

SEPARATION AXIOMS VIA OPERATION ON αg -OPEN SETS IN TOPOLOGICAL SPACES

J. J. MERSHIA RABUNI¹ and N. BALAMANI²

¹Research Scholar ²Assistant Professor Department of Mathematics Avinashilingam Institute for Home Science and Higher Education for Women Coimbatore -641043, India E-mail: mershiarabuni@gmail.com nbalamani77@gmail.com

Abstract

The main objective of this paper is to introduce new separation axioms by using αg_{γ} -open sets. In this paper, we define αg_{γ} -separation axioms namely $\alpha g_{\gamma} - T_i(i = 0, 1, 2)$, $\alpha g_{\gamma} - T_i'(i = 0, 1, 2)$ and investigate the relations between them and its characterizations.

1. Introduction

The concept of α -open sets was introduced by Njastad [10] in 1965. Levine [6] introduced the notion of generalized closed sets in topological spaces. Following this, the notion of α -generalized closed sets in topological spaces was introduced by Maki et al. [7] in 1994. The concept of an operation on topological spaces was introduced by Kasahara [5] and also he introduced the concept of α -closed graphs of functions in topological spaces. Jankovic [4] analyzed the functions with α -closed graphs. Following his work, Ogata [11] renamed the operation α as a γ -operation and introduced γ -open sets in

Received October 5, 2020; Accepted November 10, 2020

²⁰²⁰ Mathematics Subject Classification: 54A05, 54A10.

Keywords: Topological space, αg_{γ} -open sets, separation axioms, $\alpha g_{\gamma} - T_i$, $\alpha g_{\gamma} - T'_i$, $\alpha g_{\gamma} - T_{1/2}$ - space.

topological spaces. Later, Basu et al. [3] studied separation axioms with respect to an operation. Al-Swidi and Mohammed [1] examined Separation axioms using kernel set. Asaad [2] defined operation on *g*-open sets and investigated its applications. Recently, Mershia Rabuni and Balamani [8] defined the operation γ on $\tau_{\alpha g}$ and introduced αg_{γ} -open sets in topological spaces.

In the present paper, new types of separation axioms are defined such as $\alpha g_{\gamma} - T_i(i = 0, 1, 2, 1/2)$ and $\alpha g_{\gamma} - T'_i(i = 0, 1, 2)$ spaces by utilizing the concept of αg_{γ} -open sets and their inter-relations are derived.

2. Preliminaries

Throughout this paper (X, τ) signifies a topological space on which no separation axiom is assumed unless otherwise mentioned. Also closure and interior of a subset A are denoted by cl(A) and int(A) respectively.

Definition 2.1 [8]. Let (X, τ) be a topological space. An operation γ on $\tau_{\alpha g}$ is a mapping from $\tau_{\alpha g}$ into the power set P(X) of $X \cdot V \subseteq \gamma(V) \quad \forall V \in \tau_{\alpha g}$, the value of V under the operation γ is denoted by $\gamma(V)$.

Definition 2.2 [8]. A non-empty subset A of (X, τ) with an operation γ on $\tau_{\alpha g}$ is called an αg_{γ} -open set if $\forall x \in A, \exists$ an αg -open set $U^{\mathfrak{z}} x \in U$ and $\gamma(U) \subseteq A$. The collection of all αg_{γ} -open sets in (X, τ) is denoted by $\tau_{\alpha g\gamma}$. The complement of an αg_{γ} -open set is called αg_{γ} -closed.

Definition 2.3 [8]. An operation γ on $\tau_{\alpha g}$ is said to be αg -open if $\forall \alpha g$ -open set U containing $x \in X, \exists$ an αg_{γ} -open set $V^{\mathfrak{g}} x \in V$ and $V \subseteq \gamma(U)$.

Definition 2.4 [8]. Let γ be an operation on $\tau_{\alpha g}$. A point $x \in X$ is said to be an αg_{γ} -closure point of a set A if $\gamma(U) \cap A \neq \phi \forall \alpha g$ -open set U containing x.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 4, February 2022

1792

Definition 2.5 [8]. Let γ be an operation on $\tau_{\alpha g}$. Then $\alpha g_{\gamma} cl(A)$ is defined as the intersection of all αg_{γ} -closed sets containing A.

Definition 2.6 [9]. Let A be a subset of a topological space (X, τ) and γ be an operation on $\tau_{\alpha g}$. A point $x \in A$ is said to be an αg_{γ} -interior point of A if \exists an αg -open set V of X containing $x \circ \gamma(V) \subseteq A$. $\alpha g \operatorname{int}_{\gamma}(A)$ denotes the set of all such αg_{γ} -interior points of A.

Definition 2.7 [9]. Let A be a subset of a topological space (X, τ) and γ be an operation on $\tau_{\alpha g}$. Then αg_{γ} -interior of A is the union of all αg_{γ} -open sets contained in A and it is denoted by αg_{γ} int(A).

Definition 2.8 [9]. Let A be a subset of a topological space (X, τ) and γ be an operation on $\tau_{\alpha g}$. Then αg_{γ} -kernel of A is defined as the intersection of all αg_{γ} - open sets containing A. It is denoted by αg_{γ} - ker(A).

Definition 2.9 [9]. In a topological space $(X, \tau), A \subseteq X$ is an αg_{γ} -generalized closed (concisely αg_{γ} -g.closed) set if $\alpha gcl_{\gamma}(A) \subseteq U$ whenever $A \subseteq U$ and U is αg_{γ} -open in (X, τ) .

3.
$$\alpha g_{\gamma} - T_i(i = 0, 1, 2)$$
 and $\alpha g_{\gamma} - T'_i(i = 0, 1, 2)$ spaces

Definition 3.1. A topological space (X, τ) is called

(a) $\alpha g_{\gamma} T_0$ if for any two distinct points $x, y \in X$, there exists an αg -open set U such that either $x \in U$ and $y \notin \gamma(U)$ or $y \in U$ and $x \notin \gamma(U)$.

(b) $\alpha g_{\gamma} \cdot T'_0$ if for any two distinct points $x, y \in X$, there exists an αg_{γ} - open set U such that either $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$.

Theorem 3.2. If γ is an αg -open operation on $\tau_{\alpha g}$. Then the space (X, τ) is $\alpha g_{\gamma} \cdot T_0$ iff for every pair of distinct points $x, y \in X$, $\alpha gcl_{\gamma}(\{x\}) \neq \alpha gcl_{\gamma}(\{y\})$.

Proof. (Necessity). Consider (X, τ) to be $\alpha g_{\gamma} \cdot T_0$ with two distinct

points x and y. Then there exists an αg -open set U such that either $x \in U$ and $y \notin \gamma(U)$ or $y \in U$ and $x \notin \gamma(U)$. Since γ is αg -open, $\forall \alpha g$ -open set U containing $x \in X$, \exists an αg_{γ} -open set V such that $x \in V$ and $V \subseteq \gamma(U)$. Then $y \in X \setminus \gamma(U) \subseteq X \setminus V$ implies $\alpha gcl_{\gamma}(\{y\}) \subseteq \alpha gcl_{\gamma}(X \setminus V)$. Since $X \setminus V$ is αg_{γ} -closed, $\alpha gcl_{\gamma}(\{y\}) \subseteq X \setminus V$. Now $x \in \alpha gcl_{\gamma}(\{x\})$ and $x \in V$, $x \notin X \setminus V$ which implies $\alpha gcl_{\gamma}(\{x\}) \neq \alpha gcl_{\gamma}(\{y\})$.

(Sufficiency). Suppose that for any pair of distinct points $x, y \in X, \alpha gcl_{\gamma}(\{x\}) \neq \alpha gcl_{\gamma}(\{y\})$. Then there exists some $z \in \alpha gcl_{\gamma}(\{x\})$ and $z \notin \alpha gcl_{\gamma}(\{y\})$ (or $z \in \alpha gcl_{\gamma}(\{y\})$ and $z \notin \alpha gcl_{\gamma}(\{x\})$. Suppose if $x \in \alpha gcl_{\gamma}(\{y\})$, then $\alpha gcl_{\gamma}(\{x\}) \subseteq \alpha gcl_{\gamma}(\{y\})$. This implies $z \in \alpha gcl_{\gamma}(\{y\})$ which gives rise to a contradiction. Therefore $x \notin \alpha gcl_{\gamma}(\{y\})$. Then there exists an αg -open set U containing x such that $\gamma(U) \cap \{y\} = \phi$. Therefore $x \in U$ and $y \notin \gamma(U)$. Hence the space (X, τ) is $\alpha g_{\gamma} \cdot T_0$.

Corollary 3.3. If γ is an αg -open operation on $\tau_{\alpha g}$. Then the space (X, τ) is $\alpha g_{\gamma} \cdot T'_0$ iff for every pair of distinct points $x, y \in X, \alpha g_{\gamma} cl(\{x\}) \neq \alpha g_{\gamma} cl(\{y\})$.

Proof. It follows from the fact that for any subset A of X, $\alpha gcl_{\gamma}(A) = \alpha g_{\gamma}cl(A)$ under the αg -open operation on $\tau_{\alpha g}$ [8] and by Theorem 3.2.

Corollary 3.4. If γ is an αg -open operation on $\tau_{\alpha g}$. Then the space (X, τ) is $\alpha g_{\gamma} \cdot T_0$ iff $\alpha g_{\gamma} \cdot T'_0$.

Proof. Follows from Theorem 3.2 and Corollary 3.3.

Theorem 3.5. The topological space (X, τ) is $\alpha g_{\gamma} \cdot T'_0$ iff for every pair of distinct points $x, y \in X, x \notin \alpha g_{\gamma} \ker \{y\}$ or $y \notin \alpha g_{\gamma} \ker \{x\}$.

Proof. Consider (X, τ) to be $\alpha g_{\gamma} \cdot T'_0$ with two distinct points x and y. Then there exists an αg_{γ} -open set U such that either $x \in U$ and $y \notin U$ or

 $y \in U$ and $x \notin U$. Now $x \in U$ and $y \notin U$ implies $y \notin \alpha g_{\gamma} \ker \{x\}$ or $y \in U$ and $x \notin U$ implies $x \notin \alpha g_{\gamma} \ker \{y\}$. Conversely, consider for every pair of distinct points $x, y \in X, x \notin \alpha g_{\gamma} \ker \{y\}$ or $y \notin \alpha g_{\gamma} \ker \{x\}$. Take $x \notin \alpha g_{\gamma} \ker \{y\}$, which implies $x \notin$ intersection of all αg_{γ} -open sets containing the set $\{y\}$. Therefore there exists an αg_{γ} - open set U containing ybut not x. Similarly $y \notin \alpha g_{\gamma} \ker \{x\}$ implies that there exists an αg_{γ} - open set V containing x but not y. Therefore (X, τ) is αg_{γ} - T'_{0} .

Proposition 3.6. Every αg_{γ} - T'_0 space is αg_{γ} - T_0 but not conversely.

Proof. Consider (X, τ) to be $\alpha g_{\gamma} \cdot T'_0$ with two distinct points x and y. Then there exists an αg_{γ} -open set U such that either $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$ Suppose if $x \in U$ and $y \notin U$. Since U is αg_{γ} -open, there exists an αg -open set V such that $x \in V \subseteq \gamma(V) \subseteq U$ and $y \notin V \subseteq \gamma(V) \subseteq U$. Therefore $x \in V$ and $y \notin \gamma(V)$. Hence (X, τ) is $\alpha g_{\gamma} \cdot T_0$.

Example 3.7. Consider $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then $\tau_{\alpha g} = \tau$. Let $\gamma : \tau_{\alpha g} \to P(X)$ be an operation on $\tau_{\alpha g}$ defined by

$$\gamma(A) = \begin{cases} \{a, c\} & A = \{a\} \\ A & A = \{a, b\} \forall A \in \tau_{\alpha g} \\ X & A = \{a c\} \end{cases}$$

Then $\tau_{\alpha g_{\gamma}} = \{\phi, \{a, b\}, X\}$. Here (X, τ) is $\alpha g_{\gamma} \cdot T_0$ but not $\alpha g_{\gamma} \cdot T'_0$.

Definition 3.8. A topological space (X, τ) is called

(a) αg_{γ} - T_1 if for any two distinct points $x, y \in X$, there exist αg -open sets U and V containing x and y respectively such that $y \notin \gamma(U)$ and $x \notin \gamma(V)$

(b) $\alpha g_{\gamma} \cdot T'_1$ if for any two distinct points $x, y \in X$, there exist $\alpha g_{\gamma} \cdot \text{open}$ set U and V containing x and y respectively such that $y \notin U$ and $x \notin V$.

Theorem 3.9. If every singleton is αg_{γ} -closed then the topological space (X, τ) with the operation γ is αg_{γ} - T_1

Proof. Assume that every singleton is αg_{γ} -closed. Let x and y be two distinct points. Then by assumption, we get two αg_{γ} -open sets $X \setminus \{y\}$ and $X \setminus \{x\}$ containing x and y respectively. Since $X \setminus \{y\}$ and $X \setminus \{x\}$ are αg_{γ} -open, there exist αg -open sets U and V such that $x \in U \subseteq \gamma(U) \subseteq X \setminus \{y\}$ and $y \in V \subseteq \gamma(V) \subseteq X \setminus \{x\}$ which implies $y \notin \gamma(U)$ and $x \notin \gamma(V)$. Therefore (X, τ) is αg_{γ} - T_1 .

Remark 3.10. Converse of Theorem 3.9 need not be true as illustrated in the following example.

Example 3.11. Consider $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, X\}$. Then $\tau_{\alpha g} = P(X) \setminus \{b, c, d\}$. Let $\gamma : \tau_{\alpha g} \to P(X)$ be an operation on $\tau_{\alpha g}$ defined by

$$\gamma(A) = \begin{cases} \{b, c\} & A = \{b\} \\ \{c, d\} & A = \{c\} \\ \{a, d\} & A = \{d\} \forall A \in \tau_{\alpha g} \\ X & A = \{b, c\} \text{ or } \{a, d\} \text{ or } \{b, d\} \\ A & \text{ otherwise} \end{cases}$$

Then $\tau_{\alpha g \gamma} = \{\phi, \{a\}, \{a, b\}, \{a, c\}, \{c, d\}, \{a, d\}, \{a, c, d\}, \{a, b, c\}, \{a, b, d\}, X\}$. Here (X, τ) is $\alpha g_{\gamma} \cdot T_1$ but the singleton set $\{a\}$ is not $\alpha g_{\gamma} \cdot \text{closed}$.

Theorem 3.12. The space (X, τ) is $\alpha g_{\gamma} \cdot T'_1$ iff every singleton is $\alpha g_{\gamma} \cdot closed$.

Proof. Consider (X, τ) to be $\alpha g_{\gamma} \cdot T'_1$ with two distinct points x and y. Then there exist two αg_{γ} -open sets U and V containing x and y such that $y \notin U$ and $x \notin V$. Consequently, $y \in V \subseteq X \setminus \{x\}$ implies $X \setminus \{x\} = \bigcup \{V : y \in X \setminus \{x\}\}$ which is αg_{γ} -open, since the union of αg_{γ} -open sets is αg_{γ} -open. Therefore $\{x\}$ is αg_{γ} -closed. Conversely, assume that every singleton is αg_{γ} -closed. Let x and y be two distinct points. Consequently, $y \notin \{x\}$ and $x \notin \{y\}$ implies y and x belongs to the αg_{γ} -open sets $X \setminus \{x\}$

and $X \setminus \{y\}$ respectively. Therefore (X, τ) is $\alpha g_{\gamma} \cdot T'_1$.

Proposition 3.13. The topological space (X, τ) is $\alpha g_{\gamma} \cdot T'_1$ iff for every pair of distinct points $x, y \in X, x \notin \alpha g_{\gamma} \ker \{y\}$ and $y \notin \alpha g_{\gamma} \ker \{x\}$.

Proof. Similar to the Proof of Theorem 3.5

Proposition 3.14. A topological space is $\alpha g_{\gamma} \cdot T'_1$ iff $\alpha g_{\gamma} \ker \{x\}$ = $\{x\} \forall x \in X$.

Proof. Consider X to be $\alpha g_{\gamma} \cdot T'_1$ and a point x in X such that $\alpha g_{\gamma} \ker \{x\} \neq \{x\}$. Then there exists some $y \neq x$ such that $y \in \alpha g_{\gamma} \ker \{x\}$. By Proposition 3.13, X is not $\alpha g_{\gamma} \cdot T'_1$, which is a contradiction. Therefore $\alpha g_{\gamma} \ker \{x\} = \{x\}$. Conversely, Consider $\alpha g_{\gamma} \ker \{x\} = \{x\} \forall x \in X$. Suppose X is not $\alpha g_{\gamma} \cdot T'_1$, then by Proposition 3.13, for some $y \neq x$ such that $y \in \alpha g_{\gamma} \ker \{x\}$. This implies $\alpha g_{\gamma} \ker \{x\} \neq \{x\}$, which is a contradiction. Hence X is $\alpha g_{\gamma} \cdot T'_1$.

Proposition 3.15. Every $\alpha g_{\gamma} \cdot T'_1$ space is $\alpha g_{\gamma} \cdot T_1$ but not conversely.

Proof. Obvious by Definition 3.8.

Example 3.16. In Example 3.11, the space (X, τ) is $\alpha g_{\gamma} \cdot T_1$ but not $\alpha g_{\gamma} \cdot T'_1$.

Definition 3.17. A space (X, τ) is called

(a) $\alpha g_{\gamma} T_2$ if for any two distinct points $x, y \in X$, there exist a αg -open sets U and V containing x and y such that $\gamma(U) \cap \gamma(V) = \phi$

(b) $\alpha g_{\gamma} \cdot T'_2$ if for any two distinct points $x, y \in X$, there exist a αg_{γ} - open sets U and V containing x and y such that $U \cap V = \phi$.

Theorem 3.18. The following are equivalent for a topological space (X, τ) with an operation γ :

(a) (X, τ) is $\alpha g_{\gamma} - T_2$

(b) For each $x \neq y$ in X, there exists an αg -open set U containing x such that $y \notin \alpha gcl_{\gamma}(\gamma(U))$

(c) For each x in X, $\cap \{ agcl_{\gamma}(\gamma(U)) : U \in \tau_{ag} \text{ and } x \in U \} = \{x\}.$

Proof. (a) \Rightarrow (b) Consider X to be $\alpha g_{\gamma} \cdot T_2$. Then there exist αg -open sets U and V containing x and y such that $\gamma(U) \cap \gamma(V) = \phi$. This implies $\gamma(U) \subseteq X \setminus \gamma(V) \subseteq X \setminus V$. Then $\alpha gcl_{\gamma}(\gamma(U)) \subseteq \alpha gcl_{\gamma}(X \setminus V) = X \setminus V$. Since $y \notin X \setminus V, \ y \notin \alpha gcl_{\gamma}(\gamma(U))$.

(b) \Rightarrow (c) Assume for each $x \neq y$ in X, there exists an αg -open set U containing x such that $y \notin \alpha gcl_{\gamma}(\gamma(U))$. Suppose if for each x in $X, \cap \{\alpha gcl_{\gamma}(\gamma(U)) : U \in \tau_{\alpha g} \text{ and } x \in U\} \neq \{x\}, \text{ then there exists some } y \in \cap \{\alpha gcl_{\gamma}(\gamma(U)) : U \in \tau_{\alpha g} \text{ and } x \in U\}.$ Consequently, $y \in \alpha gcl_{\gamma}(\gamma(U)) \forall \alpha g$ -open set U containing x, which leads to a contradiction.

(c) \Rightarrow (a) Consider that $\cap \{ \alpha gcl_{\gamma}(\gamma(U)) : U \in \tau_{\alpha g} \text{ and } x \in U \} = \{x\}$, for each x in X i.e., for each $x \neq y$ in X, $y \notin \alpha gcl_{\gamma}(\gamma(U)) \forall \alpha g$ -open set U containing x. This implies that $\gamma(U) \cap \gamma(V) = \phi$ for some αg -open set V containing y.

Theorem 3.19. The following are equivalent for a topological space (X, τ) with an operation γ :

(a) (X, τ) is $\alpha g_{\gamma} - T'_2$

(b) For each $x \neq y$ in X, there exists an αg_{γ} -open set U containing x such that $y \notin \alpha g_{\gamma} cl(U)$

(c) For each x in X, $\cap \{ ag_{\gamma} cl(U) : U \in \tau_{\alpha g_{\gamma}} \text{ and } x \in U \} = \{x\}.$

Proof. (a) \Rightarrow (b) Consider X to be $\alpha g_{\gamma} \cdot T'_2$. Then there exist $\alpha g_{\gamma} \cdot$ open sets U and V containing x and y such that $U \cap V = \phi$. This implies

Advances and Applications in Mathematical Sciences, Volume 21, Issue 4, February 2022

1798

 $U \subseteq X \setminus V. \quad \text{Then} \quad \alpha g_{\gamma} cl(U) \subseteq \alpha g_{\gamma} cl(X \setminus V) = X \setminus V. \quad \text{Since} \quad y \notin X \setminus V,$ $y \notin \alpha g_{\gamma} cl(U).$

(b) \Rightarrow (c) Assume for each $x \neq y$ in X, there exists an αg_{γ} -open set U containing x such that $y \notin \alpha g_{\gamma} cl(U)$. Suppose if for each x in $X, \cap \{\alpha g_{\gamma} cl(U) : U \in \tau_{\alpha g_{\gamma}} \text{ and } x \in U\} \neq \{x\}$, then there exists some $y \in \cap \{\alpha g_{\gamma} cl(U) : U \in \tau_{\alpha g_{\gamma}} \text{ and } x \in U\}$. Consequently, $y \in \alpha g_{\gamma} cl(U)$ $\forall \alpha g_{\gamma}$ -open set U containing x, which leads to a contradiction.

(c) \Rightarrow (a) Consider that $\bigcap \{ \alpha g_{\gamma} cl(U) : U \in \tau_{\alpha g_{\gamma}} \text{ and } x \in U \} = \{x\}$, for each x in X i.e., for each $x \neq y$ in X, $y \notin \alpha g_{\gamma} cl(U) \forall \alpha g_{\gamma}$ -open set U containing x. This implies that $U \cap V = \phi$ for some αg_{γ} -open set V containing y.

Proposition 3.20. Every ag_{γ} - T'_2 space is ag_{γ} - T_2 but not conversely.

Proof. Obvious by Definition 3.17.

Example 3.21. Consider $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, X\}$. Then $\tau_{ag} = P(X) \setminus \{b, c, d\}$. Let $\gamma : \tau_{ag} \to P(X)$ be an operation on τ_{ag} defined by

$$\gamma(A) = \begin{cases} A \cup \{c\} & A = \{b\} \\ A \cup \{a\} & A = \{c\} & \forall \ A \in \tau_{\alpha g} \\ gcl(A) & A = \{a, b\} \text{ or } \{a, d\} \text{ or } \{b, d\} \text{ or } \{c, d\} \\ X & \text{ otherwise} \end{cases}$$

Then $\tau_{\alpha g_{\gamma}} = \{\phi, \{a, b\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Here (X, τ) is $\alpha g_{\gamma} - T_2$ but not $\alpha g_{\gamma} - T'_2$.

Definition 3.22. A topological space (X, τ) is called a αg_{γ} - $T_{1/2}$ space if every αg_{γ} - g. closed set of (X, τ) is αg_{γ} - closed.

Remark 3.23. Every αg_{γ} -closed set is αg_{γ} -g.closed [9]. Therefore in αg_{γ} - $T_{1/2}$ space, the collections of αg_{γ} -closed sets coincide with αg_{γ} -g.closed sets.

Theorem 3.24. A topological space (X, τ) is $\alpha g_{\gamma} \cdot T_{1/2}$ with a γ -operation iff $\{x\}$ is $\alpha g_{\gamma} \cdot closed$ or $\alpha g_{\gamma} \cdot open \ \forall \ x \in X$.

Proof. Consider $\{x\}$ to be not ag_{γ} -closed in (X, τ) . Then $X \setminus \{x\}$ is ag_{γ} -g. closed by Theorem 4.11 [9]. Since (X, τ) is ag_{γ} - $T_{1/2}$ space, $X \setminus \{x\}$ is ag_{γ} -closed. Therefore $\{x\}$ is ag_{γ} -open. Conversely, Assume that $\{x\}$ is ag_{γ} -closed or ag_{γ} -open $\forall x \in X$. Let C be ag_{γ} -g. closed. By Theorem 3.47 [8], to prove C is ag_{γ} -closed it is enough to prove that $agcl_{\gamma}(C) = C$. Suppose if $agcl_{\gamma}(C) \neq C$, then there exists a point x such that $x \in agcl_{\gamma}(C) \setminus C$. Then by the hypothesis, $\{x\}$ is ag_{γ} -closed or ag_{γ} -open. Suppose if $\{x\}$ is ag_{γ} -closed, then the ag_{γ} -closed set $\{x\} \subseteq agcl_{\gamma}(C) \setminus C$ which contradicts the Theorem 4.6 [9]. Suppose if $\{x\}$ is ag_{γ} -open, then $\{x\} \cap C \neq \phi$, since $x \in agcl_{\gamma}(C)$ and γ is ag-open. Consequently, we have $x \in C$, which is a contradiction. Hence $agcl_{\gamma}(C) = C$. Therefore C is ag_{γ} -closed.

Proposition 3.25. For a topological space (X, τ) with an operation γ on $\tau_{\alpha g}$, the following are true:

(1) Every αg_{γ} - T_2 space is αg_{γ} - T_1

(2) Every αg_{γ} - T_1 space is αg_{γ} - $T_{1/2}$

- (3) Every αg_{γ} $T_{1/2}$ space is αg_{γ} T'_0
- (4) Every ag_{γ} T'_2 space is ag_{γ} T'_1

Proof. Obvious by Definitions -3.1, 3.8, 3.17 and 3.22.

Remark 3.26. The converse of Proposition 3.25 is not true.

Example 3.27. Consider $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}X\}$. Then $\tau_{\alpha g} = P(X)$. Let $\gamma : \tau_{\alpha g} \to P(X)$ be an operation on $\tau_{\alpha g}$ defined by

$$\gamma(A) = \begin{cases} A \cup \{c\} & A = \{a\} \text{ or } \{b\} \\ gcl(A) & \text{otherwise} \end{cases} \forall A \in \tau_{\alpha g}$$

Then $\tau_{\alpha g_{\gamma}} = \{\phi, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Here (X, τ) is $\alpha g_{\gamma} - T_1$ but not $\alpha g_{\gamma} - T_2$.

Example 3.28. Consider $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then $\tau_{\alpha g} = P(X) \setminus \{\{c\}, \{b, c\}\}$. Let $\gamma : \tau_{\alpha g} \to P(X)$ be an operation on $\tau_{\alpha g}$ defined by

$$\gamma(A) = \begin{cases} cl(A) & c \in A \\ A & \text{otherwise} \end{cases} \quad \forall \ A \in \tau_{\alpha g}$$

Then $\tau_{\alpha g_{\gamma}} = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Here (X, τ) is $\alpha g_{\gamma} - T_{1/2}$ but not $\alpha g_{\gamma} - T_1$.

Example 3.29. Consider $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then $\tau_{\alpha g} = P(X)$. Let $\gamma : \tau_{\alpha g} \to P(X)$ be an operation on $\tau_{\alpha g}$ defined by

$$\gamma(A) = \begin{cases} A & A = \{a, c\} \\ \alpha cl(A) & \text{otherwise} \end{cases} \quad \forall \ A \in \tau_{\alpha g}$$

Then $\tau_{\alpha g_{\gamma}} = \{\phi, \{a\}, \{a, c\}, \{b, c\}, X\}$. Here (X, τ) is $\alpha g_{\gamma} \cdot T'_0$ but not $\alpha g_{\gamma} \cdot T_{1/2}$.

Example 3.30. Consider $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then $\tau_{\alpha g} = P(X)$. Let $\gamma : \tau_{\alpha g} \to P(X)$ be an operation on $\tau_{\alpha g}$ defined by

$$\gamma(A) = \begin{cases} A & A = \{a, b\} \text{ or } \{b, c\} \text{ or } \{a, c\} \\ X & \text{ otherwise} \end{cases} \forall A \in \tau_{\alpha g}$$

Then $\tau_{\alpha g_{\gamma}} = \{\phi, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Here (X, τ) is αg_{γ} - T'_1 but not αg_{γ} - T'_2 .

Theorem 3.31. An $\alpha g_{\gamma} \cdot T'_0 \cdot space(X, \tau)$ with an operation γ on $\tau_{\alpha g}$ is $\alpha g_{\gamma} \cdot T'_2$ iff $\forall x \neq y$ in X with $\alpha g_{\gamma} \ker\{x\} \neq \alpha g_{\gamma} \ker\{y\}$, there exist $\alpha g_{\gamma} \cdot closed$ sets C and D such that $\alpha g_{\gamma} \ker\{x\} \subseteq C$, $\alpha g_{\gamma} \ker\{x\} \cap D = \phi$, $\alpha g_{\gamma} \ker\{y\} \subseteq D$, $\alpha g_{\gamma} \ker\{y\} \cap C = \phi$ and $X = C \cup D$.

Proof. Consider X to be $\alpha g_{\gamma} \cdot T'_0$ By Theorem 3.5, for every pair of distinct points $x, y \in X, x \notin \alpha g_{\gamma} \ker\{y\}$ or $y \notin \alpha g_{\gamma} \ker\{x\}$. This implies $\alpha g_{\gamma} \ker\{x\} \neq \alpha g_{\gamma} \ker\{y\}$. Then by the hypothesis, there exist αg_{γ} -closed sets C and D such that $\alpha g_{\gamma} \ker\{x\} \subseteq C$, $\alpha g_{\gamma} \ker\{x\} \cap D = \phi$, $\alpha g_{\gamma} \ker\{y\} \subseteq D$, $\alpha g_{\gamma} \ker\{y\} \cap C = \phi$ and $X = C \cup D$. Hence $X \setminus C$ and $X \setminus D$ are disjoint αg_{γ} -open sets containing $\alpha g_{\gamma} \ker\{y\}$ and $\alpha g_{\gamma} \ker\{x\}$ respectively. Therefore X is $\alpha g_{\gamma} \cdot T'_2$.

Conversely, let X be $\alpha g_{\gamma} \cdot T'_2$ and $\forall x \neq y$ in X with $\alpha g_{\gamma} \ker \{x\} \neq \alpha g_{\gamma} \ker \{y\}$. Then there exist disjoint αg_{γ} -open sets U and V containing x and y such that $U \cap V = \phi$. Since every $\alpha g_{\gamma} \cdot T'_2$ -space is $\alpha g_{\gamma} \cdot T'_1$, by Proposition 3.14, $\alpha g_{\gamma} \ker \{x\} = \{x\}$ and $\alpha g_{\gamma} \ker \{y\} = \{y\}$. Therefore, now $X \setminus U$ and $X \setminus V$ are $\alpha g_{\gamma} \cdot \operatorname{closed}$ sets containing $\alpha g_{\gamma} \ker \{y\}$ and $\alpha g_{\gamma} \ker \{x\}$ respectively such that $(X \setminus U) \cup (X \setminus V) = X$, $\alpha g_{\gamma} \ker \{y\} \cap (X \setminus V) = \phi$, and $\alpha g_{\gamma} \ker \{x\} \cap (X \setminus U) = \phi$.

Proposition 3.32. An $\alpha g_{\gamma} \cdot T'_1$, space (X, τ) with an operation γ on $\tau_{\alpha g}$ is $\alpha g_{\gamma} \cdot T'_2$, iff $\forall x \neq y$ in X with $\alpha g_{\gamma} \ker \{x\} \neq \alpha g_{\gamma} \ker \{y\}$, there exist $\alpha g_{\gamma} \cdot closed$ sets C and D such that $\alpha g_{\gamma} \ker \{x\} \subseteq C$, $\alpha g_{\gamma} \ker \{x\} \cap D = \phi$, $\alpha g_{\gamma} \ker \{y\} \subseteq D$, $\alpha g_{\gamma} \ker \{y\} \cap C = \phi$ and $X = C \cup D$.

Proof. Similar to Theorem 3.31.

References

- L. A. Al-Swidi and B. M. Mohammed, Separation axioms via kernel set in topological spaces, Archives Des Sciences 65(7) (2012), 41- 48.
- [2] B. A. Asaad, Some applications of generalized open sets via operations, New Trends in Mathematical Sciences 5(1) (2017), 145-157.
- [3] C. K. Basu, B. M. Uzzal Afsan and M. K. Ghosh, A class of functions and separation axioms with respect to an operation, Hacettepe Journal of Mathematics and Statistics 38(2) (2009), 103-118.

- [4] D. S. Jankovic, On functions with α-closed graphs, Glasnik Matematicki 18(3) (1983), 141-148.
- [5] S. Kasahara, Operation compact spaces, Math. Japonica 24(1) (1979), 97-105.
- [6] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo 19(2) (1970), 89-96.
- [7] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math 15 (1994), 51-63.
- [8] J. J. Mershia Rabuni and N. Balamani, Operation approach on αg-open sets in topological spaces, AIP Conference Proceedings 2385, 130009 (2022); https://doi.org/10.1063/5.0070926.
- J. J. Mershia Rabuni and N. Balamani, Some properties of operations on αg-open sets, Indian Journal of Natural Sciences 12(68) (2021), 34718-34725.
- [10] O. Njastad, On some classes of nearly open sets, Pacific Journal of Mathematics 15 (1965), 961-970.
- [11] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica 36(1) (1991), 175-184.