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Abstract 

In this article, we study on the existence and uniqueness of solutions for a Atangana- 

Baleanu fractional differential equations with dependence on the lipschitz first derivative 

conditions with singularity and involving p-laplacian operator in the Banach’s space. We 

develop a Guo-Krasnoselskii theorem in the frame of Atangana-Baleanu fractional integral. An 

example is given to illustrate the main results and investigate the stability in the sense of 

Ulam.  

1. Introduction 

Fractional calculus has been decrepit as elongated as ordinary calculus, 
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the expedition of research in this field has only enormously heightened. Now 

a days, Fractional differential equation have proved to be the valuable tools 

in mathematical modeling. Mathematical modeling have captivate the 

thinking of many researchers in assorted discipline. Particularly fractional 

order model have been interest of many researchers in various fields such as 

Medical and engineering fields aerodynamics, rheology, Cosmology, fusion 

low light, analysis in the nursing bed design evaluation, economic growth 

model [17, 20, 25, 29, 30]. Few of the recent studies on ABC-derivatives such 

as, Jarad et al. investigated a ODE’s in the form of AB derivative [18]. 

Ravichandran et al. [13] discussed in details the AB-fractional integro-

differential equations. Atangana and Koca find the chaos in a simple 

nonlinear system with AB-fractional derivatives [9]. Many researchers give 

attention to the study of existence and uniqueness of positive solution for the 

fractional equation with p-Laplacian operator. In [37], analyzed the solution 

related to the existence of positive solutions for the fractional differential 

equation with the integral boundary conditions and p-Laplacian operator.  

Recently, Pandiyammal and Karthik Raja [34] have studied the following 

ABC-fractional differential equation for the existence of a solution:  
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Where 
DABC

0  is the Atangana Baleanu caputo fractional differential 

operator and            .1,0,,,,,2,1 0 CtutututftuDABC     

To develop this work, we follow [37] to get the existence solution and HU-

stability of the following nonlinear ABC-fractional differential equation with 

p-Laplacian operator:  

Where  2,0k  and consider c and       1,0,, Ctututf D  are 

continuous functions. Then (1) becomes,  
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The D  and kD  are ABC-fractional order differential operators, and 
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  rrr
p

p
2

  is non-linear operator such that 111  qp  and 

.1
qp   Aside the positive solution  tu  of the hinted fractional 

differential equation (2), where   0tu  for  1,0t  (2). Our suggested p-

laplacian ABC-fractional differential equation with the operator, is more 

general than (2).  

Towards on the problem (2), we apply a fixed point theorem of the 

alternative, for contractions on generalized complete metric space to study a 

generalized Ulam-Hyers stability for (2). We formulate the problem to an 

alternate fractional integral form of the problem, based on the classical 

results and kABAB II 00 ,  and a Green function. Incessantly we examine the 

Green function for the application its complexion of positively variation. 

Finally, an example is given to illustrate our main results.  

Definition 1.1. Fractional ABC derivative in Caputo sense of the 

function   babaHu  ,,1  and  in  .1,0  The Caputo Atanganabaleanu 

fractional derivative of u of order  is defined by  
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Where is the Mittag-Leffler function defined by  
 


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zE  

and   0B  is a normalizing function satisfying     .110  BB  The 

Riemann Atangana-Baleanu fractional derivative of u of order  is defined by  
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 Definition 1.2. The fractional AB-integral of the function 

  10,,,1  abbaHu  is given by  
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 Lemma 1.3. The ABC fractional derivative and ABC fractional integral 

of the function u satisfy the Newton-Leibniz formula [31] 

              



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
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1,00 0
1
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   .0 tu  (6) 

Definition 1.4. The Riemann-Liouville fractional integral of a function f 

of order    ,0:,0 f  is given by [24]  
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Where for   ,0Re   we have  

  

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0

1 .dsse s  (8) 

Definition 1.5. The fractional order derivative in Caputo sense for a 

continuous function   0:f  is given by [24]  

 
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For   ,1 kn  where  k  is integer part of such that the integral is well 

defined on  ,0  range.  

Lemma 1.6. For a fractional order   1,,1  nCfnn  the following 

equation is satisfied  

    12
210

  n
ntqtqtqqtftfDI   (10) 

for kq  the for .1,,2,1  nk   Let us consider the well known Guo-

Krasnoselskii theorem for the existence of a positive solution.  

Theorem 1.7. Consider a Banach space Y and let YP   be a cone. 

Suppose that 21, BB  are two bounded subsets of Y such that 

,,0 211 BBB   and the operator   PBBPF 12:   be continuous such 

that [21, 39].  
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  11 BPzifzFzA    and 1BPzifzFz    or  

  12 BPzifzFzA    and     11 BPzifzFzA    or 

Then F has a fixed point in  .12 BBP    

Lemma 1.8. Let p  be the nonlinear p -operator. Then a For 

0,21 21  p  and ,0, 11   then  

      21
2

21 1  p
pp p  (11) 

If 2p  and ,, 21
  then  

      .1 21
2

121  p
pp p  (12) 

Proposition 1.9 [13, 15].   Duf   satisfy the Lipschitz condition. i.e., 

There exist a constant 0k  such that  

      .,, Dvuvukvfuf   (13) 

2. Green Function and Its Properties 

Theorem 2.1. For  2,1,  k  and       1,0,, Ctututf D  such that 

      tuuutf ,00,0, D  is a solution of (2) if and only if  
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Proof. Now we affix the AB-fractional integral operator 
0IAB  on the 

equation (2) and by using the lemma (1.6) then the problem (2) becomes as 

below  
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         .,, 00 ctututfItuD ABKABC
p   D  (16) 

By using the condition    ,00  t
KABC

p tuD  then we have .00 c  

Thus we get  

        .,,0 tututfItuD ABKABC
p D  (17) 

Then we have from the equation (17)  

        .,,0 tututfItuD AB
p

KABC D  (18) 

kAB I  and by apply the lemma (1.3)  
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q
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And by using the condition from (2)   ,01 u   
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By using the equations (19) and (20) we get  
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Lemma 2.2. The function  stk ,  defined by the equation (15), which 

satisfy  

(C1)  stk ,0   for all  ;1,0, ts   

(C2) The function  stk ,  is a decreasing multivalued function and 
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     sts k
t

k ,max,0 1,0    and   

(C3) Based on the assumption of ,5.00 1  kt  for 
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t
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1  
   for  .1,0, ts  

Proof. First we prove (C1), we assume two cases.  

Case 1. For .ts   
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Case 2. For st   we have  
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From the equation (23), and (24), it is shown that   0, stk  for all 

.1,0  ts   

To examine the proof of (C2)  

Case 1. For .ts   
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Case 2. For, st   we evaluate  
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 
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From equation (25) and (26) we have   0, 



st

t
k  for  ,1,0, ts  

which implies that the Green function  stk ,  decreasing with respect to t.  

For st   we get  
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In the same for ,ts   we have  
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For (C3), we have two cases,  
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2

1
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Case 2. For ,ts   then  
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From the equations (29) and we proved the assumption (C3)  □ 
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3. Existence of Solutions 

Let us consider the Banach space  1,0CX   with the norm 

    Xutuu t   :max 1,0  and let H be a nonnegative cone in the 

space X where     .1,0,:   tuttuXuH   

Let         ruHurBrBuHurB  :,:  by using the 

theorem (2.1), the solution of equation (2) is given by  

          


1

0
0 ,,, dstututfIsttu AB

q
k D  (31) 

Consider the function XHF 0\:  by  

          


1

0
0 ,,, dstututfIsttFu AB

q
k D  (32) 

Thus  tu  is equivalent to a fixed point of F, implies that  

   .tFutu   (33) 

Here we assume the following assumptions  

(R1)     ,01,0:N  is discontinuous on  1,0  and nonvanishing and 

    ;max 1,0   tNN t   

(R2) Let  1,0Cu   and  JJPCJf ,1   is a piecewise continuous 

function and there exists a positive constants 21, MM  and W such that  

     212112211 ,,,, vvuuvutfvutf  M-  (34) 

for each 2121 ,,, vvuu  in  0,0,max, 2 tfY RtM  and 

 .,max 21 MMM   Let  XRCY ,  be the set of continuous functions on 

R with in the Banach space X values  

 (R3) Let  baCu ,  satisfy the Lipschitz condition. i.e., There exists a 

positive constants 21, NN  and N such that 

     ,,, 1 vuvtut  NDD  



U. KARTHIK RAJA, V. PANDIYAMMAL and D. SWATHI 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022 

3728 

for all vu,  in  0,max2 tY Dt DN   and  .,max 21 NNN    

(R4) For each ,0  Let   YuYuB  :  then B  is clearly 

bounded, closed and convex subset in   .,1,0 RC   

Lemma 3.1. If (R1) and (R3) are satisfied, then the estimate  

        vuttvtuuttu  NDDNND ,21  are satisfied for 

any Rt   and ., Yvu   Take is  .tNM    

Theorem 3.2. If the conditions (R1)-(R4) are satisfied and 
2

1
0 1  kt  

then the function F is completely continuous operator.  

Proof. For every    12 rBrBu   from the lemma (2.2) and the equation 

(32) we get, 

          


1

0
0 ,,; dstututfIsttFu AB

q
k D  

        


1

0
0 ,,,0 dstututfIs AB

q
k D  (35) 

and  

          


1

0
0 ,,, dstututfIsttFu AB

q
k D  

        
 

1

0
0

1 ,,,0 dstututfIst AB
q

kk D  (36)  

by using the equation (35) and (36) we get on with  

     1,0,1   ttFuttFu k  (37) 

Which implies that     .: 12 HrBrBF   Next we prove that F is 

continuous, we prove that     0 uFuF n  as n  as follows:  

            


1

0
0 ,,, dstututfIsttFutFu nn

AB
q

k
n D  
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        


1

0
0 ,,, dstututfIst AB

q
k D  

        


1

0
0 ,,, tututfIst nn

AB
q

k D  

       dstututfIAB D,,0
  (38) 

by using the equation (38) and the continuity of f we get 

    0 tFutFun  as ,n  this shows that F is continuous. Here for 

the uniformly continuous of F by equation (22) and the assumption (R2), we 

get  

          


1

0
0 ,,, dstututfIsttFu AB

q
k D  

 
 

     







1

0
,,

1
, tututf

B
st q

k D  

   
      dstututfI

B a 





  D,,  

 
 

     







1

0
,,

1
,0 tututf

B
s q

k D  

   
     dstututfI

B a 






  D,,  

 
 

  

 





1

0

1
, utu

B
st q

k NM  

   
    dsIutu

B a 





 NM  

   
     

  dsIu
B

u
B

ts aq
k















 


1

0

1
,0 NM  

 
 

 
   





















 ds
BB

s q
k 011

,0
1

0
  (39) 

From the equation (38) the function F is uniformly bounded. By using the 
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assumption (R3), Theorem (2.1) and (3.2), the operator F is equicontinuity, for 

any  ,1,0, 21 tt   we have 

            


1

0
110121 ,,, dstututfIsttFutFu AB

q
k D  

        


1

0
2202 ,,, dstututfIst AB

q
k D  

 
 

     







1

0
111 ,,

1
, tututf

B
st q

k D  

   
     dstututfI

B a 





 

11 ,, D  

 
 

     







1

0
222 ,,

1
, tututf

B
st q

k D  

   
     dstututfI

B a 





 

22 ,, D  

 
 

  

 





1

0
1

1
, ut

B
st q

k NM  

   
    dsIut

B a 





 NM  

 
 

  

 





1

0
2

1
, ut

B
st q

k NM  

   
    dsIut

B a 





 NM  

 
   

 
     

 
   









































BBkkB

at

kkB

at
q

kk
01121  (40) 

The equation (40) tends to zero because .21 tt   Thus the function 

operator     HrBrBF 12 \:  is an equicontinuous operator. From the 

Arzela Ascoli theorem the function operator is compact. This completes the 

proof the function operator F is compact in    .\ 12 rBrB  
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Therefore     HrBrBF 12 \:  is completely continuous.  □ 

Now we define the height     tututf D,,  for 0r  and  

         

         















.:,,min,

:,,max,

1
1,0min

1
1,0max

rurttututfrt

rurttututfrt

k
t

k
t

D

D
 (41) 

Theorem 3.3. Let (R1)-(R4) clinch true and there exist  21,  such 

that          
1

0
1min011 ,,0 dsIs AB

q
k  and    

       
1

0
1min0 ,,0 dsIs AB

q
k   

or 

         
1

0
11min02 ,,0 dsls AB

q
k  

and  

       
1

0
2min02 ,,0 dsls AB

q
k  

is satisfied. Then, the ABC-fractional differential equation with operator p  

(41) has a positive solution Hu   and .21  u   

Proof. By using the generality consider the case  .1  If  1 Bu  then 

we have 1u  and  1,0,11
1  tutk  by using the equation (41) 

for         tututfutt D,,,,1,0 min   we get  

 
 

 
 

     









1

01,0
,,

1
,max tututf

B
sttFu q

k

t
D  

   
     dstututfl

B a 





  D,,  

 
 

     





 

1

0

1 ,,
1

,0 tututf
B

st q
kk D  
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   
       dsItututf

B a 





 D,,  

   
 

  

 





1

0
1min1 ,

1
,,0 t

B
ts q

k  

   
    dsdt

B 








 




0

1
1min ,  

u 1  (42) 

Let  2 Bu  then 2u  and 22
1  utk  for 10  t  by 

using the equation (41) for         tututfutt D,,,,1,0 max   which 

implies  

 
 

 
 

     









1

01,0
,,

1
,max tututf

B
sttFu q

k

t
D  

   
     dstututfI

B a 





  D,,  

 
 

     





 

1

0

1 ,,
1

,0 tututf
B

st q
kk D  

   
       dsItututf

B a 





 D,,  

   
 

  

 





1

0
1max1 ,

1
,,0 t

B
ts q

k  

   
    dsdt

B 








 




0

1
1max ,  

u 2  (43) 

From the lemma (1.7) has a fixed point    .0\1 BB  By lemma (2.2) and 

theorem (2.1) we have bua   which yields that 

  011   kk tauttu  for  .1,0t  Hence u is a positive solution.  □ 
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4. Stability Analysis 

The stability analysis of fractional equations for the stability group of 

homomorphism it is proposed by an open question of Ulam. If for a group of 

homomorphism    21: CCf   between the group  1C  and a metric group 

 2C  which is satisfying         yfxfxyfd  for all  1, Cyx   and then 

there exists a homomorphism    21: CCg   with      1, ygxfd  for 

 1Cx   otherwise if we have an almost homomorphism then we get the 

small error.  

In this section we investigate the nonlinear p  operator for the problem 

(2) based on the Hyersulam stability for the ABC-fractional differential 

equation.  

Definition 4.1. The equation (31) hyers Ulam stability for every ,0   

there exists a constant 0C  such that the following be true if  

            

 dstututfIsttu AB
q

k D,,, 0

1

0
  (44) 

there exists  th  satisfying that  

          dsththtfIstth AB
q

k D,,, 0

1

0



    (45) 

such that  

    . Cthtu  (46) 

Theorem 4.2. The singular ABC fractional differential equation with 

delay and p  operator, the problrm (2) hyersulam stability provided that 

(R1)-(R4) are satisfied.  

Proof. By theorem (3.1) and definition (4.1) and let  tu  be a solution of 

the fractional Differential equation with delay (31). Let  tx  be a solution of 

the ABC-fractional DE with delay (3.1) and  ty  be an approximate solution 

and satisfying (45). Then, we have  
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              

 dstututfIstthtu AB
q

k D,,, 0

1

0
  

        dsththtfIst AB
q

k D,,, 0

1

0



    

 
 

     







1

0
,,

1
, tututf

B
st q

k D  

   
       dstututft

B 








 


1

0

1
,, D  

 
 

     







1

0
,,

1
, ththtf

B
st q

k D  

   
       dsdththtft

B 








 


1

0

1
,, D  

   
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Thus equation (47) is Hyers-Ulam stable. Then the singular ABC-

fractional differential equation with delay and the p  operator in the 

equation (2) is Hyers-Ulam stable. □ 
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5. Example 

In this section we give an example which is based on the result in the 

section (3) and (4) is provided  
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2
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Now we consider  
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This is the height function. Then for  ,1,0t   we have  
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100

1
5802446.0   (52) 

Based on the theorem (3.3) and the equation (48) (\ref{example}) has a 

solution and it satisfied .1
100

1
 u    
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