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Abstract 

In this paper we consider fifth order methods for solving nonlinear equations in Banach 

spaces under the same conditions. We use only the first derivatives to extend the usage of these 

methods, where earlier papers require up to the sixth derivative for convergence. Numerical 

examples complete the article. 

1. Introduction 

Let YXDF :  is continuously Frechet differentiable, YX ,  are 

Banach spaces and D is a nonempty convex set. Consider the problem of 

solving equation 
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  .0xF   (1.1) 

Iterative methods are used to approximate solution of equations of the 

type (1.1), since finding an exact solution is possible only in rare cases. 

In this paper we study the convergence of two fifth order methods under 

the same conditions. 

The methods we are interested are: 

By J. R. Sharma et al. [14] 

   nnnn xFxFxy
1

2

1   

   nnnn xFyFxz
1  

       nnnnn zFxFyFzx
11

1 2


    (1.2) 

By A. Cordero et al. [6] 

   nnnn xFxFxy
1  

 nnnn xFAxz 12   

   nnnn zFyFzx
1

1


    (1.3) 

where    .nnn xFyFA   

The efficiency and convergence order was given in [6] (see also [14]) using 

conditions up to the sixth derivative, restricting the applicability of these 

algorithms. 

For example: Let .
2

3
,

2

1
,






 DRYX  Define f on D by 

 









.0if0

0iflog 4523

t

ttttt
tf  

Then, we have ,1t  and 

  .222460log6 22  ttttf  
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Obviously  tf   is not bounded on D. So, the convergence of these 

methods is not guaranteed by the analysis in earlier papers [1-15]. Our 

convergence analysis is based on the first Frechet derivative that only 

appears on the method. 

We also provide a computable radius of convergence also not given in [6, 

14]. This way we locate a set of initial points for the convergence of the 

method. The numerical examples are chosen to show how the radii 

theoretically predicted are computed. In particular, the last example shows 

that earlier results cannot be used to show convergence of the method. Our 

results significantly extends the applicability of these methods and provide a 

new way of looking at iterative methods. 

The article contains local convergence analysis in Section 2 and the 

numerical examples in Section 3. 

2. Local Convergence 

In this section the convergence of methods (1.2) and (1.3) is given. Set 

 .,0 G  

Suppose function: 

(a) 

  10  t  

has a least zero  00 Gr  for some function GG  :0  nondecreasing 

and continuous. Set  .,0 00 rG   

(b) 

  11  t  

has a least zero  001  G  for some function GG  01 :  which is 

nondecreasing and continuous and function GG  01 :  defined by 

 

    

 
.

1

2

1
1

0

1

0

1

0
10

1 t

dtdt

t





 
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(c) 

  1tp  

has a least zero  ,001 Gr  where         .
2

1
100 ttttp   Set 

 102 ,min rrr   and  .,0 21 rG   

(d) 

  12  t  

has a least zero  ,002  G  for some function GG  1:  nondecreasing 

and continuous, and function GG  12  defined as 

 

  

 

        

     
.

11201

1

0

1

0
1100

0

1

0
2 tpt

dttttdt

t












 

(e) 

    120  tt  

has a least zero  .013 Gr  Set  32,min rrr   and  .,02 rG   

  13  t  

has a least zero  ,023  G  where GG  23 :  is defined as 

 
    

   

            

         
 .
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1

2
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1

0
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1

0
2
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dtttttt
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dtt

t 





























 

Set 

  .3,2,1,min  ii  (2.1) 

It shall be proven that  defined by (2.23) is a convergence radius for 

method (1.2). 

By  ,xB  we denote the closure of the open ball  ,xB  with center 

Xx   and of radius .0  
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The conditions (C) are needed provided that x  is a simple solution of 

equation (1.1), and functions “” are as previously defined. Suppose: 

(c1) For each ,Dx   

        .0
1




  xxxFxFxF  

Set  .,1  rxBDD   

(c2) For each ., 0Dyx   

        yxyFxFxF  


1
 

and 

     .1
1




  xxxFxF  

(c3)   ,, DxB   for some 0  to be given later. 

(c4) There exists   satisfying    

1

0
0 .1d  

Set  .,1   xBDD   

Next, condition (C) are used to show the local convergence result for 

method (1.2). 

Theorem 2.1. Suppose conditions (C) hold with .  Then, if 

    ,lim,,0   xxxxBx nn  which is the only solution in the region 

1D  of equation   .0xF  

Proof. Let .nn dd   We based our proof on the verification of items 

  ,1   nnnn dddxy   (2.2) 

  ,2 nnnn dddxz    (2.3) 

and 

  ,31 nnnn dddd   (2.4) 

to be shown using mathematical induction. Set  .,03 G  The definition of 
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implies that for all 3Gt   

  ,10 0  t  (2.5) 

  ,10  tp   (2.6) 

  ,31 nnnn dddd   (2.7) 

and 

  .10  ti  (2.8) 

Pick    .,   xxBu  Then, by (2.23), (2.5) and (c1), we have 

           ,100
1

 


 xuxFuFxF  (2.9) 

so 

   
 







xu
xFuF

0

1

1

1
  (2.10) 

by a lemma due to Banach on invertible operators [2]. Notice also that iterate 

0y  is well defined, and we can also write 

       0
1

00
1

000 2

1
xFxFxFxFxxxy


   

    
  xFxF
1

0  

           


 
1

0
000

1
xxdxFxxxFxF   (2.11) 

        0
11

02

1
xFxFxFxF




   (2.12) 

By (2.23), (2.5), (2.10) (for ,0xu   (c2), (c3), (2.8) (for ,1i  and (2.12), 

we get in turn that 

    

 00

1

0

1

0
010

0 1

1

d

dddd

xy





 

  

  ,0001  ddd  (2.13) 
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showing   ,0 xBy  and (2.2) for .0n  Next, we show  .,1
0 XYLA   

Indeed, by (2.23), (2.6), (2.14) and (C1), we have 

            





  xFyFxFxFAxF 0
1

0
1

2

1
22  

      


  xFxFxF 0
1

 

    00002

1
dxy    

    ,10  pdp  

so 

 
  

.
12

1

0

1
0 dp

xFA


 
   (2.15) 

Moreover, iterate 0z  is well defined by the second substep of method 

(1.2), and we can also write 

         0
1

0
1

00
1

000 2 xFAxFxFxFxxxz 
   

          0
1

000
1

00
1

00 2 xFAxFAxFxFxFxx 
   

   0
1

00 xFxFxx


   

          .0
1

000
1

0 xFyFxFyFxF
   (2.16) 

Using (2.23), (2.8) (for ,21   (2.10) (for ,0xu   and (2.14)-(2.16), we get 

  

 













 


00

1

0
0 1

1

d

dd

xz  

      

     
  ,

112 00020
000

1

0
010000

dddd
ddp

dxxxyd
















 

 (2.17) 

showing (2.3) for 0n  and  .,0  xBz  Notice that iterate 1x  is well 
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defined by the third substep of method (1.2),    XYLzF ,
1

0  
 by (2.10) 

(for ,0zu   and we can write 

           0
1

0
1

00
1

001 zFyFzFzFzFxzxx


   

   0
1

00 zFzFxz


   

          .0
1

000
1

0 zFyFzFyFzF
    (2.18) 

In view of (2.23), (2.8) (for ,3i  (2.10) (for ,, 00 zyu   (2.14), (2.17) and 

(2.18), we get 

  

 
















xz

dxz

d
00

1

0
0

1 1

1

 

      

      






















xz
xzxy

dxzxzxy

0
0000

1

0
010000

11
 

  ,0003 ddd   (2.19) 

showing (2.4) for 0n  and  .,1  xBx  Exchanging 1000 ,,, xzyx  by 

1,,, iiii xzyx  in the previous calculations to complete the induction for (2.2)-

(2.4). It then follows from the estimation 

,1  ii dd  (2.20) 

where    ,1,003  d  that ,lim   xxii  and  .,1   xBxi  

Consider     

1

0
dxvxFT  for some 1v  with   .0vF  

Then, using (c1) and (c4), we obtain 

           




1

0

1

0
00

1
,1ddxvxFTxF  

so  xv  follows from the identity        xvTxFvF0  and the 

invert ability of T. □ 
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Remark 2.2. 1. In view of (c2) and the estimate 

           IxFxFxFxFxF   11
 

          xxxFxFxF 0
1

11  

the second condition in (c3) can be dropped and 1  can be replaced by 

   tt 01 1   

or 

   ,1 01  t  or   ,21  t  

since  .,0 0rt   

2. The results obtained here can be used for operators F satisfying 

autonomous differential equations [2] of the form 

    xFPxF   

where P is a continuous operator. Then, since       ,0PxFPxF    we 

can apply the results without actually knowing .x  For example, let 

  .1 xexF  Then, we can choose:   .1 xxP  

3. Let   ,00 tLt   and   .Ltt   In [2, 3] we showed that 
LL

rA 


02

2
 

is the convergence radius of Newton’s method: 

   nnnn xFxFxx
1

1


   for each ,2,1,0n   (2.21) 

under the conditions (c1)-(c3). It follows from the definition of ,Ar  that the 

convergence radius  of the method (1.2) cannot be larger than the 

convergence radius Ar  of the second order Newton’s method (2.21). As 

already noted in [2, 3] Ar  is at least as large as the convergence radius given 

by Rheinboldt [10]  

,
3

2

L
rR   (2.22) 

where 1L  is the Lipschitz constant on D. The same value for Rr  was given by 
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Traub [12]. In particular, for 10 LL   we have that 

AR rr   

and 

3

1


A

R

r

r
 as .0

1

0 
L

L
 

That is the radius of convergence Ar  is at most three times larger than 

Rheinboldt. 

4. We can compute the computational order of convergence (COC) defined 

by 























1

1 lnln
n

n

n

n

d

d

d

d
 

or the approximate computational order of convergence 

,lnln
1

1
1 






















n

n

n

n

s

s

s

s
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Next, we present the local convergence analysis of method (1.3) in an 
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and 
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where i  are the least positive zeros of functions   1 ti  in 0  (provided 
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Hence, we arrive at the corresponding local convergence analysis for 

method (1.3). 

Theorem 2.3. Suppose that the conditions (C) hold with .  Then, the 

canclutions of Theorem 2.1 hold for method (1.3) with i,  replacing  and 

,1  respectively. 

3. Numerical Examples 

Example 3.1. Consider the kinematic system 
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ttettet e  Then, the radii are 

.193106.0,207758.0,221318.0 321  rrr  

.164905.0,165361.0,382692.0 321  rrr  
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4. Conclusions 

In this paper, we have considered two fifth order algorithms for solving 

systems of nonlinear equations. A comparison between the ball of 

convergence is provided using conditions on the derivative. Earlier studies 

have used hypotheses up to the sixth derivative. We also provide error 

estimates and uniqueness results not given before [6, 14], our idea can extend 

the usage of other methods too [1, 1-10, 12-15]. 
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