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Abstract 

A new numerical algorithm termed as bivariate simple iteration method (BSIM) for 

nonlinear and coupled systems/PDEs is exercised on unsteady magneto hydrodynamic flow of 

Jeffrey nanofluid past stretching surface taking into account; temperature dependent thermal 

conductivity, non-linear radiation and viscous dissipation. This numerical algorithm involves 

implementation of relaxation on nonlinear system of equations, which is accomplished by taking 

all linear functions to be unknown functions for granted while defining nonlinear functions as 

both known (previously defined initial solution that satisfies the boundary conditions) and 

unknown. Mass transfer is analysed by imposing impact of first order chemical reaction. 

Equations, modeling the flow, are non-dimensionalised by implementing compatible 

transformations and retained in homogeneous form. Convergence of proposed method are 

substantiated by analysing solution and residual errors. It is found to converge rapidly and yields 

accurate results. Analysis reveals that strength of chemical reaction perturbs the diffusion rate, 

resulting a decrease in nanoparticle concentration. 
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1. Introduction 

In vast domain of fluid mechanics, Non-Newtonian fluid has taken 

preeminent position in upbringing of recent technology and substantial 

industrial applications  .7,6,5,4,3,2,1  Different model of non-Newtonian 

fluids are available in literature, because of its diversified constitutive 

relationship that alone cannot characterize all types of non-Newtonian 

fluids. Entire domain of non-Newtonian fluids is mainly classified into these 

three subsets viz. (i) differential type, (ii) rate type and (iii) integral type. 

Fluid currently under consideration lies in rate type fluid, termed as Jeffrey 

fluid which incorporates relaxation and retardation time. Idea of retardation 

of fluid flow was first of all appealed by Jeffery while analysing wave 

propagation in earth’s mantle using Jeffery temperature flux model. The 

time taken by the fluid to restore to its primary stable state is relaxation 

time. Moreover, finding an analytic solution of the governing Navier-Stoke’s 

equations, coupled with energy and concentration equations, describing the 

flow dynamics of non-Newtonian type nanofluid are extremely challenging. 

Nanofluid having a great potential in heat and mass transfer, due to its 

physical structure, apprehends it’s applications in the field of: coal slurries, 

drawing rubber sheets and mixture of clays, coolant in nuclear reactors, X-

rays, computers etc. [8, 9, 10]. Having higher heat absorption rate than its 

base fluid, nanofluid lie under the category of super coolants. Nanofluid 

dramatically boosts thermal conductivity of base liquids, without any 

shortcoming as pressure drop, coagulation, erosion and sedimentation [11, 

12, 35]. This in turn, boosts their performance, ultimately benefits in 

building miniaturized devices having high cooling ability. Theearliest 

observations of thermal conductivity enhancement of nanofluid were 

projected in 1993 by Masuda et al. [13]. The term “nanofluid” was pioneered 

by Choi [14], about a few decades ago, to indicate engineered colloidal fluids 

composed by doping the base fluid with nanoparticles. Theoretically, the 

finer the particles, the bigger the surface area for transferring the heat 

which subsequently enhances the heat-efficiency of suspended particles as a 

function of heat exchange surfaces. A viscoelastic nanofluid partaking an 
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lead on Maxwell’s model because of its characteristics of relaxation to 

retardation time is Jeffrey Nanofluid. In recent years, investigations of 

Jeffrey nanofluid is found to be elevated, because of its more realistic 

behaviour while taking part in various types of practical applications. 

Shahzad et al. [15] conducted a study on flow of Jeffrey fluid with 

nanoparticles at stretching sheet with viscous, Joule and magnetic field 

effects. Abbasi et al. [16] addressed mixed convective flow of magneto 

hydrodynamic Jeffrey nanofluid considering effect of radiation, double 

stratifications. Hayat et al. [17] explored magneto hydrodynamic flow of 

Jeffrey nanofluid sloseby nonlinear stretching surface subjected to 

convective condition and heat generation/absorption. Hayat et al. [18] 

reported a convergent solution of Jeffrey nanofluid flow with actively and 

passively controlled nano-particle concentration at stretching boundary. 

Shehzad et al [19] explored a study on MHD flow of Jeffrey nanofluid at a 

boundary stretching bidirectionally. Magneto hydrodynamic flow of Jeffrey 

nanofluid induced due to exponential stretcthing of boundary was looked by 

Hussain et al. [20]. Abbasi et al. [4] investigated hydromagnetic flow of 

Jeffrey nanofluid on stretching sheet employing conditions on heat and mass 

flux. Bhatti et al. [21] considered effects of coagulation on MHD 

peristaltically generated motion of Jeffrey nanofluid plus gyrotactic 

microorganism. Entropy analysis in convective Poiseulle type flow of 

Molybdenum Disulphide Jeffrey Nanofluid was viewed by Gul et al. [22]. 

Hasona [23] investigated temperature dependent viscosity on peristaltic flow 

of Jeffrey nanofluid on asymmetric channel. Khan et al. [24] disclosed a 

report on heat transfer phenomena of Jeffrey nanofluid at inclined 

stretching sheet using generalised laws of Fourier and Fick. Saleem et al. 

[25] explored a mixed convection of Jeffrey nanofluid adjacent to rotating 

cone with magnetic field and gyrotactic microorganisms. Pal et al. [26] 

presented an analysis dealing entropy generation and radiation of convective 

magneto hydrodynamic Jeffrey nanofluid flow at stretching boundary. Ali et 

al. [27] studied unsteady magneto hydrodynamic rotational flow of Jeffrey 

nanofluid near a plate in porous medium. Recently, Ansari et al. [28] 

reported the effects of temperature dependent thermal conductivity on MHD 

Jeffrey nanofluid stretched flow near a Riga plate. 
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Following the studies  ,36,35,34,33,32,31,30,29  we intend to 

examine the unsteady magneto hydrodynamic Jeffrey nanofluid flow at an 

impulsively stretching surface adding viscous heating and variable thermal 

conductivity. Nonlinear radiation is considered as this is defensible for high 

as well as low temperature variations whereas linear radiation is workable 

only for low temperature variation. First order chemical reactions (assuming 

destructive) are included. Chemical reaction phenomenon appears in 

electrochemistry, chemical industries, hydrolysis, combustion processes and 

electro-plating. To best of author’s knowledge, such model for flow and heat 

characteristics comprising the above effects doesn’t appear in literature. The 

focus of the investigation is also to test the applicability of the proposed 

method (BSIM) on non-linear and coupled PDEs arising in flow problems. 

Description of method in context with considered flow problem is presented. 

Physical interpretation and convergence of numerical scheme are discussed. 

The method is found to be efficient in giving accurate results. Novelty of the 

present work is to introduce bi-variate simple iteration method on the model 

characterising magneto hydrodynamic Jeffrey nanofluid flow over an 

impulsively stretching surface along with simultaneous effects of viscous 

dissipation, variable thermal conductivity and non linear radiation. 

2. Mathematical Formulation 

Flow analysis is carried on variable thermal conductivity, nonlinear 

radiation, chemical reaction and viscous dissipation on unsteady boundary 

layer flow of Jeffrey nanofluid at impulsively stretching sheet in vertically 

upward direction (i.e. x axis). The temperature and nanoparticle 

concentration at surface is considered to be higher than that of free stream. 

A magnetic field B is imposed in normal direction of stretching sheet (i.e. y 

axis). The flow conservation together with boundary layer approximations 

give equations characterising the present problem [20]: 
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where,      yxcc fpp ,1, 11   and  yx,2  are velocity in 

x  and y  directions.   :, yxH  temperature,   :, yxE  nanoparticle 

concentration. ,,,, 21 Bc Dk  and ,HD  are, respectively, ratio of relaxation 

to retardation time, relaxation time, chemical reaction rate, Brownian and 

thermophoresis diffusion. 

Associated conditions are 

,,,0,0,:0 21   EEHHyxt  (5) 
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a is constant. Nonlinear radiation flux : 
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where, :  Stefan-Boltzmann constant, :k  Rosseland absorption 

coefficient. Using (7) in (3), the energy equation (3) takes following form: 
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The equation (1), (2), (8) and (4) can be transformed into equivalent 

partial differential equations using the technique of the similarity solutions. 

Following variables ,  are introduced 

,;1; atey 



  

 (9) 

:  dimensionless time. Taking stream function as   ,fax  and 

           ,,,,,   EEEEHHHH ww  (10) 

where  ,f  is the dimensionless stream function. Variable thermal 

conductivity is considered as    ,1akk  with thermal conductivity 

parameter given by   aa kkk   [37]. The velocity components are 

related to the stream function as .; 21
xy 







  

Making use of above defined transformations, equations (1), (2), (8) and 

(4) looks like 
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and restyled boundary conditions are 

          ,10,,10,,00,0,,10, 



f

f
 

      ,0,,0,,0, 


f
 (14) 

 ,1,,Pr, 2

2








 wa

v

a

B
M  

where, 

 

   

 

  





























































3
1

2
1

2

2

4
,,,

,,

,1,,Pr,

H

ak
R

x

xk
Rc

cf

k

D
Le

HHc
Ec

H

HHD
N

EED
N

a
a

B
M

D
c

B

wp

xwHp
t

wBp
b

w

w

 

where, Dtb RLeEcNNM ,,,,Pr,,  and Rc  are parameters/numbers of, 

respectively, magnetic, Prandtl, Brownian motion, thermophoresis, Eckert, 

Lewis, Radiation and chemical reaction. 

Skin friction ,xCf  Nusselt number xNu  and Sherwood number ,xSh  are 

expressed as: 
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3. Numerical Algorithm 

In this section, we discuss application of proposed bivariate simple 

iteration method (BSIM) on nonlinear system of partial differential 

equations (11)-(13) and its corresponding boundary conditions (14). The 

BSIM involves the implementation of relaxation on nonlinear system of 

equations. This is done by assuming all linear functions to be unknown 

functions while defining nonlinear functions as both known (from a 

previously defined initial solution that satisfies the boundary conditions) and 

unknown. To apply this on nonlinear system, the function with highest 

derivative is made unknown while the other function(s) is (are) assumed to 

be known. We however note that this rule applies only to the functions that 

define the specific equation being solved. For example, the term  in 

equation (12) appears. We apply rules of the BSIM by assuming   to be a 

known function and   to be unknown function. This is done because 

equation (12) represents the energy equation and is defined in terms of  and 

its derivatives. Following the same analogy given, we obtain 
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where coefficient functions in    and    denote scalar and vector 
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functions, respectively and 
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The system    17-15  represents a decoupled system of linear partial 

differential equations which can be solved using various methods. The BSIM 

however, involves the use of Chebyshev spectral collocation method to solve 

the system. Details of Chebyshev spectral collocation method can be obtained 

in following literature Tang [38], Trefethen [39] and Canuto et al. [40]. 

Solving the system    17-15  that is defined on the physical domains 

  ,0  and   ,0  require transformation to finite domains 

 1,1x  and  .1,1t  We approximate the solutions to    txtxf ,,,   

and  tx,  using the Lagrange interpolating polynomials 
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where iL  and jL  are called Lagrange cardinal functions that are defined as 
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We take Gauss-Chebyshev-Lobatto points as grid-points ix  and jt  due to 

their ease in converting continuous time and special derivatives into discrete 

derivatives. The points are given as 
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Differentiation matrices (denoted by D in space and d in time) are used 

to collocate in form 
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where ,F  and  are vectors of the form 
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Applying the representations given by (23) on the decoupled linear system 

(15)-(17), we obtain 
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3.1. Convergence 

We test the convergence of the BSIM by calculating the error between 

solutions of successive iterations. When the error between the solutions 

reaches a point where further increase in iterations has no significant effect, 

we say our method converges. We took 10 grid-points in  and  directions, 

respectively. Grid independent test revealed that these are adequate in 

generating accurate solution. For this the value of parameters is considered 

as ,05.0,2.0,5.0,10,5.0,5Pr,2.0,2.0,1.0  tb NNRdM  

10,2.0  LeEc  and .1.0cR  These values are also used to sketch the 

graphs. The solution error norms are computed as; 

,,,1
max
0 

 irirMi
FFF

t
 

,,,1
max
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 irirMi t
 

.,,1
max
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 irirMi t
 (28) 

 

Figure 1. Solution error of f at .4.0  
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Figure 2. Solution error  at .4.0  

Figures 1 to 3 display the convergence of the BSIM. We observe that the 

error reduces to as little as 4010  as iterations increase in all three figures 

until a certain point where the error seems to stabilize. In Figure 1, we 

observe that convergence occurs after 40 iterations while it takes about 65 

iterations to converge in both figures 2 and 3. This suffices the convergence 

of proposed method. 

 

Figure 3. Solution error norm of  at .4.0  
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Figure 4. Residual of f at .4.0  

3.2. Accuracy 

In verifying the accuracy of BSIM, we calculate the residual error norms 

by substituting the obtained approximate solutions in original system of 

differential equations. Residual error norms are a measure which signifies 

the closeness of approximate solutions to analytical solutions of considered 

system of differential equations. We define the residual error norms as 
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Figure 5. Residual of  at .4.0  

 

Figure 6. Residual of  at .4.0  

It is observed from figures 4 to 6 that the residual errors of numerical 

solutions to the equations 11-13 are about 4010  Coupled with the 

knowledge that few grid points in space and time were used to generate 

these solutions (10 in each), this suggests that the BSIM is an efficient 

method capable of giving accurate solutions with errors small enough. We 

also examine that the residual errors of figures 4 and 5 converge linearly as 

the number of iterations increase while we note that figure 6 shows 

consistent residual error from the start. This is because equation (13) is 

linear in  and its derivatives as the solution for f and  are known before 

solving the third equation. 

4. Result Analysis 

To report the influence of flow parameters on dimensionless velocity 
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 ,,' f  temperature   ,  and nanoparticle concentration   ,  

numerical solution of system of governing differential equations, obtained by 

bivariate simple iteration method BSIM, are replicated in graphs. 

 

Figure 7. Effect of Thermal Conductivity  on . 

 

Figure 8. Effect of Thermal Conductivity  on ’. 

Figures 7 and 8 are the graphical representation of numerical results of 

fluid temperature   ,  and local nusselt number   ,0'  respectively, 

with different thermal conductivity parameter. Figure 7 disclose that the 

effect of thermal conductivity parameter is to enhance the temperature. 

Consequently a significant reduction in heat transfer at the surface is 

observed from figure 8. Coolant materials having small thermal conductivity 

give a faster cooling rate. This result is in agreement with the result 

reported in Srinivas Reddy et al. [41]. 
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Figure 9. Effect of magnetic parameter M on '.f  

 

Figure 10. Effect of magnetic parameter M on . 

 

Figure 11. Effect of magnetic parameter M on '.  
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Figure 12. Effect of magnetic parameter M on '.  

Behaviour of velocity, temperature and concentration profiles for 

different values of M are shown graphically in Figure 9, 10 and 11, 

respectively. One can observe that, with increase in the value of M, there is 

a decrease in velocity profile and an increase in the temperature and 

concentration profiles. Figure 12 conveys a 8 decrease in rate of heat 

transfer with an increase in magnetic parameter, evincing the increase in 

temperature profile observed in the boundary layer. The presence of 

magnetic field across the flow field creates a barrier, termed as Lorentz 

force, which opposes the flow fields and in turn reduces the velocity of the 

fluid proliferating nanoparticle concentration in boundary layer region, 

decreasing the rate of heat flow and increasing the temperature near the 

boundary layer. Figures 13, 14 and 15 constitutes the profiles of velocity, 

temperature and concentration, respectively, for different values of 

relaxation to retardation time .1  The velocity profile appears to reduce 

with an increase in 1  whereas, an increase in temperature and 

concentration is obtained. 
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Figure 13. Effect of relaxation to retardation time parameter 1  on '.f  

 

Figure 14. Effect of relaxation to retardation time parameter 1  on . 

 

Figure 15. Effect of relaxation to retardation time parameter 1  on . 
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Figure 16. Effect of Prandtl Number Pr on . 

Figure 16 represents the consequence due to change in Prandtl number 

on Temperature. The plot shows that with increase in Prandtl number the 

temperature decreases, it concede from the definition of Prandtl number, as 

an increase in Prandtl number reduces the thermal conductivity. From 

Figure 17 and 18, it is clear that, with increase in Prandtl number the 

nanoparticle concentration increases and rate of change in nanoparticle 

concentration flux at surface increases with Prandtl number and time. 

Figure 19 is drawn to illustrate the effects of Eckert number Ec on 

temperature distribution. A gradual upsurge in Eckert number results in an 

increase in the temperature profile. The ratio of advective mass transport 

over heat dissipation is termed as, Eckert number. Thus, an increase in 

Eckert number should result in decreased heat dissipation coercing a rise in 

boundary layer temperature. Figure 20 and 21 depict the swing of boundary 

layer temperature and concentration for distinct values of Lewis number, Le. 

It can be observed from the plots that, with increase in Lewis number both, 

temperature and nanopartical concentration decreases. 

Figure 22 and 23 portrait the trends of  and  profiles, respectively, for 

various values of thermophoretic parameter, .tN  With increase in 

thermophoretic parameter, an increase in temperature and concentration 

near boundary layer is obtained. Figure 24 and 25, reveal the behaviour of  

and  profiles, respectively, for different values of .bN  From Figure 24, it is 

tangible that an increase in ,bN  escalate mutual collision of nanoparticles 

and hence fosters the temperature profile. Moreover, Figure 25, infers that 
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with increase in Brownian motion parameter, there is a depletion of 

nanoparticle concentration boundary layer thickness. 

From Figure 26, it is clear that temperature profile is a decreasing 

function of conduction .DR  As a matter of fact, a proliferation in thermal 

conduction radiation parameter decreases the mean absorption coefficient, 

which enhances the divergence of radiative heat flux. Thus, an increase in 

radiation parameter and a decrease in thermal absorption, culminates to an 

overall decrease in the thermal profile and its allied boundary layer 

thickness. Heat transfer decreases at the sheet drastically for small values of 

conduction radiation parameter DR  (see figure 27). DR  implies no 

radiation effect. Figure 28, shows the influence of parameter Rc, on  profile. 

It is found that, an increase in value of Rc, yields a decrease in nanoparticle 

concentration. Larger values of Rc results in less diffusion, i.e. less chemical 

molecular diffusivity. Therefore, the distribution of concentration profile 

decreases with an increase in reaction parameter. 

 

Figure 17. Effect of Prandtl Number Pr on . 

 

Figure 18. Effect of Prandtl Number Pr on  .,0'   
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Figure 19.  profiles with Ec. 

 

Figure 20. Variation of  profiles with Le. 

Figures 29 and 30 depict the alteration of  and   within boundary layer 

for various values of dimensionless time 0  and 1 ) correspond, 

respectively, initial unsteady and final steady state. It is make out that  and 

 profiles decrease in the boundary region with the increase of distance from 

the stretching surface. 

We notice from figures 29 and 30 that the temperature and 

concentration boundary layer thickness decrease as time progresses until the 

steady state is reached. 

5. Conclusions 

The applicability of bivariate simple iteration method BSIM is studied on 

unsteady boundary layer flow of incompressible Jeffrey nanofluid over an 

impulsively stretching plate combining the effects of variable thermal 

conductivity, nonlinear radiation and chemical reaction. Jeffrey fluid takes 
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into account the impact of the ratio of stress relaxation to retardation times 

and retardation time. The proposed method is shown to be convergent and 

efficient in giving accurate solutions even in few number of grid points. 

Some of the notable findings in present study are listed as 

i. Thermal boundary layer thickness decreases with the increase of ratio 

of relaxation to retardation times. This decrease in the temperature of fluid 

is due to presence of viscous dissipation. 

ii. Fluid temperature and nanoparticle concentration in boundary layer 

region decrease with time. 

iii. Heat transfer decreases with an increase in thermal conductivity 

parameter. 

iv. Strength of chemical reaction modifies the diffusion rate, hence a 

decrease in nanoparticle concentration occurs with chemical reaction 

parameter. 

 

Fgure 21. Impact of Le on . 

 

Figure 22.  profiles with .tN  
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Figure 23. Effect of tN  on . 

 

Figure 24. Effect of bN  on . 

 

Figure 25. Effect of bN  on . 
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Figure 26. Effect of DR  on . 

 

Figure 27. Impact of DR on  .,0'   

 

Figure 28. Effect of Rc on . 
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Figure 29. Impact of  on . 

 

Figure 30. Effect of  on . 
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