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Abstract 

Conceptualisation and characterization of fuzzy prime ideals in near-subtraction 

semigroups is already carried out. We, in our paper, introduce the concept of anti-fuzzy prime 

ideals in near-subtraction semigroups. Further, we explore some of its properties. 

Introduction 

The concept of fuzzy set was introduced by Zadeh [2]. Since then, these 

ideas have been applied to other algebraic structures such as semigroups, 

rings, near-rings, subtraction semigroup etc. In [3], Dheena and Mohanraj 

applied the concept of fuzzy sets to prime ideals in subtraction algebra. They 

proved various interesting results. In [4], Nagaiah Thandu and Narasiman 
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Swamy introduced the concept of anti-fuzzy ideals of near-subtraction 

semigroups and obtained useful results on it. In this paper, we introduce the 

concept of anti-fuzzy prime ideals in near-subtraction semigroups and explore 

some of its characteristics. 

Preliminaries 

Definition 2.1. A fuzzy subset is the mapping  from the non-empty set 

X into the unit interval [0, 1]. 

Definition 2.2. A fuzzy subset  of X is called an anti-fuzzy ideal of X if 

(i)       .,max yxyx   

(ii)    ,yxy   

(iii)    ,xxy   for every ., Xyx   

A fuzzy subset with (i) and (ii) is called an anti-fuzzy left ideal of X, 

whereas a fuzzy subset with (i) and (iii) is called an anti-fuzzy right ideal of 

X. 

Definition 2.3. Let  and  be any two fuzzy subsets of X. Then its anti-

product   is defined by,  
     



 

 

otherwise.0

if,maxinf yzxzy
x yzx   

Definition 2.4. For any fuzzy subset  in X and  .1,0t  We define an 

lower t-level cut (anti-level cut) of  is defined by,    tL ,   

  ., txXxx   

Definition 2.5. Let I be a subset of X. Define an anti-characteristic 

function  1,0:  AcA
 by,   ,

otherwise1

if0



 


Ax

xcA
 for every .Xx   

Anti-fuzzy Prime Ideals in Near-subtraction Semigroups 

Definition 3.1. A anti-fuzzy ideal  is called a anti-fuzzy prime ideal of X 

if for any two anti-fuzzy ideals  and  of X such that   (or) 

.  

Example 3.1.1. Let  zyxX ,,,0  with “–” and “” are defined as, 
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– 0 x y z 

0 0 0 0 0 

x x 0 x 0 

y y y 0 0 

z z y x 0 

 

– 0 x y z 

0 0 0 0 0 

x 0 x 0 x 

y 0 0 y y 

z 0 x y z 

Let ,  and  be fuzzy subsets of X such that,      

        1,5.0,4.0,1.00  zyx  

        1,8.0,6.0,3.00  zyx  

        .1,7.0,5.0,2.00  zyx  

Clearly,  is an anti-fuzzy prime ideal of X. 

Example 3.1.2. Let  3,2,1,0X  with “–” and “” are defined as, 

– 0 1 2 3 

0 0 0 0 0 

1 1 0 1 1 

2 2 2 0 2 

3 3 2 1 3 

 

– 0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 0 0 0 

3 0 1 2 3 

Let ,  and  be fuzzy subsets of X such that, 
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        13,4.02,4.01,00   

        8.03,02,8.01,00   

        .8.03,02,8.01,00   

Clearly,  is not an anti-fuzzy prime ideal of X. 

Theorem 3.2. Arbitrary union of an anti-fuzzy prime ideals of X is also 

an anti-fuzzy prime ideal of X. 

Proof. Let   ii  be the set of all anti-fuzzy prime ideals in X. 

To prove:  


i i  is also an anti-fuzzy prime ideal. Let  and  be 

any anti-fuzzy ideals of X such that ,ii i 
  for some 

.i  Since each i  is an anti-fuzzy prime ideal. Therefore, i  (or) 

,i  for some .i  (i.e.)  


i i  (or) . 


i i  

Theorem 3.3. Arbitrary intersection of an anti-fuzzy prime ideal of X is 

also an anti-fuzzy prime ideal of X. 

Proof. Let   ii  be the set of all anti-fuzzy prime ideals in X.  

To prove:  


i i  is also an anti-fuzzy prime ideal. Let  and  be 

any anti-fuzzy ideals of X such that ,ii i 
  for all .i  

Since each i  is an anti-fuzzy prime ideal. Therefore, i  (or) ,i  

for all .i  (i.e.)  


i i  (or) . 


i i  

Theorem 3.4. If  is an anti-fuzzy prime ideal of X then the finitely 

generated set X  is a prime ideal of X. 

Proof. Assume that  is an anti-fuzzy prime ideal of X.  

By Theorem 2.11 in [1], X  is an ideal of X. To prove: X  is a prime ideal 

of X. Let A and B be any two ideals in X such that . XAB  We have to 

prove  XA  or . XB  Define the fuzzy subsets  and  of X as, 
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 
 

 
 



















By

By
x

Ax

Ax
x

if0

if0

if0

if0
 

By Theorem 2.12 in [1],  and  are anti-fuzzy ideals. Next we verify that 

.  Since  
     



 

 

otherwise0

if,maxinf bcacb
a bca     b    c  

 .0  So Ab   and .Bc   Now, . XABbca  

(i.e.)    .0  aXa  Hence,     ., Xaaa   Thus .  

Since  is a prime anti-fuzzy bi-ideal, so we have that   (or) .  

Suppose .  If , XA  then there exists Ax   such that . Xx  This 

means that    .0 x  Already We know that,     .,0 Xxx   But 

   x 0  and so    .0 x  Now,      .0 xx   Which is a 

contradiction to .  Hence . XA  Similarly, If  ,  then we can 

show that . XB  This shows that X  is a prime bi-ideal of X. 

Theorem: 3.5. Let I be an ideal of X and  be a fuzzy set in X defined by, 

  ,
1

 


otherwise

Ixs
xI  for all Xx   and  .1,0s  Then I  is an anti-

fuzzy prime ideal of X iff I is a prime ideal of X. 

Proof. Suppose I is a prime ideal of X. To prove: I  is a anti-fuzzy prime 

ideal of X. By Theorem 2.12 in [1], I  is an anti-fuzzy ideal of X. 

Let  and  be two anti-fuzzy ideals of X such that .I  

To prove: I  (or) .I  Suppose not, (i.e.) I  and .I   

Then    xx I  and     .,, Xyxyy I   

Now,   sxI   and       1 yxsy III  and so ., Iyx   

Since I is a prime ideal, we have that .Iyx   

Then,    .1 aaI   Since ,cda   where xc   and .yd   

Now, 
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            dcdca
cda




,max,maxinf  

    yx  ,max  

      .1,max ayx III   

Therefore .I  Which is a contradiction. 

Hence, I  is an anti-fuzzy prime ideal of X. 

Corollary 3.6.  Let cI
  be an anti-characteristic function of a subset 

.XI   Then cI
  is an anti-fuzzy prime ideal iff I is a prime ideal of X. 

Theorem 3.7. If  is an anti-fuzzy prime ideal of X then   ,1 c  where c 

denotes the last element of the X. 

Proof. Suppose  is an anti-fuzzy prime ideal of X.  To prove:   .1 c  

Suppose not, (i.e.)   .1 c  Define the fuzzy subsets  and  as, 

   0,  xXx  and  
   

.
otherwise1

0if0



 


x

x  Since  is a constant 

function,  is an anti-fuzzy ideal. Note that,  is the anti-characteristics 

function of .X  By Theorem: 2.12 in [1],  is the anti-fuzzy ideal of X. Since 

   c 00  and      .0 aa   We have that,    and .   Let 

.Xb   WKT,  
     



 

 

otherwise0

if,maxinf cdbdc
b cdb  

Now, we prove,       ,,max bdc   where .cdb   

For this, we consider two cases,   0 x  and   1 x  in the following: 

Case (i) Suppose   .0 x   

Now,              .0,max,max bcdccdc   

Case (ii) Suppose   .1 x  Then    .0 x   

Now, 

        11,max,max  cdc  

   .bcd    
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From this, we conclude that,         bdcb  ,max  and so 

.  Since  is an anti-fuzzy prime ideal, we have   (or) .  

Which is a contradiction to    and .   Hence,   .1 c  

Theorem 3.8. If  is an anti-fuzzy prime ideal of X then,   .2Im   

Moreover,    ,1,Im s  where .10  s  

Proof. Suppose  is an anti-fuzzy prime ideal of X. To prove:  Im  

contains exactly two values. We know that, by previous Theorem 3.7, 

  .1 c  Let a and b be two elements of X such that,   1 a  and   .1 b  

Enough to prove:    .ba   

Part (i) 

Define the fuzzy subsets  and  as, Xx   and Xa   

   ax   and   .
otherwise1

if0



 


ax

x  

By Theorem 2.12 in [1],  and  are anti-fuzzy prime ideals of X. 

Since ,aa  we have    aa  0  and so .   Let .Xz   We know 

that,  
     

.
otherwise0

if,maxinf



 

 
abzba

z abz  If ,ax   then   1 x  

           .11,max,max zabayx   

If ,ax   then   .0 x   

             .0,max,max zabaayx   

From these, we conclude that .  Since  is an anti-fuzzy prime 

ideal, we have   (or) .  Since .   It follows that .   

Now,      .abb   

Part (ii) Now, we construct fuzzy bi-ideals  and  of X,    bx   and  

  .,
otherwise1

if0
Xx

bx
x 



 

  
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As in part (i), we can verify that    .ba   

Thus from parts (i) and (ii), it follows that    .ba   

Theorem 3.9. Let  be an anti-fuzzy ideal in X. Then  is an anti-fuzzy 

prime ideal of X iff each anti-level subset   Im, tt  of  is a prime ideal of 

X. 

Proof. Assume that  is an anti-fuzzy prime ideal of X. 

By Theorem 3.7,  t  is an ideal of X. To prove: t  is a prime ideal of X. 

Let A and B be two ideals in X such that .tAB   Define the fuzzy 

subsets  and  of X as,  


 


otherwise1

if Axt
x  and   .

otherwise1

if



 


Bxt

x  

By Theorem 2.12 in [1],  and  are anti-fuzzy ideals of X. Next we verify 

that .  Since  
    

.
otherwise0

if,maxinf



 

 
bcacb

a bca  

We conclude that     .tcb   So Ab   and .Bc   

Now, tABbca   (i.e.)   .taa t   

Hence     ., Xaaa   Thus .  Since  is an anti-fuzzy 

prime ideal, we have   (or) .  Suppose .  If ,tA   then there 

exists Aa   such that .ta   This means that   ta   (i.e.)   .ta   Now, 

   .ata   Which is a contradiction to .  

Similarly, if ,  then we can show that .tB   This shows that t  is 

a prime ideal of X. 

Conversely, assume that   Im, tt  is a prime ideal of X. To prove:  

is an anti-fuzzy prime ideal. Let  be a fuzzy set in X which is defined by, 

  .
otherwise1

if



 


txt

x  By Theorem 2.12 in [1],  is an anti-fuzzy ideal of X. To 

prove:  is prime. Let  and  be two anti-fuzzy ideals of X such that 

.  Enough To prove:   (or)  .  Suppose    and .   

Then    xx   and         1,  yxXxyy  and also 
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., tyx   Since t  is a prime ideal, we have that .tyx   Then 

  ta   and hence     .taa   Since xccda  ,  and .yd    

Now, 

            dcdca
cda




,max,maxinf  

          .,max,max tyxyx   

Therefore,   .ta   Which is a contradiction. 

Hence  is an anti-fuzzy prime ideal of X. 
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