cba  we have the classic balancing numbers. If we ask 

kba   and ,1c  for any positive integer, we get the k-balancing 

number. The first six elements of the generalized bi-periodic balancing 

numbers are  

        ,36,6,1,0 ,,
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0 cabBaBBB cbacbacbacba

  

 
acbaB cba 12216 2,,

4   and 
 

.1081296 222,,
5 cabcbaB cba
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The square equation for the generalized bi-periodic balancing numbers is 

defined as 

036362  abcabxx  

with the roots,  

abcbaab  229618  and abcbaab  229618   (1)  

Lemma 2.1. The generalized bi-periodic balancing numbers 
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Proof of Lemma 2.1. Using the recurrence relation for the generalized 

bi-periodic balancing numbers we can obtain,  
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Lemma 2.2. The roots  and  defined in (1) satisfy the following 

properties. 
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(iv)     cccc  ,  

Proof of Lemma 2.2. By using the definitions of  and  defined in (1), 

the properties can be easily proved. 

Theorem 2.1. The generating function for the generalized bi-periodic 

balancing numbers   0
,,

n
cba

nB  is 
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Proof of Theorem 2.1. The formal power series representation of the 

generating function for   0
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n
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nB  is 
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following series, 

           
mcba

m
cbacba xBxBxBbxbx ,,

1
2,,

1
,,

066   

           
mcba

m
cbacba xBxBxBcxx ,,

2
2,,

1
,,

0
26   

Therefore, we can write, 

         cbacbacba bBxBBxBcxbx ,,
0

,,
1

,,
0

2 661   

      




 

2

,,
2

,,
1

,, 6

m

mcba
m

cba
m

cba
m xcBbBB  

Since 
         

,1,0,6 ,,
1

,,
0

,,
12

,,
2

,,
12  

cbacbacba
m

cba
m

cba
m BBcBbBB  

     cba
m

cba
m

cba
m cBaBB ,,

22
,,
12

,,
2 6    



GENERALIZED BI-PERIODIC BALANCING NUMBERS 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 8, June 2022 

4519 

       







1

12,,
12

2 661

m

mcba
m xBxbaxxcxbx   

Now we define  xB  as 
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By applying the same way as above, we get  
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Lemma (2.1) implies that 
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So replacing this in the above expansion gives 
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Substituting  xB  in  x  we obtain 
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Simplifying this, we have the generating function for the generalized bi-

periodic balancing numbers as 
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Theorem 2.2 (Binet Formula). For every m belong to many natural 

numbers, the Binet formula for the generalized bi-periodic balancing sequence 

of numbers is given by 
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Where  m  is the floor function of m and  
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function. 

Proof of Theorem 2.2. We know that the generating function for the 

generalized bi-periodic numbers   0
,,

n
cba

nB  is given by 
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Using fraction expansion,  x  can be written as 
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The generating function  x  can be written as 
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By using the properties in Lemma (2.2), we get 
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Use the parity function  ,m  and for all 0m  the above extension 

simplifies to 
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Theorem 2.3 (Catalan’s Identity). For any two non-negative integer n 

and r, with ,nr   we have  
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Proof of Theorem 2.3. Using the Binet formula, we obtain 
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r
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This completes the proof. 

Theorem 2.4. (Cassini’s identity). For any non-negative integer n, we 

have  

        .121
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Proof of Theorem 2.4. In Catalan’s identity, if we use ,1r  we get 

Cassini’s identity. 

Theorem 2.5. The non-negative terms of the bi-periodic balancing 

numbers are defined in terms of the positive terms as 

mm
m BBc   

Proof of Theorem 2.5. 
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