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Abstract 

In this article, minimal and maximal I -open sets in generalized intuitionistic topological 

spaces were introduced. Also, some of their basic properties are investigated. In addition, the 

new structure of minimal and maximal I -open sets were classified by type-I, type-II and type-

III. Regarding these sets, some minimal and maximal I -continuous functions in generalized 

intuitionistic topological spaces were introduced and studied in detail. 

1. Introduction 

The specialization of an intuitionistic fuzzy set was given by Coker [6]. 

After that time, intuitionistic topological spaces were introduced [14]. A. 

Csaszar [4] introduced many closed sets in generalized topological spaces 

based on their basics. We have introduced a new type of topology called as 

generalized intuitionistic topological spaces with the help of intuitionistic 

closed sets. And then we have investigated and studied some I -maps in 

GITS. In 2001, minimal and maximal open sets were introduced and some 

applications of these sets were studied by Nakaoka and Oda [8]. Thereafter, 

minimal -open sets in generalized topological spaces were introduced [5]. 
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The subject like minimal and maximal continuity, minimal and maximal 

irresolute etc [1] were investigated on basic topological spaces. The aim of 

this paper is to introduce minimal and maximal I -open sets in GITS. Also 

minimal and maximal I -continuous functions were introduced and studied 

in detail. In addition, we give some examples and counterexamples for 

support this work. 

2. Preliminaries 

Definition 2.1. A I -topology on xT  is a family of intuitionistic subsets 

of xT  satisfying the following axioms: 

1. I~  

2. Union of elements of I  belongs to .I   

For a GITS  ,, IxT   the mates of I  are called I -open sets(briefly I -

opss) and the complement of I -opss are known as I -closed sets(briefly 

I -cdss). 

Note:         .,,,
~~~~ ~~~~ xxxx TTCCTTII

IIII
   

Results. 

1. Arbitrary intersection of I -cdss are I -cd. 

2. Union of two I -cdss is not necessarily I -cd.  

Properties. Let KW  and 0K  a ICS  .xT  Then, 

1. If     .0KCWCBW
II KK    

2.     .KK WCWCC
III    

3.      .00 KCWCKWC
III KK     

4.      .00 KWCKCWC KK III
    

5.    .KxKx WTIWCT
II

   
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6.    .KxKx WTCWIT
II

   

7. If    .00 KIWIKW
II KK    

8.     .KK WIWII
III    

9.      .00 KIWIKWI
III KK     

10.      .00 KIWIKWI
III KK     

Definition 2.2. Let  IxT ,  be a GITS. Then the ICS  xK TW  is said to 

be a 

1. pre I -cds(briefly I -cds) if    .KK WWIC
II

  

2. semi I -cds(briefly I -cds) if    .KK WWCI
II

     

3. I -cds if     .KK WWCIC
III

  

4. I -cds if     .KK WWICI
III

  

Definition 2.3. Let  IxT ,   be a GITS. Then the IOS  xK TL  is said to 

be a 

1. pre I -ops(briefly I -ops) if   KK LCIL
II    

2. semi I -ops(briefly I -ops) if   KK LICL
II    

3. I -ops if    KK LICIL
III    

4. I -ops if    KK LCICL
III    

Results. 

1. Every I -cds(resp. I -ops) is a I -cds(resp. I -ops). 

2. Every I -cds(resp. I -ops) is a I -cds(resp. I -ops). 

3. Every I -cds(resp. I -ops) is a I -cds(resp. I -ops). 

4. Every I -cds(resp. I -ops) is a I -cds(resp. I -ops). 
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5. Every I -cds(resp. I -ops) is a I -cds(resp. I -ops). 

6. Every I -cds(resp. I -open) is a I -cds(resp. I -ops). 

Definition 2.4. A mapping    IxIxx LTO  ,,:  is said to be I -

continuous (briefly I -cts) if the inverse image of I -opss in  IxL ,  is I -

op in  ., IxT    

Definition 2.5. A mapping    IxIxx LTO  ,,:  is said to be semi 

(resp. pre II  ,  and I  I -cts (shortly I -cts, I -cts) if the inverse 

image of I -opss in  IxL ,  is semi (resp. pre II  ,  and I  I -op in 

 ., IxT   

Results. 

1. Every I -cts is P(resp. S,  and ) I -cts. 

2. Every I -cts is I -cts. 

3. Every I -cts is I -cts. 

Definition 2.6 [8]. Let xT  be a topological space. 

1. A proper non-void ops KU  of xT  is said to be a minimal ops if any ops 

which contained in KU  is  or .KU  

2. A proper non-empty cds 
oKU  of xT  is said to be a minimal cds if any 

cds which is contained in 
oKU  is  or .

oKU   

Definition 2.7 [7]. Let  IxT ,  be an ITS.  

1. A proper IOS 
oKV  in xT  is said to be a minimal IOS if any IOS which 

is contained in 
oKV  is ~  or .KV  

2. A proper IOS 
oKV  in xT  is said to be a maximal IOS if any IOS which 

is contains 
oKV  is ~xT  or .

oKV  
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3. Minimal and Maximal I -open Sets 

Definition 3.1. Let xT  be a I -ts.  

1. A proper non-void I -ops J of  IxT ,  is said to be a minimal I -ops 

(briefly mn- I -ops) if any I -ops that is contained in J is ~  or J. 

2. A proper non-void I -cds  c

I
MK


  of  IxT ,  is said to be a 

minimal I -cds(briefly mn- I -cds) if any I -cds that is contained in K is 

c

I
M


 or K. 

Remark 3.2. Union of two mn- I -opss need not be mn- I -op. It will be 

explained in the forthcoming example. Also, since intersection of two I -opss 

need not be I -op, intersection of two mn- I -opss need not be mn- I -op. 

Example 3.3. Let  
000

,, kkkx cbaT   with    ,,,,
0~ kxI cT   

        .,,,,,,,,,
00000

 kkxkkxkx baTabTbT  Here,  
0

,, kx cT   and 

   
00

,, kkx abT  are the mn- I -opss. Take  
0

,, kx cTJ   and 

       ,,,,
000 kxkkx bTHJabTH    is not mn- I -ops. 

Theorem 3.4. 

1. If J is a mn- I -ops  cJ  is a mx- I -cds. 

2. If J is a mx- I -ops  cJ  is a mn- I -cds. 

Proof (1). Let J be a mn- I -ops. Then any I -ops which is contained in 

J is ~  (or) J. Applying compliments we have any I -cds which contains 

KJ c   is ~xT  (or) K. Hence K is a mx- I -cds. 

Proof (2). The proof follows from proof (1). 

Remark 3.5. Let J be a mn- I -ops and W be a I -ops. Then both the 

conditions ~WJ   and WJ   fails. 

Example 3.6. Let  
0000

,,, kkkkx dcbaT   with     ,,,,
0~ kxI bT    
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    ,,,,,,,,,,
000

 kxxkkx aTTcaT       ,,,,,,
000 kkxkx baTcT   

    .,,,,,,
000

 kkxkx caTbT  Let  
0

,, kx bTJ   and  ,,
0kx aTW   

  Jbk 
0

 is the mn- I -ops   .,,,
00 kkx dbTWJ   Here ~WJ   

and .WJ   

Definition 3.7. 1. Let J be a mn- I -ops of Type-I then ~WJ   (or) 

WJ   for any .IW   

2. Let J be a mn- I -ops of Type-II then   ~TWJ   (or) WJ   for 

any .IW   

3. Let J be a mn- I -ops of Type-III then   ~FWJ   (or) WJ   for 

any .IW   

Theorem 3.8. Let J be a mn- I -ops of Type-I then J is a mn- I -ops. 

Example 3.9. Let  
000

,, kkkx cbaT   with    ,,,,
0~ kxI bT   

          .,,,,,,,,,,,,,
0000000

 kkxkxkxkkkx cbTcTbTcabT  Let 

 
0

,, kx bTJ   and     ~000
,,,  WJcabTW kkkx   and other 

I -opss are the supersets of J. Hence J is the mn- I -ops of Type-I. 

Example 3.10. Let  
000

,, kkkx cbaT   with    ,,,,
0~ kxI aT    

        .,,,,,,,,,,,,,,,
00000

 kkxkxxkxkx caTaTTaTcT  

Let  
0

,, kx aTJ   and    
000

,,,,, kkxkx baTWJbTW    and 

other I -opss are the supersets of J. Hence J is the mn- I -ops of Type-II. 

Example 3.11. Let  
0000

,,, kkkkx dcbaT   with 

       .,,,,,,,,,,,,,
0000000~  kkkxkkxkkxI dbaTdbTdaT  

Let    ,,,
00 kkx dbTJ  and      ,,,,,

000 kxkkx dTWJdaTW   

and other I -opss are the supersets of J. Hence J is the mn- I -ops of Type-

III. 

Lemma 3.12. Let J and H be two mn- I -ops of Type-I then ~HJ    

(or) .HJ   
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Proof. Given that J and H are the two mn- I -opss of Type-I. To prove, 

.~HJ   Suppose .~HJ   Now to prove, .HJ   Since J and H 

are the two mn- I -opss of Type-I, HJ   and JH   by definition 3.7(1). 

Hence .HJ   

Definition 3.13. Let xT  be a I -ts, xTx   and let  .xo TISN   Then 

xn  is known as I -neighbourhood(briefly I -nhd) of ,Ix  if there exists a 

I -ops J in xT  s.t. .xI nJx   The notation of all I -nhd’s is  .IxN
I

 

Example 3.14. Let  
000

,, kkkx cbaT   with    ,,,,
0~  kxI aT  

             ,,,,,,,,,,,,,
00000000 kkxkkkxkxkkx baTcabTbTbaT  

  .,,
0

kx bT   Let    
000

,,, kkkxI cabTx   be an IP of     Ix xNT
I

  

        ,,,,,,,,,,,,,,,,
00000000

 kkkxkxkkxkkx cbaTbTcbTbaT    

                ,,,,,,,,,,,,,,
0000000000 kkkxkkkxkkxkkx acbTcbaTcbTabT  

    .,,,
000 kkkx cabT  

Results. Let xT  be a I -ts and let .xTx    

1. If   .00 NxxNN III
    

2. If  IxNN
I

0  and  .0 IxNN
I

    

3. If  IxNN
I

0  then there exists  IxN
I

  s.t 

  .0   II yyNN
I

 

Remark 3.15. Intersection of two I -nhd’s of Ix  need not be a I -nhd 

of  .Ix  

Example 3.16. Let  
000

,, kkkx cbaT   with    ,,,,
0~ kxI bT    

            ,,,,,,,,,,,,,
0000000 kkxkxkkxkkx caTbTabTbaT   

          .,,,,,,,,,
000000 kkxkkkxkx baTcbaTaT   Let  ,,

0kxI aTx   

 
00

, kk cb  be an IP of     ,,,,
00

  kkxIx baTxNT
I

  

          ,,,,,,,,,,,,,,,,
000000000 kkkxkkxkxkkkx ccaTcaTaTcbaT 
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            .,,,,,,,,,
0000000 kkxkkkxkkx caTbcaTcaT  Let  ,,

00 kx aTN    

,
0kc  and let        

00000
,,,,, 0 kkkxkkx cbaTNbaT      

 .IxN
I

  

Proposition 3.17. Let J be a mn- I -ops of Type-I. If JxI   then 

~WJ   (or) WJ   for any I -open neighbourhood (shortly I -op 

nhd) W of .Ix   

Proof. Obvious.   

Proposition 3.18. Let J be a mn- I -ops of Type-I. Then  WWJ   is 

a I -op nhd of Ix  for any Ix  of J. 

Proof. By proposition 3.17 and J is a I -op nhd of  WWJxI ,  is a 

I -op nhd of .Ix  

Theorem 3.19. Let 00,   and 0  be three mn- I -ops of Type-I s.t 

.00   If 000    then either 00    (or) .00   

Proof. If 00   then there is no more to prove. Suppose 00   then 

by lemma 3.12 .~00    This implies    ~0000 0  

           0000000000000   

  .00000    Since 0  and 0  are mn- I -ops of Type-I, 

.00   

Theorem 3.20. Let 00,   and 0  be three mn- I -ops of Type-I which 

are different from each other. Then    .0000    

Proof. Suppose    .0000    Then      0000   

       .0000000000    By lemma 3.14, we 

obtain .00   Since 0  and 0  are the mn- I -ops of Type-I, .00   This 

contradicts our assumption. Hence    .0000    

Theorem 3.21. If J is a mn- I -ops of Type-I then    SCJC
II    for 

any subset S of J.  
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Proof. For any subset S of J, we have    .JCSC
II    To prove, 

   .SCJC
II    Let JxI   then by proposition 3.17, we obtain 

WSJSS    for each  .IxW
I

   Then   WS  and hence 

 .SCx
II   Hence  SCJ

I
  this generates    .SCJC

II    Hence 

   .SCJC
II    

Remark 3.22. Reversal statement of 3.21 is not necessarily true.  

Example 3.23. Let  
000

,, kkkx cbaT   with    ,,,,
0~ kxI cT    

        .,,,,,,,,,
00000

 kxkkxkkx bTabTbaT  Let   ,,,,
00

 kkx baTJ  

and           ,,,,,,
00000 kkkxkkx cbaTJCabTS

I
 and    SC

I
 

  ,,,,
000 kkkx cbaT  and    .SCJC

II     But here J is not a mn- I -ops 

of Type-I. 

Theorem 3.24. If    SCJC
II    for any subset S of J then J is a mn-

I -ops. 

Proof. Assume that J is not a mn- I -ops. Then there exists a I -ops W 

s.t JW   and hence there exists JxI   s.t .WxI   Therefore 

WTx xI   this implies   .WTxC xII
  Then we obtain 

   .JCxC
II I     

Remark 3.25. Reversal statement of 3.24 is not necessarily true. It can 

be propounded in the below exemplum. 

Example 3.26. Let  
0000

,,, kkkkx dcbaT   with    ,,,,
0~ kxI aT   

        .,,,,,,,,,
00000

 kkxkkxkx daTadTdT  Let    ,,
0kx aTJ  

and           ,,,,,,,,
0000000 kkkkxkkkx dcbaTJCdcaTS

I
 and 

      .,,
00 kkx daTSC

I
  Here J is the mn- I -ops but    .JCxC

II I      

Theorem 3.27. Let J be a mn- I -ops of Type-I. Then any non-void subset 

S of J is a I -ops. 

Proof. By 3.21,  .SCJ
I

  This implies     SCIJI
III    for some 
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non-empty subset S of J. Since J is a mn- I -ops of Type-I,  JIJS
I

  

  .SCI
II   

4. Minimal I - continuous and Maximal I -continuous 

Definition 4.1. Let  IxT ,  and  IxL ,  be the I -ts. A map 

   IxIxx LTO  ,,:   is called, 

1. minimal I -continuous map(briefly mn- I -cts mp) if  JOx
1  is a I -

ops in  IxT ,  for every mn- I -ops J in  ., IxL    

2. maximal I -continuous map(briefly mx- I -cts mp) if  JOx
1  is a I -

ops in  IxT ,  for every mx- I -ops J in  ., IxL   

Theorem 4.2. Every I -cts mp is mn- I -cts. 

Proof. Let    IxIxx LTO  ,,:  be a I -cts mp. Take J be a mn- I -

ops in  ., IxL   Since every mn- I -ops is a I -ops, J is a I -ops. Since xO  

is I -cts,  JOx
1  is a I -ops in  ., IxL   Hence xO  is mn- I -cts. 

Remark 4.3. Reversal statement of 4.2 is not true. This condition can be 

explained in the below exemplum. 

Example 4.4. Let  
000

,, kkkx cbaT   and  
000

,, kkkx wvuL   with 

           ,,,,,,,,,,,,,
00000~  kxkkxkxkxI cTbaTaTaT   

          ,,,,,,,,,,
0000000 kkxkkkxkkx caTbcaTbcT  and I   

           .,,,,,,,,,,,,,
000000~  kkxkkxkxkx cvLvwLwLuL  

Define    IxIxx LTO  ,,:  by     ,,
0000 kkxkkx vbOuaO     .

00 kkx wcO   

Here, xO  is mn- I -cts but not I -cts, since     ,,,
00

1
kkxx wvLO   

   .,,,,
00 Ixkkx TcbT   

Theorem 4.5. Every I -cts mp is mx- I -cts.  

Proof. We can prove this theorem as we have done in the theorem 4.2. 
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Remark 4.6. Reversal statement of 4.5 is not necessarily true. It will be 

rendered in the forthcoming exemplum. 

Example 4.7. Let  
000

,, kkkx cbaT   and  
000

,, kkkx wvuL   with 

            ,,,,,,,,,,,,,,,
000000~ kxkkxkxkxkxI bTbaTbTaTbT   

    ,,,,
000 kkxk baTc  and      ,,,,,,,,

00~ xkxkxI LuLvL    

      .,,,,,
0000

kkxkk wuLwu  Define    IxIxx LTO  ,,:  by  
0kx aO  

  ,,
000 kkxk vbOu   and   .

00 kkx wcO   Here, Ô is mx- I -cts but not I -

cts, since        .,,,,,
00

1
Ixkxkxx TaTvLO   

Remark 4.8. Mn- I -cts and mx- I -cts mps are freer of each other. 

Example 4.9. In example 4.4, f is mn- I -cts but it is not mx- I -cts. In 

example 4.7 f is mx- I -cts but it is not mn- I -cts. 

Remark 4.10. 

1. Mn- I -cts and I -cts mps are freer of each other. 

2. Mx- I -cts and I -cts mps are freer of each other. 

Theorem 4.11. Let xO  be a mn- I -cts function  the inverse image of 

each mx- I -cds in  IxL ,  is a I -cds in  ., IxT   

Proof. From theorem 3.4, the complement of mn- I -op is mx- I -cd. 

Theorem 4.12. If    IxIxx LTO  ,,:  is I -cts and  

   IxIxy MTO  ,,:  is mn- I -cts then    IxIxxy MTOO  ,,:  

is mn- I -cts. 

Proof. First we take J be a mn- I -ops in  ., IxM   Since O
~

 is mn- I -

cts,  JOy
1  is I -op in  ., IxL   Also since xO  is I -cts,    JOO yx

11   

   JOO xy
1

   is I -op in   xyIx OOT ,  is mn- I -cts. 

Remark 4.13. Since every I -ops need not be a mn- I -ops, composition 

of two mn- I -cts maps need not be mn- I -cts. 
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Theorem 4.14. Let xO  be a mx- I -cts function  the inverse image of 

each mn- I -cds in  IxL ,  is a I -cds in  ., IxT   

Proof. From theorem 3.4, the complement of mx- I -op is mn- I -cd. 

Theorem 4.15. If xO  is I -cts and yO  is mx- I -cts then xy OO   is mx-

I -cts. 

Proof. We can prove this theorem as we have done in the theorem 4.15. 

Remark 4.16. Since every I -ops need not be a mx- I -ops, composition 

of two mx- I -cts maps need not be mx- I -cts. 

5. Conclusion 

From definition 3.7, new types of minimal I -open sets were introduced 

and gave their basic properties. In addition, two types of I -continuous maps 

via these I -open sets were defined and investigated their features. We hope 

that several properties of these concepts would be studied or new types of I -

continuities would be found. 
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