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Abstract 

Transportation model is a distinctive type of LPP in which the objective is to minimize the 

cost of allocating an item for consumption from a number of sources to specific destinations. 

Here, the transportation model is considered with fully fuzzy form. Transportation problem in 

which the sources and destinations are represented as heptagonal FN and nonagonal FN. Based 

on ranking function, the sources and destinations are converted to the crisp form. The problem is 

then transformed into linear programming approach to get an optimal solution using graphical 

method. The benefit of LPP for the decision-maker is it’s easy to explain and can be implemented 

in real life transportation. The overall concept is illustrated with the help of a solved numerical. 

Abbreviation: Linear Programming (LP), Fuzzy Linear Programming 

(FLP), Fuzzy Number (FN), Triangular Fuzzy Number (TFN), Heptagonal 

Fuzzy Number (HFN), Nonagonal Fuzzy Number (NFN).  

1. Introduction 

Transportation is one of the issues that the organisations encounter. It 

originally referred to the difficulty of transporting/shipping items from the 

factory to the customer at the lowest cost considering supply and demand 

restrictions in mind. This is a type of LP technique built specifically for 

systems with linear objective and constraint functions. 
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Deshmukh et al. [2] compared a new two ranking technique for normal 

HFN to solve FLPP with hexagonal FN. The fuzzy multiple objective 

programming model is treated by Hussein and Mitlif [4] using two ranking 

functions. Following that, two types of membership functions are used, 

namely, ordinary membership function and weighted membership function to 

solve fuzzy multiple objective problem using TFN. Pathade et al. [5] 

unravelled a new concept of BCM for deciphering mixed constraints fuzzy 

balanced and transportation problem using trapezoidal and trivial FNs. 

Rajarajeswari and Menaka [6] suggested a new ranking technique to 

discover an optimum result for FTP using octagonal FTP with BCM method 

to find the best minimum value of optimal solution. In addition, three 

strategies were compared: robust ranking technique, centroid ranking 

technique, and suggested ranking methodology. Shanmuga [9] developed a 

modest technique, to solve FFLP problem with no need to convert it into 

classical FFLP problem. Sami Kadhemkareem Althabhawi [10] compared 

various ranking methods to find minimum total transportation cost. 

In this paper, a LP model is derived from transportation problem and it is 

then solved by graphical method, and compared with the existing method 

(Column Minima Method). 

2. Preliminaries 

2.1 FN: [3]  

2.2 TFN: [1]  

2.3 HFN: [8]  

A FN HA
~

 of R is said to be a heptagonal FN denoted by 

( )7654321 ,,,,,,
~

gggggggAH =  if its membership function  1,0~ → R
HA

 

is defined  
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where .10  k  

2.4 NFN: [7]  

A nonagonal FN NA
~

 represented as, ( ,,,,,
~

54321 gggggAH =  

)9876 ,,, gggg  and membership function is defined as 

( )









































−

−









−

−
−









−

−
−









−

−
−









−

−
+









−

−
+









−

−
+









−

−



=

9

98
89

9

87
78

7

76
67

6

65
56

5

54
45

4

43
34

3

32
23

2

21
12

1

1

~

 for0

 for,
4

1

 for,
4

1

2

1

 for,
4

1

4

3

 for,
4

1
1

 for,
4

1

4

3

 for,
4

1

2

1

 for,
4

1

4

1

 for,
4

1

 for,0

gx

gxg
gg

xg

gxg
gg

gx

gxg
gg

gx

gxg
gg

gx

gxg
gg

gx

gxg
gg

gx

gxg
gg

gx

gxg
gg

gx

gx

x
NA

 

2.5 Ranking Function: 
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1. Heptagonal FN: [8] 

If ( )7654321 ,,,,,, ggggggg  be a heptagonal FN, then the ranking 

function ( )HAR
~

 is defined as: 

( ) ( ) = 

1

0

,5.0
~

daaAR U
g

L
gH  

( ) ( ) ( ) ( ) −−+−−−+−

1

0

577556344112 ;,,,5.0 dgggggggggggg  

1,0  (2.5.1)  

2. Nonagonal FN: [7]  

If ( )987654321 ,,,,,,,, ggggggggg  be a nonagonal FN, then the 

ranking function ( )NAR
~

 is defined as: 

( ) ( ) = 

1

0

,5.0
~

daaAR U
g

L
gN  

Where ( )U
g

L
g aa ,  is the -level cut of FN NA

~
  

( ) ( ) ( ) +−−−+−=

1

0

7556344112 ,,,5.0 gggggggggg  

( ) ( ) ( ) ;,, 89966767 −−+−−−− dgggggggg  

1,0  (2.5.2) 

2.6 Arithmetic Operations on FN 

1. Heptagonal FN: [8] 

Let ( )7654321 ,,,,,,
~

uuuuuuuAH =  and ( ,,,,
~

4321 qqqqBH =  

)765 ,, qqq  be two heptagonal FN then addition and subtraction can be 

performed as 
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Addition: 

( )77665544332211 ,,,,,,
~~

quququququququBA HH +++++++=+   

Subtraction:  

( )17263544536271 ,,,,,,
~~

quququququququBA HH −−−−−−−=−  

2. Nonagonal FN: [7] 

Let ( )987654321 ,,,,,,,,
~

uuuuuuuuuAH =  and ( ,,,,
~

4321 qqqqBH =  

)98765 ,,,, qqqqq  be two nonagonal FN then addition and subtraction can 

be performed as  

Addition: 

=+ HH BA
~~

  

( )998877665544332211 ,,,,,,,, quququququququququ +++++++++  

Subtraction: 

=− HH BA
~~

  

( )192837465564738291 ,,,,,,,, quququququququququ −−−−−−−−−  

3. Problem Formulation 

Consider fuzzy TP which includes m sources and n destination in where 

ml qp ~,~  and lmd
~

 are heptagonal FN or nonagonal FN. The problem is to find 

the optimum values of lmy  such that  


= =

=

r

l

r

m

lmlmydMinZ

1 1

~
 

Subject to constraint  


=

=

s

m

llm rlpy

1

,,3,2,1,~    
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
=

=

r

m

mlm smqy

1

,,3,2,1,~    (3.1)  

Where .,,3,2,1,0 slylm =  and .,,3,2,1 sm =   

A TP with one or more fuzzy parameters is defined as a fuzzy 

transportation problem as on definition 2.5 problem (3.1) can be converted 

into its corresponding crisp as  


= =

=

r

l

r

m

lmlmydRZ

1 1

~
Minimize   

Subject to constraints  

( )
=
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r

m

llm rlpRy

1

,,3,2,1,~    

( )
=

=

r

m

mlm smqRy

1

,,3,2,1,~    (3.2)  

Where rlylm ,,3,2,1,0 =  and .,,3,2,1 sm =   

The model is transformed into a LP model. 

The LP version for problem (3.2) is as follows: 

Maximize or minimize 
=

=

r

m

mmydZ

1

 

( )
=

==

s

m

lmlm rlqyp

1

,,,3,2,1,,,    

and  

.,3,2,1,0 smym =  (3.3)  

Here, variables ( )smym ,3,2,1,0 =  are known as decision 

variables and lmm dd ,  and ( ) ( )smrlql  ,3,2,1;,,3,2,1 ==  are 

constants. 
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4. Solution Technique 

This section establishes a solution technique process for resolving the TP 

in the following stages: 

Step 1. Construct fuzzy transportation problem (FTP). 

Step 2. Transform the model (3.1) into the corresponding crisp 

transportation model (3.2) based on the ranking function as in definition 

(2.5). 

Step 3. Apply linear programming approach for the model (3.2). 

Step 4. Use graphical method to elucidate linear programming model 

(3.3). 

5. Numerical Examples 

1. Heptagonal FN:  

Model 1: Consider the following TP with heptagonal FN: 

Distribution 

Centre Plants  

1D  2D  3D  

1P  (2,3,4,5,6,7,8)  (3,4,5,6,7,8,9)  (11,12,13,14, 

15,16,17)  

2P   (1,2,3,4,5,6,7)  (9,10,11,12,13, 

14,15)  

(6,7,8,9,10, 

11,12)  

and the fuzzy availability of the supply are (6,7,8,9,10,11,12), 

(9,10,11,12,13,14,15) and the fuzzy availability of the demand are 

(7,8,9,10,11,12,13), (5,6,7,8,9,10,11), (3,4,5,6,7,8,9) respectively. 

Solution:  

Create the fuzzy transportation table for the given problem 
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Table 1. 

Distribution 

Centre Plants  

1D  2D  3D  Supply 

1P  (2,3,4,5, 

6,7,8)  

(3,4,5,6, 

7,8,9)  

(11,12,13, 

14,15,16,17)  

(6,7,8,9,10, 

11,12)  

2P  (1,2,3,4, 

5,6,7)  

(9,10,11,12, 

13,14,15)  

(6,7,8,9,10,1

1,12)  

(9,10,11,12, 

13,14,15)  

Demand  (7,8,9,10, 

11,12,13)  

(5,6,7,8,9, 

10,11)  

(3,4,5,6,7, 

8,9)  

 

Using ranking function (2.5.1)  

Table 2. 

Distribution  

Centre Plants  

1D  2D  3D  Supply 

1P  10.25  12.25  28.25  18.25  

2P  8.25  24.25  18.25  24.25  

Demand  20.25  16.25  12.25   

The problem is converted into a linear programming problem (LPP).  

Formulation of LPP:  

Key decision is to find the quantities that are transferred from each plant 

to each distribution centre. Let 21, xx  be the quantity of transported from 

plant I to distribution centre no. I and II correspondingly. The transportation 

table that resulted is presented below. 
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Table 3. 

Distribution  

Centre 

Plants  

1D  2D   3D   Supply  

1P  1x   2x   2125.18 xx −−  18.25  

2P  125.20 x−   225.16 x−   ( )125.2025.24 x−−  

( )225.16 x−   

24.25  

Demand  20.25  16.25 12.25   

Minimize ( ) ( )12121 25.2025.825.1825.2825.1225.10 xxxxxz −+−−++=   

( ) ( ( ) ( )212 25.1625.2025.2425.1825.1625.24 xxx −−−−+−+  

Constraints are 025.20,025.18 121 −−− xxx  

( ) ( ) 025.1625.2025.24,025.16 212 −−−−− xxx   

Minimize 21 22812.853 xxz −−=   

Subject to constraints: 25.20,25.18 121 + xxx   

25.12,25.16 212 + xxx  

0, 21 xx  

Using graphical method 

The first constraint 25.18, 21 xx  can be shown by plotting the straight 

line .1
25.1825.18
21 =+

xx
 

This cuts a 1x −intercept and 2x −intercept of 18.25 each the area below 

this line symbolizes the feasible region. Similarly, the another constraints are 

depicted by plotting the straight lines corresponding to the equations 

.25.12,25.16,25.20 2121 =+== xxxx  Here, the area below the first two 

lines and beyond the third line represents the feasible are a with regard to 

these three limitations. 
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Graph-1  

As a result, feasible area for given model is as illustrated in graph 1. Co-

ordinates of the extreme points are: A (0, 12.25), B (0, 16.25), C (2, 16.25), D 

(18.25, 0) and E (12.25, 0). The extreme points Z-values are as follows: 

Table 4. 

Extreme Points ( )21, xx  21 22812.853 xxZ −−  

A  (0, 12.25)  583.62  

B  (0, 16.25)  495.62  

C  (2, 16.25)  479.62  

D  (18.25, 0)  707.12  

E  (12.25, 0)  755.12  

Hence the optimum solution is 25.16,2 21 == xx  and minimize 

.62.479=Z  

2. Nonagonal FN: 

Model 1: Consider the following FTP with nonagonal FN: 
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Destinations 

Sources  

1D  2D   3D   

1S   (0,1,2,3,4,5, 

6,7,8)  

(2,3,4,5,6,7, 

8,9,10)  

(-6,1,2,3,4,5,6,7,8)  

2S   (-1,0,1,2,3, 

4,5,6,7)  

(3,4,5,6,7,8, 

9,10,11)  

(1,2,3,4,5,6,7,8,9  

and the fuzzy availability of the supply are (-6,1,2,3,4,5,6,7,8), 

(1,2,3,4,5,6,7,8,9) and the fuzzy availability of the demand are                         

(-2,-1,0,1,2,3,4,5,6), (-1,0,1,2,3,4,5,6,7), (0,1,2,3,4,5,6,7,8) respectively. 

Solution: 

Create the fuzzy transportation table for the given problem 

Table 1. 

Destinations  

Sources  

1D  2D  3D  Supply 

1S   (0,1,2,3,4, 

5,6,7,8)  

(2,3,4,5,6, 

7,8,9,10)  

(-1,0,1,2, 

3,4,5,6,7)  

(-6,1,2,3, 

4,5,6,7,8)  

2S  (-0,1,2,3, 

4,5,6,7)  

(3,4,5,6,7, 

8,9,10,11)  

(1,2,3,4,5, 

6,7,8,9)  

(1,2,3,4,5, 

6,7,8,9  

Demand  (-2,-1,0,1, 

2,3,4,5,6)  

(-1,0,1,2,3, 

4,5,6,7)  

(0,1,2,3,4, 

5,6,7,8)  

 

Using ranking function (2.5.2)  

Table 2. 

Destinations  

Sources  

1D  2D  3D  Supply 

1S   13  19  10  14  

2S  10  22  16  16  

Demand  7  10  13  
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The problem is converted into a linear programming problem (LPP).  

Formulation of LP model:  

Key decision is to find the quantities that are transferred from each 

source to each location. Let 21, xx  be the quantity of transported from source 

1S  to destination no. 1D  and 2D  correspondingly. The transportation table 

that resulted is presented below. 

Table 3. 

Destinations  

Sources  

1D  2D  3D  Supply 

1S   1x  2x  2114 xx −−  14 

2S  17 x−  210 x−  ( )1716 x−−   

( )210 x−−  

16 

Demand  7 10 13  

Minimize ( ) ( ) ( )212121 102271014101913 xxxxxxz −−+−+−−++=   

( ( ) ( )21 1071616 xx −−−−+  

Constraints are ,07,014 121 −−− xxx  

( ) ( ) ,010716,010 212 −−−−− xxx  

Minimize 41439 21 ++= xxz  

Subject to constraints: ,70,14 2121 ++ xxxx  

,100,1 2121 ++ xxxx  

0, 21 xx  

Using graphical method. 

The first constraint 14, 21 xx  can be shown by plotting the straight 

line .1
1414

21 =+
xx

 This cuts a 1x −intercept and 2x −intercept of 6 each the 

area below this line symbolize the feasible region. Similarly, the another 

constraints are depicted by plotting the straight lines corresponding to the 
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equations .1,10,7. 2121 =+== xxxx  Here, the area below the first three 

lines and beyond the fourth line represents the feasible area with regard to 

these three limitations. 

 

Graph-2  

As a result, feasible area for given model is as illustrated in graph 2.Co-

ordinates of the extreme points are: A (1, 0), B (0, 1), C (0, 10), D (4, 10), E (7, 

6.1) and F (7,0). The extreme points Z-values are as follows. 

Table 4. 

Extreme Points  ( )21, xx   41439 21 ++= xxZ   

A  (1, 0)  423  

B  (0, 1)  417  

C  (0, 10)  444  

D  (4, 10)  480  

E  (7, 6.1)  495.3  

F  (7, 0)  477  

Hence the optimum solution is 1,0 21 == xx  and minimize .417=Z   
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6. Conclusion 

In this paper, transportation problem having the cost, supplies and 

demands which are represented by HFN and NFN have been studied. A LP 

approach is applied to solve the same after converting it to a crisp form and 

the optimum solution is obtained by the given methodology. Some numericals 

have been solved. After comparison, it was found that, the results obtained by 

graphical method of LP approach are more promising than the results 

obtained by column minima method. 

Table 5. Comparison table. 

Examples  Methods  Minimize Z  

1 (HFN)  Column Minima Method  558.12  

 Graphical Method 479.62  

1 (NFN)  Column Minima Method  216.25  

 Graphical Method 209.5  
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