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Abstract 

In this paper, we study the characterization of the generalized Kropina metric and it is 

weakly Berwald satisfying the curvature properties of ( ), -metrics which is of isotropic mean 

Berwald curvature. 

1. Introduction 

Finsler spaces with ( ), -metrics have been studied by the many 

authors. But it is a very important aspect of Finsler geometry and its 

application to physics and biology. A Finsler metric on a manifold is a family 
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of norms in tangent spaces, which vary smoothly with the base point. Every 

Finsler metric determines a spray by its systems of geodesic equations. We 

know that if a Finsler metric is affinely equivalent to a Riemannian metric, 

then it is a Berwald metric. Since every Berwald metric can be constructed 

from a Riemannian metric. The S-curvature is the rate of change of the 

distortion along geodesics. In this paper, we investigate the characterization 

of the generalized Kropina metric would satisfies the necessary and sufficient 

conditions in which Finsler space with ( ), -metric is of isotropic mean 

Berwald curvature. 

2. Preliminaries 

Let M be an n-dimensional smooth manifold. We denote by TM  the 

tangent bundle of M and by ( ) ( )ii yxyx ,, =  the local coordinates on the 

tangent bundle .TM  A Finsler manifold ( )FM,  is a smooth manifold 

equipped with a function  ),,0: →TMF  which has the following 

properties: 

• Regularity: F is smooth in  ;0\TM  

• Positively homogeneity: ( ) ( ),,, yxFyxF =  for ;0  

• Strong convexity: the Hessian matrix of ( )
( )

,
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is positive definite on  .0\TM  We call F and the tensor ijg  the 

Finsler metric and fundamental tensor of M respectively. 

For a Finsler metric ( ),, yxFF =  its geodesics curves are characterized 

by the system of differential equations ( ) ,02 =+ cGc ii   where the local 

functions ( )yxGG ii ,=  are called the spray coefficients and given by 

following 
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Definition 2.1. Let F be a Finsler metric on an n-dimensional manifold 

M. 
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(1) F is of isotropic mean Berwald curvature if  

( )
;

2

1 1hcF
n

E −+
=  

(2) F is of isotropic S-curvature if 

( ) ,1 FcnS +=  

where ( )xcc =  is a scalar function on M and h denotes the angular metric 

tensor of F which is defined by .jiyyij FFh =  

Definition 2.2. A Finsler metric is called a Berwald metric if the 

geodesic coefficients of F are quadratic in ( ) .
2

1
, kii

jk
i yyxGy =  Equivalently, 

a Finsler metric F is a Berwald metric if and only if there exists a Riemann 

metric  such that F and  have same geodesic coefficients, .ii GG =  

A Finsler metric is called a Berwald metric if the Berwald curvature 

.0=B  A Finsler metric is called a weakly-Berwald metric if the mean 

Berwald curvature .0=E  

Lemma 2.1[7]. The geodesic coefficients iG  are related to iG  by  

    ,22 0000000
ii

i
ii brsQQs

y
rsQGG +−++


+−+=   (2.1) 

where iG  denote the spray coefficients of  and 
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== xbs  

It is well known that the condition for a Finsler metric to be weakly-
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Berwald metric is .0=r
jkrB  This is equivalent to that rrr

r yGN =  is a 1-

form. By Lemma 2.1 and (2), we have the following. 

Lemma 2.2[8]. An ( ), -metric ( )=F  is a weakly-Berwald metric 

if and only if r
rN  is a 1-form. 

By Lemma 2.1, we get 

,2 0000 NsMrLrNr
r ++=   (2.2) 

where 

( ) ,1 1 r
r

b
y

nL



++= −  

,=M  
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In 2009, Cheng and Z. Shen have obtained the formula for the                 

S-curvature of an ( ), -metric on an n-dimensional manifold M as follows 

Lemma 2.3[2]. The S-curvature of an ( ), -metric is given by 

( ) ( ) ( ) ( )  ,122 00
221

0000 rnsbrsCQsrS ++−+−+++= −   (2.3) 

where 
( )
( ) bbf

bf 
=  is a scalar function on M and ( ) ( ) .122 +−−−= nsbC  

3. Characterization of Weakly Berwald Generalized Kropina Metric 

Theorem 3.1. Let 
m

m

F



=

+1

 be a generalized Kropina metric on an       

n-dimensional manifold M, where m is a real number with .0,1−m  Then F 

is weakly-Berwald metric if and only if .0,0 == iij sr  

Proof. First assume that F is weakly-Berwald metric. 
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For ,
1

m

m

F



=

+

 by Lemmas 2.1 and 2.2 we can get the following 
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 (3.1) 

Plugging (3.1) and (2.2) yields the following equation 

,0246 =+++ DCBA   (3.2) 

where 

( ) ,1 0
43 sbmA +=  

( ( ) ) ( ) ( ) 0
222242

0
243 13112 sbmmNbmmsbnbmB r

r −+++++=  

( ) ,12 0
322

0
23 sbmmsbm −−+  

( ) ( ) ( ) 0
222

0
5422 1112 rbmmsmmNbmmC r

r ++−+−=  

( ) ( ) ( ) ( ) ( )  00
32

0
22 111112 rbmnmmmsnmm ++++−+−+  

( ) ( ) ,431 0
322 sbmm +−+  

( ) ( ) ( ) ( ) ( ) r
rNmmrnmmmD 62

00
522 11111 −+−+−++=  

( ) ( ) .112 0
42

0
52 rmmsmm −−−−  

Assume that r
rN  is a 1-form. Note that the coefficients of  in (3.2) must 

be zero (because even  is a polynomial in iy ). 
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( ) ( ) ( ) 00
522246 111 rnmmmCBA +−+++++  

( ) ( ) ( ) ( ) .011211 0
42

0
5262

=−−−−−+− rmmsmmNmm r
r  (3.3) 

Note that .0,1−m  From (3.3) that 00
5r  can be divided by .2  

Because 5  and 2  are relatively prime polynomials of ( ),iy  there is a scalar 

function ( )x  on M such that 

( ) .2
00 = xr  (3.4) 

Substituting (3.4) into (3.3), we get the following 

( ) ( ) ( ) ( ) 2522246 111 +−+++++ xnmmmCBA  

( ) ( ) ( ) ( ) .11211 0
42

0
5262 rmmsmmNmm r

r −−−−−+=  (3.5) 

It is clear that left hand side of the (3.5) can be divided by .2  Hence r
rN  

can be divided by .2  However, r
rN  is a 1-form. So we obtain 

.0=r
rN  (3.6) 

By (3.4), we have 

( ) .0 = xr  (3.7) 

Plugging (3.4), (3.6), (3.7) into (3.3) yields 

 ( ) ( ) ( ) ( ) 2522246 111 +−+++++ xnmmmCBA  

 ( ) ( ) ( )   .121 4
0

22 −+−= smmxmm  (3.8) 

Since 2  is not divided by ,4  from the equation (3.8), we get 

( ) ( ) ( ) .0121 0
22 =−+− smmxmm  

contracting the above equation by ib  yields 

( ) ( ) ( ) .0121 22 =−+− ii smmbxmm   (3.9) 
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Contract (3.9) with ib  yields ( ) ( ) .01 22 =− bxmm  Since 0,1−m  we 

obtain ( ) .0= x  Therefore, from (3.5), (3.8) and (3.9), we obtain 

.00000 === srr   (3.10) 

Conversely, suppose that the equation 0== iij sr  hold. Then from (2.2) 

we have .0=r
rN  This completes the proof. 

Theorem 3.2. Let 
m

m

F



=

+1

 be an ( ), -metric on an n-dimensional 

manifold M, where m is a real number .0,1−m  Then the following 

conditions are equivalent: 

(1) F is of isotropic S-curvature, ( ) ;1 cFnS +=  

(2) F is of isotropic mean Berwald curvature, ;
2

1 1hcF
n

E −+
=  

(3)  is killing 1-form with =b constant with respect to , that is, 

;0,0 == iij sr  

(4) ;0=S  

(5) F is weakly-Berwald metric i.e., ,0=E  

where ( )xcc =  is scalar function on M. 

Proof. For ,
1

m

m

F



=

+

 by Lemma 2.1 we have the following 
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( )

 ( )
.

1

1
2222

3

−−

−
=

mbm

mm
 (3.11) 

Step 1. In fact, it is clearly true that if F is isotropic S-curvature then it 

implies that F is of isotropic mean Berwald curvature. We assume that (2) 

holds, which is equivalent to 

( ) ( ),1 ++= cFnS   (3.12) 

where  is a 1-form on M. So (1) is equivalent to (2) if and only if .0=  

Plugging (3.11) and (3.12) into (2.3) yields 

( )   ,1
1

3
2

2
4

14
2

3
4

2
6

1 m

m

YYYcnXXXX



+++=+++

+

  (3.13) 

where 

( ) ,1 0
43

1 rbmmX +−=  

( ) ( ) ( ) ( ) ( ) 0
23222242

002 121211 sbnmbmmbmmbmmsrX ++−+++++=  

( ) ( ) ( ) ,1112 42
0

2222 bnmmrbmm ++−−+  

( ) ( ) ( ) ( )  ( )  2
0

22222
00

2
3 1112112 ++−−−−+−= snmmmmbsrmmX  

( ) ( ) ( ) ( ) ,11211 222
00

22
0

42 +−−−−−− bnmmrbmmrmm  

( ) ( ) ( ) ( ) ( ) 00
32

00
224

00
2

4 1111 rnmmrmmsrmX +−−−++−=  

( ) ( ) ,11 22 −+− mn  

( ) ,1 42
1 bmmY +=  

( ) ,12 222
2 −−= bmmY  

( ) .1 22
3 −= mY  

We can rewrite (3.13) as in the following form 

  ( )   .01 1
3

2
2

4
14

2
3

4
2

6
1 =+++−−++ +mmm YYYcnXXXX  

 (3.14) 
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When m is a positive integer, it is easy to see that the term which does 

not include  in (3.14) is just ( ) .1 3cYn +−  Because 2  is not divided by , we 

get .0=c  So 

.04
2

3
4

2
6

1 =+++ XXXX  

When m is a non-zero real number but not a positive integer, we know 

that the left-hand side of (3.14) is a polynomial in , but the term 
m

m



 +1

 is 

not a polynomial in . 

Therefore, we also have 

( ) 04
2

3
4

2
2

1 =+++ XXXX  (3.15) 

In homogeneous of degree one the coefficients of  in (3.15) must be zero 

(because even  is polynomial in iy ). Then (3.15) is equivalent to the 

following two equations 

,02
2

1 =+ XX   (3.16) 

.04
2

3 =+ XX   (3.17) 

This implies that 

( ) ,042
2 =−+ XXX  

where ( ).31 XXX −=  

Then 

( )  ( )  ( )  ( ) 42
00

2
000

2222 1121 bmmsrmrnrbmmX +++−++−+  

( )  ( ) ( ) ( ) .013111 22
00

3242 =−++−+−− mbmrnmmm   (3.18) 

Note .0,1−m  2  and 2  are relatively prime polynomials of ( ),iy  we 

know that 00r  can be divided by .2  That is, there is a scalar function ( )x  

on M such that 
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( ) .2
00 = xr   (3.19) 

Substituting (3.19) in (3.17), we get 

( )  ( ) ( ) ( ) ( )  ( ) 2
00

223222
3 111 +−−+−−+ srmxnxmmX  

( )  .01 2 =+− n  (3.20) 

This implies that ( ) ( ) 012
00 =+−+ nsr  can be divided by .2   

Because 4  and 2  are relatively polynomial in ( ),iy  we know that 

( ) ( )+−+ 12
00 nsr  can be divided by ,2  which is impossible unless 

( ) ( ) .012
00 =+−+ nsr   (3.21) 

From (3.19) we have 

( ) .0 = xr   (3.22) 

Since 0,1−m  and so ( ) 0=+ ii sbx  is contracting by ib  yields  

( ) .02 = bx   (3.23) 

Because 02 b  and ( ) .0,0 = xm  Finally we obtain 

.0,0,0 0000 === rsr   (3.24) 

Hence, by (3.21) finally, we obtain .0=  

Step 2. If F is isotropic mean Berwald curvature then  is killing 1-form 

with b w.r.t . So the proof as same in the step 1. 

Step 3. (3)  (4). By Lemma 2.2 we have 0=S  (when 0,0 000 == sr ). 

Step 4. If F has vanishing S-curvature then F is weakly Berwald metric 

i.e., .0=E  It implies that F is of isotropic S-curvature with .0=c  It implies 

that F is of isotropic S-curvature with .0=c  Therefore we obtain .0=E  

Therefore we obtain .0=E  

Step 5. If F is weakly-Berwald metric then F is of isotropic S-curvature. 

0=E  i.e., F is of isotropic mean Berwald curvature with .0=c  By the 
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equivalence of (1) and (2), we know that F has isotropic S-curvature with 

.0=c  This completes the proof. 

4. Conclusion 

We concluded that generalized Kropina metric can be weakly Berwald if 

it satisfies the Lemma 2.2 [8]. In n-dimensional manifold generalized Kropina 

metric is weakly-Berwald if and only if 0=ijr  and .0=ijs  Then, generalized 

Kropina metric F which satisfied the conditions that F is of isotropic              

S-curvature, isotropic mean Berwald curvature 0=S  and F is weakly 

Berwald metric. 
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