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Abstract

Estimates for the initial coefficients | ag |, | a3 | and higher order coefficients | ay | and
as | of bi-univalent functions belonging to certain classes of analytic functions are obtained.
5

Second order Hankel determinant is also obtained. Improvement of the earlier known estimates
are also pointed out.

1. Introduction

Let A be the class of analytic functions defined on the open unit disc

D ={z : | z| <1} of the form

f(z)=z+ Zanzn. (1.1)
n=2

Suppose that S is the subclass of A consisting of univalent functions.
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Being univalent, the functions in the class S are invertible; however, the

inverse need not be defined on entire unit disc. The Koebe’s one quarter
theorem ensures that the image of the unit disc under every univalent

function contains a disc of radius 1/4. Thus, a function f € S has an inverse

defined on a disc contains |w| < 1/4.
It can be noted that
Fw) = w— agu? + (203 — a3)w®, ..., (1.2)
in some disc of radius at least 1/4. A function f € A is said to be bi-

univalent in D, if both fand f 1 are univalent in D, and is denoted by o.

Lewin [3] investigated the class o of bi-univalent functions and obtained
the bound for the second coefficient. Several authors have subsequently
studied similar problems in this direction (see [2, 5, 8]). Brannan and Taha
[2] considered certain subclasses of bi-univalent functions, similar to the
familiar subclasses of univalent functions consisting of strongly starlike,
starlike and convex functions. They introduced bi-starlike and bi-convex

function and obtained bounds for initial coefficients. Serap Bulut in [1]

investigated the subclass Bg’p of analytic bi-univalent function and obtain

estimates on the first two coefficients |ag | and |ag | The class BXP

generalize familier classes of bi-starlike, strongly bi-starlike. It should be
remarked that, only very few articles that deal with higher order coefficients
(See [12, 13, 15]).

Motivated by the aforementioned works, in this paper, we introduce and

investigate an interesting subclass Rg(a, i, p) of analytic and bi-univalent
function and obtain initial coefficients |ay | and |ag| and higher order
coefficients | a4 | and | a5 | Our results would generalize and improve the

results obtained in [1, 5].
For any two analytic functions f and ¢ in D, we say that fis subordinate to

¢ written as f < ¢, if there exists a Schwarz function w analytic in I with
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w(0) = 0 and |w(z)| <1 such that f(z) = ¢(w(z))(z € D). In particular, if the
function ¢ is univalent in D, the above subordination is equivalent to
f(0) = $(0) and f(D) < §(D).
Definition 1.1. Let the functions A, p : D — C be constrained that
min {R(A(z)), R(p(z))} > 0 (z € D) and A(0) = p(0) =1 (1.3
A function f € o given by (1.1) is said to be in the class Rj(a, h, p), if it

satisfies

ocsz”(z) + 2f'(2) o<

o &)+ (- ayfie) < "Bk 0= esl)

and ) o) @) . 1.49)
aw<g"(w) + wg'(w y <

cwgw) + (1 - a)gw) < PO O =a=D)

We note that, by choosing appropriate values for o, A and p, the class
R (o, h, p) reduces to several earlier known subclasses of biunivalent

function.
(1) R,(0, h, p) = B2P [1, Definition 3]

(2> RG(]" h’ p) = Kc(p) [15]

3) RG(O, 1+ 51_—22[3)2 L= g1+—22[3)zj _S(B)(0<B<1) [2 Definition

3.1]

1-z 1+z

B B
(4) RG(O, (1 i 2) , (1 - Z) J — SS%(B)(0 < B < 1) [2, Definition 2.1]

1+1-2B)z 1-(1-2B)=
1-=z ’ 1+z

(5) Rc(l, ) =Cs(B)(0 <B<1) [2, Definition

4.1]

1+z

©) Rc[l, Gt—zjﬁ (1 - ZJBJ — SC:(B)(0 < B <1) [15]
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2. Coefficient Estimates

Theorem 2.1. Let f given by (1.1) be in the class Ry(a, h, p). Then

| ay | < min \/ |RO)[* +]| p'(0)* \/ | h"(0)| +| p"(0)]
‘T 20+ af V2[4 + 20) - 201 + )] |

< min )| [HOFP [ PO F  1]h'(0)]+]p'0)]
| a3 | < min + ,

21 + o) 8 1+ 2a)

P R'(0)|[8(1 + 2a1) — 201 + a)?] + p"(0)2(1 + a)? }
4[(1 + 20) - 2(1 + a)?][4(1 + 2a)] '

Proof. Let f € R (a, h, p) and g be the analytic extension of FltoD It

follows from (1.4) that

02 f"(2) + 2f'(z) ,
@)+ a-ae ~ ) 2.1)

and

awzg"(w) + wg'(w)

awg' W) + 1 - a)gw) _ © (w), (2.2)

where A(z) and p(w) satisfy the conditions of Definition 1.1.

Furthermore the functions A(z) and p(w) have the following Taylor

series expansions
hz) =1+ Mz +hy2® + ...,
pw) =1+ pyw + pow? +...,
respectively.
Now from (2.1), we have
al+a)=Hn (2.3)

2a3(1 + 2a) = aghy (1 + o) + hy (2.4)
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3ay(1+ 3a) = ashy (1 + 2a) + agho(l + o) + hg (2.5)
4as(1 + 4a) = ashy (1 + 3a) + aghe(1 + 2a) + aghs(1 + @) + hy. (2.6
From (2.2), we have
ay(l+0a)=-p 2.7)
2203 — ag) (1 + 20) = —agpy (1 + o) + po (2.8)
— 3(5a8 — Bagag + ay)(1 + 30) = (203 — a3)py(1 + 20) — aspo(l + a) + p3  (2.9)
4(14a3 — 21a5ag + 6asay + 3a5 — as)(1 + 40) = (- 1)[Fal — bagas + ay]
p1(1+30)
+ (205 — a3)pe(l + 20) — agps(1 + &) + py. (2.10)

From (2.3) and (2.7), we obtain

h=-n (2.11)
and
2a3(1 + a)? = h + p?. (2.12)
From (2.4) and (2.8), we get
o2 = ha + po (2.13)

[4(Q1 + 20) - 201 + )?]

Therefore, from (2.12) and (2.13) we find that

. [POFP +[ PO
lag | <

21 + o)

and

. J (A~ P O)]
o

oz | < 41+ 20) - 2(1 + 0)?]

By using (2.4) and (2.8), we obtain
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2 1 (h2 _pZ). (214)

Using (2.12) and (2.13) in (2.14), we have

ht +pf 1 (hg— Do)
+ 1 , (2.15)
21 +a) 4 1+ 2a)

and

| = Tol80+20) =201 + @)+ 20+ o) py

401 + 200) - 2(1 + o)*][4(1 + 201)] (2.16)

We thus find that

[ROF + pO)F | 1 (70)]+|p0))

ag | <
a3 21 + a)? 8 1+ 2a)

and

| P'(0)][8(1 + 20) — 2(1 + )] + | p"(0)[201 + @)

as | < 20401 + 2a) - 201 + a)*][4(1 + 2a)]

This completes the proof of theorem. O

Remark 2.1. For oo = 0 and o =1, Theorem 2.1 gives the estimates for

starlike and convex function which is given in [1] and [15] respectively.
Remark 2.2.

1-(1-2B)=

, Theorem 2.1
1+z

(i) For a =0, h(z) = w and p(z) =
gives the estimates for starlike function of order f3, obtained in [2].

1+z
1-z

p _\B
(i1) For o = 0, h(z) = ( j and p(z) = GJr—z) , Theorem 2.1 gives the

estimates for strongly starlike function, obtained in [2].

Remark 2.3.

(i) For the choice of a =1, h(z) = w and p(z) = % in

Theorem 2.1, reduces to the estimates for convex function of order o obtained
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by Brannan and Taha [2].

.. . 1+2) (1-z B
(ii) By taking a =1, h(z) = (1 _Zj and p(z) = (1 +zj in Theorem 2.1,

we have the result obtained in [15].
Theorem 2.2. If the function f € Ry(o, h, p), then the coefficients an
(n = 4, 5) of f satisfy

(2 L (2 [1L/2
[0y | < min {” e e GO

L LIR"@1+1p"O)] | 1 |+ p(0) P21 +20)
36 (1+3a) 6v2 (1+ (1 + 30) ’

(B ()| 2"(0)| + (Ro(e)| P(0)[]

{ | K(0) + p'(0) [/2
V4@ + 20) - 201 + )22

1RO)+ PO, 1 [K0)+ p'0) P+ )+ 200]},

36 (1+3a) 62 [4(1 + 20) — 21 + 0)?T/%(1 + 301)
where
1+ 5
Ri(@) = 5 50y " 8T+ 20)”
_ (1+0a) 5
By(0) = 6(1+30) 81+ 2a)
and

e i [[LHOP 5 DOP P | HOP 4 P OF [
a5 | < { Tt e (@) KO

1((\2 (2
Kale)| pO) 1+ PO Ky @) 170+ | 0]

- 5590y + ) 2+ K52 1v(0) )
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1RO+ DO e (), O PO e 63 (0)  + Ky(a)] p(0
[%()] )+ = E@IHO)]+ Kafw)| pO)]

, (10 + p' () K4 ()| "(0)] +| p"(0) ] + Kf’T(‘)‘)I 1'(0) + p'(0)

6v2/K-(a)
D)),
where
1(0+a)@+30) 1(0+202 (@Q+af  1(0+a)
Kl(“)_§( (1)+(4a) )+§ (114(1) _(1i4a)+Z(1i4a)
K _10+0)? 5 (1+a)(1+80)  1(1+20) 1  (1+a)f
Z(Q)_E(1+4OL)+8(1+2(X)(1+4a) 4(1+40) 4 @0+20)(1+4a)
X C1(0+af 5 (1+a)1+830) 1(1+21) . 1 (1+af
30 = G 40) S 20)@+d0) 4+ 4da) T 40T 20){ + 4a)
Kyfo) = g (§1++ 402)
1 (1+2a
K5(°‘):§§114a;
1
Kg() = 41 + 4o)

K(o) = 4(1 + 20) — 21 + o).

Proof. From (2.5) and (2.9) we have

as (1+a 1(h ) 1 3(1+a)1+2a)
0‘4=?2((1++3<x))(h”2 p2)+g (13+3i?3 T3 +(1+3;)

+

aZ (ZZ+ 2132)) (2.17)

Using (2.12) and (2.13) in (2.17), we get
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R+pf[ (1+a) 5 (hy — ps)
o el ar e e )t § g

1 (hs = p3) _ 1 (h + p2)**  (1+20)
6 (1+ 3(1) 22 1+ a)?(1 + 3a) 219

and

\/ ho + po [ (1+a) 5 (hg - pz)}

[4(1 + 20) - 21 + @)?] L6 + 30) (2 + P2)+ 5 1 5 50)

1 (hs —p3) | (hg + po)* (1+ o) (1 + 20)
+= 6 (1 + 3OL) 3 [4(1 + 200 2(1 4 O()2]3/2 (1 T 30(,) . (2.19)

We thus find that

[ (0 + p(0)* [
2V2(1 + o)

|ag | <

[(By ()] A'(0) [+ (Be(a))| P"(0) []

1 |#O)+|p"0)] , 1| KO+ PO /10 +20)
36 (1+30) 62 1+ o)1+ 3a)

and

| 7(0) + P02
VIAQL + 20) - 2(1 + )22

lay | <

[(By ()| 2"(0) | + (Ro(a))| p"(O) ]

1 [A"0)|+] p"O)] , 1 |K(0)+p ()0 +a)( +20)
36 (+3a) 692 [4(1+ 20) - 21 + o221 + 3a)

Using (2.6) and (2.10) we obtain

1+ a) 1(1+a)

5 @30+ 20)" ~ adag T+do) 21+ 4(x)

a5 =1 +0)1+3a)agay +=

2

1
t 5l (2.20)

and

as = a3 Ky(0) + a5 [Ky(o)hy + Ka(a)pz] + as[Ky(e)](hs — p3)
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+ K5(o) (g — po) + Kg(0)hy. (2.21)

Using (2.12) and (2.13) we get

| WO + pOF [ | KO0+ p(0) |1,

|as | < 4L+ ) AL+ af Ky(a)| 1'(0) |+ K3()| p"(0) []

)2 \2
o WWOF - DOY. g @) 10)| +| p0) 1+ Z512 w(0) + p(0)

6v2(1 + )
+ Kal@) )
and
O POP ) IO+ 2O) o
las | < K A)F (o) + K ()F [K2(ct)| A"(0) |
+K3(a)| p"(0) ]
- e I’gf))) Ky(@)] 70)] +1 20) ] + £ 1(0) + pr(0) P
+ Kolod o))
which completes the proof of the theorem. o
For a =0, h(z) = % and p(z) = %, Theorem 2.2

gives the following estimates for starlike function of order .

Corollary 2.1. If f € S.(B), then
g < min {3 0-BP + 209+ 2097 B2 B2+ 20-p)

o | < min{[ S0 =B + S0P+ 5Q-pP 4 a-pF S0~
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Ta_pr+ 220 pp2 i 4a_prsla_ppsla-
FURURE SRS (I T T

1-z
1+z

. 1+2\ p
For the choice of a =0, h(z) = 12 and p(z) = , Theorem 2.2
gives the following estimates for strongly starlike function of order B.

Corollary 2.2. If f € SSL(B) then

inld4g2 25, 403 843 4203 453 2
|a4|Smm{3B+QB+QB+3B, 3 +93+93}

. 89 8,4 8,35 4 1.2 5 4 19 9
< L 2 2 = - il =
|a5|_m1n{[3ﬁ +3[3 +9B +96+2[3 +8P T8 }

loa 4pa 4200 22 0 14 5 o4 19 0

[33 tab g Py BB ggh +48B}}'

For a =1 h(z)zM and p(z):M Theorem 2.2
’ 1-z 1+z '

gives the following estimates for convex function of order .

Corollary 2.3. If f € CL(B), then
oy | < min{L-pP + £0-p+Fa-pR 2a-pY2+ Fa-p)
o s min{[ Ta-py + Q-7+ Sa-pP+ 5 a-pF + 15 0-P)

Ta-PP s a-pf s B a-plf

p _ o\
For the choice of a =1, h(z) = G i zj and p(z) = G - z) , Theorem 2.2

gives the following estimates for strongly convex function of order B.

Corollary 2.4. If f € SC.(B) then

1, lg 1g 1
o | < {552+ 307+ 58+ B}
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| Tpgt B8t 8t 42 Spa  1aga 19 9
|a5|‘[5ﬁ TP P P P TP TenP |

3. Second Hankel Determinant

The ¢th Hankel determinant (denoted by Hq(n)) for ¢ =1,2,3,... and
n=123 .. of the function f is the ¢gxq determinant given by

Hg(n) = det(a,;j_2). Here a,,;,; o denotes the entry for the i row and jt

column of the matrix. The second Hankel determinant Hy(2) = agay — a3 for

the class of functions whose derivative has positive real part, the classes of
starlike and convex functions with respect to symmetric points have been
studied in [3, 4]. The upper bound for the functional Hy(2) for bi-starlike and

bi-convex functions of order B obtained in [8].

For the recent works on second Hankel determinant of certain subclass of
analytic and bi-univalent function see ([6, 9, 13]). In this section, we obtain

second Hankel determinant for function in the class R (a, h, p).

To establish our results, we recall the following.
Lemma 3.1 [17]. If p € P, then | P, | <2 for each k € N, where P is the

family of all functions p analytic in D for which Re p(z) > 0, p(z) =1+ pz
+p222 +... for z e D
Lemma 3.2 [18]. If the function p € P, then
2ps = pi +x(4 - pi)

4py = p +2(4 - pP)prx — p1(4 - p12)x” + 2(4 - p?) (1 - | x [)s,
for some x, s with |x|<1 and |s| <1.

Theorem 3.1. Let f given by (1.1) be in the class Ry(a, h, p), then
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R, Q<0 P<-¥

Q

4
16P + 4Q + R, on,pz_%
a2a4—a§|s

4PR - @* Q
T , Q > O, P < —g
where
P [ 1+20) 1 ~ 1
31+0)1+30) 81+a)P1+20) S1+a)d+3a)

+ 1 1 + 1 3
T+a) 1601+ 20)

_{ 1+ 20) 7 1 }

2 + 0)?( + 20) T30+ )@+ 3a) 2(1 + 20)

1

R=——".
1+ 20)*

Proof. Let f € Ry(a, A, p), 0 < a <1. Then from (2.1), (2.14) and (2.17),
we have

azay — af =

1_h(+20) 1 hi(hy = py)
3A+a)Pl+3a) 8(1+ald+2a)

L1 he(hy + p3) L1 hy (hg + ps)
6(1+a)1+3a) 601+a)l+3a)

W1 (g-p) 5
1+a) 16 14207 @1

According to Lemma 3.2, we write

2hy = h? + x(4 — hZ)

2py = pi + y(4 - pf)
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2
(hy — p2) = [4 _Zhl J(x - ) (3.2)
and
ahy = h3 +2(4 — h?) (mx) — hy(4 — hP)? + 24 — h2) (1 — | x [)z

4py = pi +2(4 - i) (p, ¥) - (4 - A)y + 24 - B (1 - | 5 P,

Therefore, we have

hi By (4 — B2
hﬁ—p3=71+h1(4—h12)(x+y)——1( 1)(x2+y2)

4
2
PO 2P - -]y o) (33)
hy + py = hi + (@—Thf)j (x+) (3.4)

for some x, y and 2z, w with |x| <1, |y|<1 |w|<1|z|<1.

Using (3.2), (3.3) and (3.4), then triangle inequality and letting
|x|=2,|y|=p from the last equality, we obtain

| agay —af | < T4 + To(h + p) + T3(2 + 02) + Ty(h + p)* = F(h, ),

where

1 1 1 (1+20) 1 |4
h _{4 (1+0‘)(1+30‘)+ 3 (1+oc)3(1+3oc)Jr (lJroc)‘l}h1

h(4 - hi)

1
TR

1 1 1 1
Té:%ﬁa+afa+mn+Za+®a+3®kﬁ4_%xmyﬂyn

1 AE(a-h) 1 m(4-h)
37 {ﬂ T+ o)@+30) 120 +1a)(1+13a)}(|x|2 +y )
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1 (4P

AT AL

4

We need to maximize the function F(A, ) in the closed square
S ={x, w: A pel0,1]} for A €0, 2] We must investigate the maximum of
the function Fin the case h =0, h =2 and h € (0, 2).

Let A =0 then

1

F(\, p) m.

:m(k+u)2 <max{F(h, p: 2 pneS)=

For h = 2, the function F(A, ) is constant as follows

B 1 (1 + 20() 1
F6. 1) = (4(1 T +3a) 3(1 + a)’(1 + 3a) ' @+ 0‘)4J(16)

:( 4 L 160+2a) 16 J
T+o)@T+30) 301+ 0P1L+30) Q+a))

Now, let A € (0, 2). In this case, we must investigate the maximum of the

function F according to h e(0,2) taking into account the sign of

A = Fy F,, - F,.

Since A =4T3(T3 +274), 75 <0 and T3+27, >0 for every
h € (0, 2), A <0, that is, the function F(A, n) cannot have a local maximum

in the interior of the square S.
Now, we investigate the maximum of F on the boundary of the square S.

For =0 and pe[0,1] (the case p=0,%¢e0,1] investigated.

Similarly), we write
F(0, p) = Ty + Tou + (T3 + Ty)u? = G(u)
It is clear that T3 + Ty < 0 and 73 + T4 > O for some values of A < (0, 2).

In the case T3 + T, < 0, the function G(u) cannot have a local maximum

in the interval (0,1), but G(0)=7; and GQ)=T; + T +T5 + Ty in the
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extremes of the interval [0, 1]

Let T3 + Ty <0 for some values of A e (0, 2). Then, the function G(u) is

an increasing function and the maximum occurs at p = 1.

Therefore,
max {G(u): p e [0, 1]} = GQ) =T} + Ty + T3 + Ty.

For A =1 and pe0,1] (the case pn=1 and A €[0,1] investigated

Similarly), we write
F(1, p) = (T + Ty® + (Ty + 2T+ (T + Ty + Ty + Ty) = H(w).
Similar to the above, we write
max {F(1, w): nel0,1]} = HQ) = T7 + 2Ty + 215 + 4T.

Thus, G(1) < H(1), the maximum of the function F(), u) occurs at the

point (1, 1) and
max {F(A, n): A, pne S}=F(1,1) = HQ)

on the boundary of the square S.

Define the function ¢ : (0, 2) - R as follows:

o(h) =T + 2T, + 2T + 4T, = F(1, 1).

Substituting the values of 13, 75, 75 and T, in the expression of ¢, we

obtain

1+2a) 1 ~ 1
31+0)1+30) 81+aPl+20) S0+a)d+3a)

w-|

+

1 N 1 4
(1+a)t 1601+ 2a)

1 7 1 9 1
+ + - —
{2(1 + a1 +20) SA+a)l+3a) 974 2(1)2} 1+ 2a)*
= Pt? + Qt + R, where t = h%.
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Thus we have

R, (QsO,Ps—%)
max ¢(h) = {16P + 4Q + R, (QZO,PZ—%)(OI‘)(QﬁO,PZ—%)
%, (Q>0,P£—%).
R, (QsO,Ps—%)
ie. a2a4—a32,|g 16P + 4Q + R, (QZO,PZ—%)(OI‘)(QSO,PZ—%)
4PR - @* Q Q

4P , ( >O,PS—§j.

which completes the proof.
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