Advances and Applications in Mathematical Sciences
Volume 21, Issue 7, May 2022, Pages 4097-4109

© 2022 Mili Publications, India

MINIMAL AND MAXIMAL OPEN SETS IN GITS

G. K. MATHAN KUMAR and G. HARI SIVA ANNAM

Research Scholar

Manonmaniam Sundaranar University
Tirunelveli-627012, Tamilnadu, India
E-mail: mathangk96@gmail.com

Assistant Professor of Mathematics
Kamaraj College, Thoothukudi-628003
Tamilnadu, India

E-mail: hsannam@yahoo.com
Abstract

In this article, minimal and maximal pj -open sets in generalized intuitionistic topological
spaces were introduced. Also, some of their basic properties are investigated. In addition, the

new structure of minimal and maximal pjy -open sets were classified by type-I, type-II and type-
III. Regarding these sets, some minimal and maximal pj -continuous functions in generalized

intuitionistic topological spaces were introduced and studied in detail.

1. Introduction

The specialization of an intuitionistic fuzzy set was given by Coker [6].
After that time, intuitionistic topological spaces were introduced [14]. A.
Csaszar [4] introduced many closed sets in generalized topological spaces
based on their basics. We have introduced a new type of topology called as
generalized intuitionistic topological spaces with the help of intuitionistic
closed sets. And then we have investigated and studied some pj;-maps in
GITS. In 2001, minimal and maximal open sets were introduced and some

applications of these sets were studied by Nakaoka and Oda [8]. Thereafter,

minimal p-open sets in generalized topological spaces were introduced [5].
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The subject like minimal and maximal continuity, minimal and maximal
irresolute etc [1] were investigated on basic topological spaces. The aim of

this paper is to introduce minimal and maximal p;j-open sets in GITS. Also
minimal and maximal pj-continuous functions were introduced and studied

in detail. In addition, we give some examples and counterexamples for
support this work.

2. Preliminaries

Definition 2.1. A pj-topology on 7, is a family of intuitionistic subsets

of T, satisfying the following axioms:
1. ®d. € Ur
2. Union of elements of p; belongs to pj.

For a GITS (T}, py), the mates of u; are called pj-open sets(briefly uj -
opss) and the complement of pj-opss are known as pj-closed sets(briefly

py -cdss).
Note: I,,,(®~.) =@, I,, (T, ) # T, C,, (@) # -, C , (T, ) = T, _.

Results.

1. Arbitrary intersection of pj-cdss arepy -cd.

2. Union of two pj -cdss is not necessarily py -cd.
Properties. Let Wi and K, a ICS (T}.). Then,
LIf Wx ¢ B= C,,(Wg) c C,,(Kp).

2. Cy,(C,,(Wg)) = C,, (Wk).

3. C,,(Wxg NKy) < C,,(Wg) N Cy, (Kop).

4. C,,(Wg)UC,, (Kp) = C,(Wg U Kp).

5. Ty — Coy Wi) = 1, (T, — W ).
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6. T, — 1,,(Wg) = C,, (T, — Wi ).
7.0 Wg < Ko = 1,,(Wk) < I,,,(Ko).
8. I, (I, (Wg)) = I,, Wi ).
9. 1,,Wg UKg) = I,, Wx)U I, (Ko).
10. 1,,Wg N Ko) < I, (Wi) N 1,,, (Ko ).

Definition 2.2. Let (7, puy) be a GITS. Then the ICS Wk (T,) is said to

be a

L. pre p-cds(briefly Puy -cds) if Cy,(1,,(Wg)) < Wk.
2. semi p -cds(briefly Suy-cds)if I,,,(C,, Wg)) = Wk.
3. aug-cdsif C,, (1,,(Cy,(Wg)) c Wk.

4. Buy-cdsif 1,,(Cy, (I, (Wk)) < Wk.

Definition 2.3. Let (T}, uy) be a GITS. Then the I0S Lg(7},) is said to

be a
1. pre py-ops(briefly Puy -ops) if Lx < I,,,(Cy, (L))
2. semi pg-ops(briefly Suy-ops) if Lg < C; (qu (Lg))
3. aug-opsif Lg < 1, (C,, (I, (Lg))
4. Bug-opsif Lxg < Cy,(1,,(Cy, (L))
Results.
1. Every pj-cds(resp. py-ops)is a Puy -cds(resp. Puj -ops).
2. Every pj-cds(resp. puy-ops)is a Suj-cds(resp. Suy-ops).
3. Every puj-cds(resp. puy-ops)is a apy-cds(resp. oyly -ops).

4. Every pj-cds(resp. puy-ops)isa Puy-cds(resp. Py -ops).
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5. Every Puy -cds(resp. Puj -ops) is a Buj-cds(resp. Puy-ops).
6. Every ouj-cds(resp. opty-open) is a Spy-cds(resp. Suj -ops).

Definition 2.4. A mapping O, : (T}, uy) — (L, oy) is said to be puj-
continuous (briefly pj-cts) if the inverse image of py-opssin (L., o7)is py-

opin (T}, puy)

Definition 2.5. A mapping O, : (T, ur) = (L., oy) is said to be semi
(resp. pre py, opy and PBuy) pg-cts (shortly Pujy -cts, Spy-cts) if the inverse
image of pj-opssin (L,, oy) is semi (resp. pre uy, auy and Buy) py-op in
(T, np).

Results.

1. Every pj-ctsis P(resp. S, a and ) pj -cts.

2. Every Puj -ctsis Puj-cts.

3. Every opg-ctsis Spy-cts.

Definition 2.6 [8]. Let T, be a topological space.

1. A proper non-void ops Uk of T, is said to be a minimal ops if any ops

which contained in Ug is @ or Ug.

2. A proper non-empty cds UKo of T, is said to be a minimal cds if any

cds which is contained in Uk, is ® or Uk, .

Definition 2.7 [7]. Let (T}, t;) be an ITS.

1. A proper I0S Vg in T is said to be a minimal IOS if any 10S which

is contained in Vi is ®. or Vk.

2. A proper 10S VK(7 in 7, is said to be a maximal IOS if any IOS which

is contains Vi is Ty or Vi .
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3. Minimal and Maximal p;-open Sets

Definition 3.1. Let 7, be a pj -ts.

1. A proper non-void pj-ops J of (7, ny) is said to be a minimal pj -ops
(briefly mn- pj -ops) if any pj -ops that is contained in Jis ®. or J.

2. A proper non-void uj-cds K(= qu) of (T, pny) is said to be a
minimal pj-cds(briefly mn-pj-cds) if any pj-cds that is contained in K is

M€ orK.
17,

Remark 3.2. Union of two mn- pj -opss need not be mn- py -op. It will be
explained in the forthcoming example. Also, since intersection of two iy -opss

need not be pj -op, intersection of two mn- puj -opss need not be mn- p -op.

Example 3.3. Let Ty ={ay,, by, cp,} with py = {0, (T, @, {cp, }),
(Ts {bry b @), (T by b {ang s (Txs {agys by, s @)} Here, (T, @, {cg,}) and
(Ty, by, }» lag,}) are the mn-pj-opss. Take o =(T,, ®, {cy,}) and
H = (T, b, }, lag, ) = J U H(Ty, {by, }, @) is not mn-pj -ops.

Theorem 3.4.
1. IfJisamn-uy-ops < J€ isa mx-pg-cds.
2. If Jisamx-uy-ops < J¢ isa mn-puj-cds.

Proof (1). Let J be a mn- puj-ops. Then any pj-ops which is contained in
J is ®. (or) J. Applying compliments we have any uj-cds which contains

J¢ =K is T,. (or) K. Hence K is a mx- pi -cds.
Proof (2). The proof follows from proof (1).

Remark 3.5. Let J be a mn-uj-ops and W be a pj-ops. Then both the
conditions J (VW = ®_ and J < W fails.

Example 3.6. Let T = {ay,, by, cy> dp,} with py ={@_ (T, @, {by 1),
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(T Ay iy @) (T @, @), (T, gy ) (T ey} @) (T gy Bz, D,
(T, @, by 1), (T {any» ey ), @)} Let o = (T, @, {by}) and W =(Ty, {ay .
{0y, }) = J is the mn-py-ops J MW = (T, @, {by,, di,})- Here JNW = O
and J ¢ W.

Definition 3.7. 1. Let / be a mn- pj -ops of Type-I then J N W = @ (or)
J < W forany W € uj.

2. Let J be a mn- uj -ops of Type-II then (J N W)y = @ (or) J = W for
any W e pj.
3. Let J be a mn- pj -ops of Type-III then (J NW)p = @ (or) J =« W for
any W e pj.
Theorem 3.8. Let J be a mn- g -ops of Type-I then J is @ mn-uy -ops.
Example 3.9. Let Ty ={ay,, by, cp,} with py = {0, (T, @, {by, }),
(T, {bry b {arys g ) (Tos Org §> @), (T, feng b @), (s by Cro ) @)} Let
J = (T, ©, {by,}) and W = (T}, {by }, {ap,, cpy}) = J N W = & and other
L7 -opss are the supersets of J. Hence o/ is the mn- pj -ops of Type-I.
Example 3.10. Let T, = {ay,, by, cp,} with py = {0, (T, @, {ay, }),
<Tx’ {cko }’ CD>7 <Tx’ {a’ko }’ ®>, <Tx’ @, (D>’ <Tx7 o, {ako }>’ <Tx’ {ako’ Cky }’ q)>'
Let o =(Ty, @, {ay,}) and W=(Ty, ®,{by }) = J W =(T}, @, {ag,, by, }) and
other pj-opss are the supersets of J. Hence o is the mn- puy -ops of Type-II.
Example 3.11. Let Ty = {aky» bry» Cry» iy | with
pr = {0~ (Tx, {agy, diy b @), (T, bry dig b @), Ty {ay s bry> iy b P
Let J =(Ty, {bko’ dkO 1 ®) and W =(T,, {ako , dko L @)= JNW =(T,, {dko I, @)

and other pj-opss are the supersets of J. Hence o is the mn- i -ops of Type-
I11.

Lemma 3.12. Let J and H be two mn- g -ops of Type-Ithen J N H = O.
(or) J = H.
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Proof. Given that J and H are the two mn- puj -opss of Type-I. To prove,
JNH=®_. Suppose J (| H # ®_.. Now to prove, J = H. Since J and H
are the two mn-pjy-opss of Type-I, J < H and H < J by definition 3.7(1).
Hence J = H.

Definition 3.13. Let T}, be a py-ts, x € T, and let N, € IS(T},). Then
n, is known as pj-neighbourhood(briefly pj;-nhd) of xj, if there exists a

ur-opsJin Ty s.t. xy € J < n,. The notation of all py-nhd’sis N, (x7).

Example 3.14. Let T = {ay,, by, ¢} with py = {®@, (T, {ag, }, @),

Ty, {ay s by 1)y (T @, {0y 1y (Lo {Org b {ary» €y 1) (T 1@y s brg b @)
T, {bko}’ CD>} Let x5 = <Tx’ {bko}’ {ako, Ck0}> be an IP of T, = Nul(xl) =

(
(
(T, {any, bry b @), (T, {brys chg by @), (Ts by o @)y (T, {arys bry s Ciy b @),
(T, {brg bs {arg s (T brg bs {erg 1) (Lo {@ys Oy b kg 1)y (Toes iy > g s 1y 1)
<TJC’ {bko }’ {ako’ cko }>}

Results. Let T}, be a ny-ts and let x € T},.

1. If NO € NPI(xI) = Xy € No.

2.If Ng € Ny, (x7) and Ng c L = L € N, (x7).

3. If NgeN(x;) then there exists Le N, (x;) st
No € Ny, (y7) Vyr e L.

Remark 3.15. Intersection of two pj-nhd’s of x; need not be a py-nhd
of xj.

Example 3.16. Let T, = {ag,, by, ¢} with puy = {0, (T, @, {by, 1),
(T, {any» by b @), (T, iy b {ang 1)s (Tes g }> )5 (T g b {crg 1)

(Ty, Aary b, @), (Tas {ary s by b {erg 1) (Txs {ang §, bk 1)) Let xp = (Ty, {ag, ),
{bk()’ Ck0}> be an 1P of T, = NHI (.’XII) = <Tx7 {ako, ka }, (D>,

<Tx’ {ako’ bko’ Chy }’ CD>’ <Tx’ {ako }’ (D>’ <Tx9 {ako’ Chy }9 (I)>’ <Tx’ {ako’ Chq }’ {Ck0}>’
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(T, {ary s {cky 1) (Tes {@nys iy bs By 1) (T 1@y b {ery - Let No = (T, {ag,
kot and let L =(Ty, {ag,} {bg,}) = No NL = (T, {ag, }s {bry» iy )
gNHI (xI)

Proposition 3.17. Let J be a mn-pj-ops of Type-I. If x; € J then
JOAW=0_ (or) J c W for any pj-open neighbourhood (shortly py-op
nhd) Wof xj.

Proof. Obvious.

Proposition 3.18. Let J be a mn- g -ops of Type-1. Then J = W/W is
a uy-op nhd of xy} for any xy of J.

Proof. By proposition 3.17 and J is a pj-op nhd of xj, J = "{W/W is a
p7-op nhd of xj}.

Theorem 3.19. Let o, &g and ng be three mn-py-ops of Type-I s.t
og # €. If ng < ag Ugg then either ng = 0y (or) ng = €.
Proof. If ng = 0 then there is no more to prove. Suppose mg # o then

by lemma 3.12 ayNng =0-. This implies My Ugp = ng U (g UD.) =

Mo Ugo U (ag Nmo)] = no Uleg U(ag Nmo)l = (g9 U i) N (o Ugg) = g9 U
(agNMg) =€9 = Mo < &p- Since my and g; are mn-pj-ops of Type-I,

Mo = €o-
Theorem 3.20. Let o, g and mg be three mn-py-ops of Type-I which
are different from each other. Then (oo U gg) & (ag Nnp).

Proof. Suppose (o9 Uzegg) < (a9 Umng). Then (o9 Ugp)N(gg Ung) =
(g Umg)N(eg Ung) = g9 U(mg Nag) = moleg Nog). By lemma 3.14, we
obtain g; < mg. Since gy and ng are the mn-pj -ops of Type-I, gy = ng. This
contradicts our assumption. Hence (og U gg) & (a9 NMp)-

Theorem 3.21. If J is a mn-pj-ops of Type-I then C,,(J) = Cy,(S) for
any subset S of J.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022



MINIMAL AND MAXIMAL OPEN SETS IN GITS 4105

Proof. For any subset S of JJ, we have C,,(S)c Cy,(J). To prove,
Cy;(J)c C, (S). Let xyed then by proposition 3.17, we obtain
S=8NJ cSNW for each WeN,, (x;). Then SNW # & and hence
x7 € C,,(S). Hence J c C,,(S) this generates C,, (J) < C,,(S). Hence
Cy; (J) = Cy, (9).

Remark 3.22. Reversal statement of 3.21 is not necessarily true.

Example 3.23. Let T, = {ay,, by, ¢, } with puy = {0, (T, ©, {cp, }),
(T {ary brg b @), (T, bry b Aarg 1) Ty iy 1 @Y. Let o = (T, {agy, b, }, @),
and S =(T, {by, b {ag, ) = Cyu; () = (T, {ag, bry> Cry , @) and  C, (S)=
(TyAary brys Cry b @) and C, (J) = C,,(S). But here o is not a mn-uz -ops
of Type-I.

Theorem 3.24. If C,(J) = C,,(S) for any subset S of J then J is a mn-
W7 -ops.

Proof. Assume that </ is not a mn- uj -ops. Then there exists a py-ops W
st WcJ and hence there exists x; €J st x; ¢ W. Therefore
xy €T, -W  this implies C,,(x;)cT;~-W. Then we obtain

Cy,(x7) # Cyp (J).

Remark 3.25. Reversal statement of 3.24 is not necessarily true. It can
be propounded in the below exemplum.

Example 3.26. Let T, = {ako,bko,cko,dko} with uy ={®., (T}, @, {ak0}>,
(T, dpy by @), (Ts Ay s {ag s (Tas {ary s dig s @) Let o = (Ty, {ag, ), @)
and S = (T, {ag,}, {eny> diy 1) = Cup (I) = (T, {ary bry s Cy> dig 1> @) and
Cy;(S) = (T, {ag, }, {dy, })- Here J is the mn- uy-ops but C,, (x1) # Cy, (J).

Theorem 3.27. Let J be a mn- uy-ops of Type-1. Then any non-void subset
SofJisa Puy-ops.

Proof. By 3.21, J < C,,(S). This implies I,,,(J) < 1,,,(C,,(S)) for some
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non-empty subset S of J. Since </ is a mn-pz-ops of Type-I, S ¢ J = I, (J)
c 1,,(Cy, ()

4. Minimal pj- continuous and Maximal pj-continuous

Definition 4.1. Let (7, u;) and (L., oy) be the py-ts. A map
O, : (T, uy) = (L., oy) is called,

1. minimal p;-continuous map(briefly mn- pj-cts mp) if Oy (J) is a pg-

opsin (T}, py) for every mn-py-opsJin (L, oy).

2. maximal pj-continuous map(briefly mx- p-cts mp) if O;'(J) is a pj-
opsin (T}, py) for every mx-puy-ops Jin (L, o).

Theorem 4.2. Every njy-cts mp is mn-puy-cts.

Proof. Let O, : (T, nuy) = (L, o) be a py-cts mp. Take o/ be a mn-p-
ops in (L, oy). Since every mn-py-opsis a py-ops, J is a py-ops. Since O,
is py-cts, O;}(J) is a py-opsin (L, o7). Hence O, is mn-pj -cts.

Remark 4.3. Reversal statement of 4.2 is not true. This condition can be

explained in the below exemplum.

Example 4.4. Let T, ={ay,, by, cx,} and Ly = {uy,, vgy, wp,} with
hr = 0, (T, ®, fagy 1) (T, fag b ©) (T g b gy B (T fegg @)
(Tys {erg b rg 1) (T @iy s i bs bk 1)s (Txs {ay s gy b @) and oy =
(@ (L, @, {upy 1), (L fwpg b @), (Ligs {wpg s {vrg 1s (L {org > i ) @3-
Define Oy : (Ty, u1) = (Ly,o7) by Oxlag,)=up,, Ox(br,) =vgy, Ox(cr,)=wr,-
Here, O, is mn-pj-cts but not py-cts, since Og'((L,, Uy Wiy b ©))
= (Ty, bry» iyt @) 2 (T, Bp).

Theorem 4.5. Every nj-cts mp is mx- |y -cts.

Proof. We can prove this theorem as we have done in the theorem 4.2.
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Remark 4.6. Reversal statement of 4.5 is not necessarily true. It will be
rendered in the forthcoming exemplum.

Example 4.7. Let T, = {ay,, by, cp,} and Ly = {up,, v, wy,} with
=P, (T, @, {bp 1), (T, {any 1> @), (T bry > P (T @y o 1brg 1 (T b
{erg 1)y (s {any» bry b @)} and o7 = {®@~, (Ly, @, {vg,}), (Ly, {ug, f> ), (Ly,
{trg b g s (Lixs Uiy Wiy}, @)} Define Oy : (Ty, pup) = (Ly, 1) by Ox(ag,)
= Up, > Ox(by,) = vg,» and Oy(cy,) = wy,. Here, O is mx-p  -cts but not p; -
cts, since O (L, @, fog 1) = (T @, fagy}) # (T 1ip).

Remark 4.8. Mn- g -cts and mx- pj -cts mps are freer of each other.

Example 4.9. In example 4.4, f is mn-pj -cts but it is not mx-puy -cts. In

example 4.7 f is mx- uy -cts but it is not mn- p -cts.

Remark 4.10.

1. Mn- pg -cts and Puy -cts mps are freer of each other.
2. Mx- g -cts and Puj -cts mps are freer of each other.

Theorem 4.11. Let O, be a mn-uj-cts function < the inverse image of

each mx-pg-cdsin (L, oy) isa py-cdsin (Ty, uy).
Proof. From theorem 3.4, the complement of mn- puy -op is mx- pj -cd.

Theorem 4.12. If O, : (T, u;)—> (L, 07) is uy-cts and
Oy : (Tx’ HI) - (Mx’ pI) is mn-pj-cts then Oy ° Oy : (Tx’ HI) - (Mx’ pI)

is mn-uj-cts.

Proof. First we take J/ be a mn-p -ops in (M, py). Since O is mn-p; -
cts, O;l (J) is py-op in (L., o). Also since O, is uj-cts, O;l(Ogl(J))
=(0y © 0,) }(J) is pj-opin (Ty, ny) = O, ° O, is mn-pr -cts.

Remark 4.13. Since every pj-ops need not be a mn- pi -ops, composition

of two mn- i -cts maps need not be mn- pu -cts.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022



4108 G. K. MATHAN KUMAR and G. HARI SIVA ANNAM

Theorem 4.14. Let O, be a mx-uy-cts function < the inverse image of

each mn-py-cdsin (L, oy) isa py-cdsin (T, uy)
Proof. From theorem 3.4, the complement of mx- 1 -op is mn- puj -cd.

Theorem 4.15. If O, is uj-cts and O, is mx-py-cts then O, o O, is mx-

Wy -cts.

Proof. We can prove this theorem as we have done in the theorem 4.15.

Remark 4.16. Since every pj-ops need not be a mx- puy -ops, composition

of two mx- uy -cts maps need not be mx- pj -cts.

5. Conclusion

From definition 3.7, new types of minimal pj-open sets were introduced
and gave their basic properties. In addition, two types of pj-continuous maps
via these pj-open sets were defined and investigated their features. We hope
that several properties of these concepts would be studied or new types of puy -

continuities would be found.
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