

DECOMPOSITION OF GRID GRAPHS $P_4 \square P_m$ **AND** $P_5 \square P_m$ **INTO STARS**

M. SUBBULAKSHMI and I. VALLIAMMAL

Associate Professor of Mathematics G.V.N. College, Kovilpatti, Thoothukudi Tamil Nadu-628502, India

Part-time Research Scholar Assistant Professor (T) of Mathematics Manonmaniam Sundaranar University Tirunelveli-12, Tamil Nadu, India Research centre: G.V.N College, Kovilpatti Affiliated to Manonmaniam Sundaranar University, Tirunelveli-12, India E-mail: valli.vasanthi@gmail.com

Abstract

Let G = (V, E) be a simple and finite graph. A grid graph $P_n \square P_m$ is a graph with vertex sets and edge sets by $V(P_n \square P_m) = \{u_{i, j}/1 \le i \le n, 1 \le j \le m\}$ and $E(P_n \square P_m) = \{e_{i, j} = u_{i, j}u_{i, (j+1)}/1 \le i \le n, 1 \le j \le m-1\} \cup \{f_{i, j} = u_{i, j}u_{(i+1), j}/1 \le i \le n-1, 1 \le j \le m\}$. The decomposition of the grid graph is denoted by $D(P_n \square P_m)$. In this paper, we discuss the decomposition of the grid graph $P_n \square P_m$ into stars when n = 4 and 5.

1. Introduction

The decomposition of grid graphs $P_2 \square P_m$ and $P_3 \square P_m$ have already been discussed in [11]. In this paper, we discuss the decomposition of grid graph $P_m \square P_m$ into stars when n = 4 and 5.

2020 Mathematics Subject Classification: $05{\rm C70}.$

Keywords: Grid graph, decomposition, Cartesian product, corona product, stars. Received October 23, 2021; Accepted November 28, 2021

2. Decomposition of the grid graph $P_4 \square P_m$ into stars

In this section, we investigate the decomposition of the grid graphs $P_4 \square P_m$ into stars.

Theorem 2.1. The grid graph $P_4 \square P_m$, $m \ge 3$ can be decomposed into the following ways:

$$D(P_4 \square P_m) = \begin{cases} (8d-3)S_3, 2dS_1 \text{ and } (d-1)S_2, & n = 4d-1, d = 1, 2, 3, \dots \\ (8d-1)S_3, 2(d+1)S_1 \text{ and } dS_2, & n = 4d, d = 1, 2, 3, \dots \\ 8dS_3 \text{ and } (2d+1)S_1 \text{ and } (d+1)S_2, & n = 4d+1, d = 1, 2, 3, \dots \\ (8d+1)S_3, (2d+1)S_1 \text{ and } (d+3)S_2, & n = 4d+2, d = 1, 2, 3, \dots \end{cases}$$

Proof. Let $V(P_n \square P_m) = \{u_{i,j} | 1 \le i \le 4, 1 \le j \le m\}$ and $E(P_n \square P_m)$

$$= \{e_{i, j}/1 \le i \le 4, 1 \le j \le m-1\} \bigcup \{f_{i, j} = u_{i, j}u_{(i+1), j}/1 \le i \le 3, 1 \le j \le m\}.$$

Case 1. If n = 4d - 1, d = 1, 2, 3, ...

Claim. The grid graph $P_4 \square P_m$ is decomposable into $(8d-3)S_3$, $2dS_1$ and $(d-1)S_2$, d = 1, 2, 3, ...

By applying Lemma 4.1 [11], the grid graph $P_3 \square P_3$ is decomposed into $4S_3$. By applying Lemma 4.3 [11], the graph $P_3 \odot 2K_1$ is decomposed into $2S_3$ and S_2 . By applying Lemma 4.2 [11], the comb graph $P_m \odot K_1$ is decomposed into $(2d-1)S_3$ and $2dS_1$, where = 4d-1, d = 1, 2, 3, ...

Then, the grid graph $P_4 \square P_m$ consists of d copies of disjoint grid graph $P_3 \square P_3$, (d-1) copies of disjoint graph $P_3 \odot 2K_1$ and a comb graph $P_m \odot K_1$. Therefore, the grid graph $P_4 \square P_m$ decomposes into d copies of $4S_3$, (d-1) copies of $[2S_3 \text{ and } S_2]$, and a copy of $[(2d-1)S_3 \text{ and } 2dS_1]$ where m = 4d - 1, $d = 1, 2, 3, \ldots$ That is, the grid graph $P_4 \square P_m$ decomposes into $4dS_3 + (d-1)2S_3 + (d-1)S_2 + (2d-1)S_3 + 2dS_1$. Hence, the grid graph $P_4 \square P_m$ can be decomposed into $(8d-3)S_3, 2dS_1$, and $(d-1)S_2$.

Case 2. If n = 4d, d = 1, 2, 3, ...

Claim. The grid graph $P_4 \square P_m$ is decomposable into $(8d-2)S_3$, $2(d+1)S_1$ and dS_2 , d = 1, 2, 3, ...

By applying Lemma 4.1 [11], the grid graph $P_3 \square P_3$ is decomposed into $4S_3$. By applying Lemma 4.3 [11], the graph $P_3 \odot 2K_1$ is decomposed into $2S_3$ and S_2 . By applying Lemma 4.2 [11], the comb graph $P_3 \odot K_1$ is decomposed into S_3 and $2dS_1$. By applying Lemma 4.2 [11], the comb graph $P_m \odot K_1$ is decomposed into $(2d-1)S_3$, $2dS_1$ and S_2 , where = 4d, d = 1, 2, 3,

Then, the grid graph $P_4 \square P_m$ consists of d copies of disjoint grid graph $P_3 \square P_3$, (d-1) copies of disjoint graph $P_3 \odot 2K_1$, a comb graph $P_3 \odot K_1$, and a comb graph $P_3 \odot K_1$. Therefore, the grid graph $P_4 \square P_m$ decomposes into d copies of $4S_3$, (d-1) copies of $[S_3 \text{ and } S_2]$, a copy of $[S_3 \text{ and } 2dS_1]$, and a copy of $[(2d-1)S_3, 2dS_1 \text{ and } S_2]$ where m = 4d, $d = 1, 2, 3, \ldots$. That is, the grid graph $P_4 \square P_m$ decomposes into $4dS_3 + (d-1)2S_3 + (d-1)S_2 + S_3 + S_1 + (2d-1)S_3 + 2dS_1 + S_2$. Hence, the grid graph $P_4 \square P_m$ can be decomposed into $(8d-2)S_3, 2(d+1)S_1$ and $2S_2$.

Case 3. If n = 4d + 1, d = 1, 2, 3, ...

Claim. The grid graph $P_4 \square P_m$ is decomposable into $8dS_3$, $(2d+1)S_1$ and $(d+1)S_2$, d = 1, 2, 3, ...

By applying Lemma 4.1 [11], the grid graph $P_3 \square P_3$ is decomposed into $4S_3$. By applying Lemma 4.3 [11], the graph $P_3 \odot 2K_1$ is decomposed into $2S_3$ and S_2 . By applying Lemma 4.2 [11], the comb graph $P_m \odot K_1$ is decomposed into $2dS_3$ and $(2d+1)S_1$ where = 4d+2, d = 1, 2, 3, ...

Then, the grid graph $P_4 \square P_m$ consists of d copies of disjoint grid graph $P_3 \square P_3$, d copies of disjoint graph $P_3 \odot 2K_1$, a comb graph $P_m \odot K_1$, and a star S_2 . Therefore, the grid graph $P_4 \square P_m$ decomposes into d copies of $4S_3$, d copies of $[2S_3 \text{ and } S_2]$, a copy of $[2dS_3, \text{ and } (2d+1)S_1]$ and a copy of star S_2 , where m = 4d + 1, $d = 1, 2, 3, \ldots$ That is, the grid graph $P_4 \square P_m$

decomposes into $4dS_3 + 2dS_3 + dS_2 + 2dS_3 + 2dS_1 + S_1 + S_2$. Hence, the grid graph $P_4 \square P_m$ can be decomposed into $8dS_3$, $(2d + 1)S_1$, and $(d + 3)S_2$.

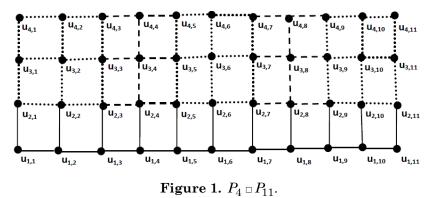
Case 4. If n = 4d + 2, d = 1, 2, 3, ...

Claim. The grid graph $P_4 \square P_m$ is decomposable into $(8d+1)S_3$, $(2d+1)S_1$ and $(d+3)S_2$, d = 1, 2, 3, ...

By applying Lemma 4.1 [11], the grid graph $P_3 \square P_3$, is decomposed into $4S_3$. By applying Lemma 4.3 [11], the graph $P_3 \odot 2K_1$ is decomposed into $2S_3$ and S_2 . By applying Lemma 4.2 [11], the comb graph $P_m \odot K_1$ is decomposed into $2dS_3$, $(2d+1)S_1$ and S_2 where = 4d+2, $d = 1, 2, 3, \ldots$ By applying Theorem 3.1 [11], the ladder graph L_3 is decomposed into S_3 , and $2S_2$.

Then, the grid graph $P_4 \square P_m$ consists of d copies of disjoint grid graph copies of disjoint graph $P_3 \odot 2K_1$, a comb graph $P_m \odot K_1$, and a ladder graph L_3 . Therefore, the grid graph $P_4 \square P_m$ decomposes into d copies of $4S_3$, d copies of $[2S_3 \text{ and } S_2]$, a copy of $[2dS_3, (2d+1)S_1, \text{ and } S_2]$ and a copy of $[S_3 \text{ and } 2S_2]$, where m = 4d + 2, $d = 1, 2, 3, \ldots$ That is, the grid graph $P_4 \square P_m$ decomposes into $4dS_3 + 2dS_3 + dS_2 + 2dS_3 + 2dS_1 + S_1$ $+S_2 + S_3 + 2S_2$. Hence, the grid graph $P_4 \square P_m$ can be decomposed into $(8d+1)S_3, (2d+1)S_1$, and $(d+3)S_2$.

Illustration. Decomposition of a grid graph $P_4 \square P_{11}$ on case 1 is explained through the following Figure 1.



Advances and Applications in Mathematical Sciences, Volume 21, Issue 4, February 2022

Figure 1 represents the decomposition of the grid graph $P_4 \square P_{12}$ into 3 copies of disjoint grid graph $P_3 \square P_3$, 2 copies of disjoint graph $P_3 \odot 2K_1$ and a copy of comb graph $P_{11} \odot K_1$.

All edges of the grid graph $P_3 \square P_3$, the graph $P_3 \odot 2K_1$ and the comb graph $P_{11} \odot K_1$ are differentiated in Figure 1.

Illustration. Decomposition of a grid graph $P_4 \square P_{12}$ on case 2 is explained through the following Figure 2.

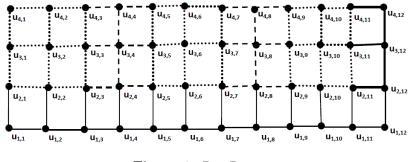


Figure 2. $P_4 \square P_{12}$.

Figure 2 represents the decomposition of the grid graph $P_4 \square P_{12}$ into 3 copies of disjoint grid graph $P_3 \square P_3$, 2 copies of disjoint graph $P_3 \odot 2K_1$, a copy of comb graph $P_3 \odot K_1$ and a copy of comb graph $P_{12} \odot K_1$.

All edges of the grid graph $P_3 \square P_3$, the graph $P_3 \odot 2K_1$, the comb graph $P_3 \odot K_1$, and the comb graph $P_{12} \odot K_1$ are differentiated in Figure 2.

3. Decomposition of the Grid Graph $P_5 \square P_m$ into Stars

In this section, we investigate the decomposition of the grid graph $P_5 \square P_m$ into stars.

Theorem 3.1. The grid graph $P_5 \square P_m$, $m \ge 3$ can be decomposed into (3m-5) copies of disjoint stars S_3 and 5 copies of disjoint stars S_2 .

Proof. Let $V(P_n \Box P_m) = \{u_{i,j} | 1 \le i \le 5, 1 \le j \le m\}$ and $E(P_n \Box P_m)$

 $= \{e_{i, j} / 1 \le i \le 5, 1 \le j \le m - 1\} \bigcup \{f_{i, j} = u_{i, j} u_{(i+1), j} / 1 \le i \le 4, 1 \le j \le m\}.$

Claim. The grid graph $P_5 \square P_m$ is decomposable into $(3m-5)S_3$ and $5S_2$.

By applying Theorem 3.1 [11], the ladder graph L_m is decomposed into $(m-2)S_3$, and $2S_2$. By applying Lemma 4.3 [11], the graph $P_m \odot 2K_1$ is decomposed into $(m-1)S_3$ and S_2 .

Then, the grid graph $P_5 \square P_m$ consists of 2 copies of disjoint ladder graph L_m and a copy of the graph $P_m \odot 2K_1$. Therefore, the grid graph $P_5 \square P_m$ decomposes into 2 copies of $[(m-2)S_3$, and $2S_2]$ a copy of $[(m-1)S_3$ and $S_2]$. That is, the grid graph $P_5 \square P_m$ decomposes into $2(m-2)S_3 + 4S_2 + (m-1)S_3 + S_2$. Hence, the grid graph $P_5 \square P_m$ can be decomposed into $(3m-5)S_3$ and $5S_2$.

Illustration. Decomposition of a grid graph $P_5 \square P_{11}$ is explained through the following Figure 3.

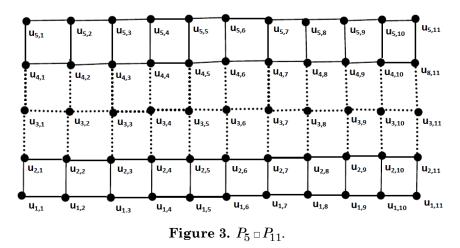


Figure 3 represents the decomposition of the grid graph $P_5 \square P_{11}$ into 2 copies of disjoint ladder graph L_{11} and a graph $P_3 \odot 2K_1$.

All edges of ladder graph L_{11} and a graph $P_3 \odot 2K_1$ are differentiated in Figure 3.

References

- Tay-Woei Shyu, Decomposition of Complete Graphs into Paths and Cycles, ARS Combinatoria 97 (2010), 257-270.
- [2] Tay-Woei Shyu, Decomposition of Complete Graphs into Paths and Stars, Discrete Mathematics 310 (2010), 2164-2169.
- [3] S. Arumugam, I. Sahul Hamid and V. M. Abraham, Decomposition of graphs into Paths and Cycles, Journal of Discrete Mathematics 721051 (2013), 6.
- [4] Tay-Woei Shyu, Decomposition of Complete Graphs into Cycles and Stars, in Graphs and Combinatorics 29 (2013), 301-313.
- [5] L. T. Cherin Monish Femila and S. Asha, Hamiltonian decomposition of wheel related graphs, International Journal of Scientific Research and Review 7(11) (2018), 338-345.
- [6] M. Sujitha, M. Sasikala and R. Mathivanan, A study on decomposition of graphs, Emerging Trends in Pure and Applied Mathematics (ETPAM-2018)-March, 2018.
- [7] Hendy, A. N. Mudholifah and K. A. Sugeng, Martin Baca and Andrea semanicova fenovcikova, On H-antimagic decomposition of toroidal grids and triangulations, AKCE International Journal of Graphs and Combinatorics 01 June 2020.
- [8] Jim Geelen, Bert Gerards and Geoff Whittle, Tangles, tree-decompositions and grids in matroids, Journal of Combinatorial Theory 8 April 2009.
- [9] J. A. Bondy and U. S. R. Murty, Graph theory with applications, The Macmillan Press Ltd, New Yark, (1976).
- [10] West, D.: Introduction to Graph Theory, 3rd edn. Prentice Hall, Saddle River, (2007).
- [11] M. Subbulakshmi and I. Valliammal, Decomposition of Grid Graphs into stars, Proceedings of Icammet-2021, 30 June 2021.