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Abstract 

In number theory study of polygonal numbers vary in richness and variety. Also the study 

of continued fractions is a fast developing field. Here in this study an attempt has been made to 

represent ratios of polygonal numbers with triangular number, square number, pentagonal 

number, hexagonal number as basis. 

Notations: 

1. -,,,,, 3210 nppppp  continued fraction expansion 

2.  -,3 np  triangular number 

3.  -,4 np  square number 

4.  -,5 np pentagonal number 

5.  -,6 np hexagonal number 

6.  -, nmp polygonal number of order and rank ‘m’ and rang ‘n’ 



P. BALAMURUGAN, A. GNANAM and B. ANITHA 

Advances and Applications in Mathematical Sciences, Volume 18, Issue 10, August 2019 

998 

1. Introduction 

The theory of numbers has always involved an extraordinary position in 

the world of mathematics. This is because of the unchallenged verifiable 

significance of the subject: it is one of only a handful couple of orders having 

certifiable outcomes which originate before the general thought of a 

university or an academy. Almost consistently since old style relic has seen 

new and captivating revelations identifying with the properties of numbers. 

Number theory is a wide subject with many strong connections with different 

parts of science. Our craving is to show a fair perspective on the zone. 

Each subspecialty has a character interestingly its own, which we have 

tried to depict precisely. 

The Pythagoreans additionally connected numbers with geometry. They 

presented the possibility of polygonal numbers: triangular numbers, square 

numbers, pentagonal numbers, and so on. The purpose behind this 

geometrical terminology is clear when the numbers are spoken to by dots 

arranged in the form of triangles, squares, pentagons, hexagons and so on. 

Here in this study an endeavor has been made to present to ratios of 

polygonal numbers with triangular number, square number, pentagonal 

number, hexagonal number as basis. If is the number of sides in a polygon, 

the formula for ‘m’-gonal number with rank ‘n’ is 

      .42
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Proof. 
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Theorem 1.3. The continued fraction of 
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Case (i) Take ,2km   
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Case (ii) Take 42  km  
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Proof. 
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Case (i) Take .33  km  
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Case (ii) Take 43  km  
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Case (iii) Take 53  km  
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Case (i) Take 34  km  
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Case (ii) Take 44  km  
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Case (iii) Take 54  km  
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Case (iv) Take 64  km  
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2. Remark 

It is worth mentioning that, depending on the base considered, the 

number of patterns followed is lesser by 2 to the order of the polygonal 

number. 

3. Conclusion 

In this paper, expression of ratios of polygonal numbers as continued 

fractions with triangular number, square number, pentagonal number, 

hexagonal number as basis are considered. Similarly, the other kinds of ratios 

of polygonal numbers and centered polygonal numbers may be studied in 

detail. The study can also be extended to higher dimensional figurate 

numbers.  
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