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Abstract 

Estimates for the initial coefficients 32 , aa  and higher order coefficients 4a  and 

5a  of bi-univalent functions belonging to certain classes of analytic functions are obtained. 

Second order Hankel determinant is also obtained. Improvement of the earlier known estimates 

are also pointed out. 

1. Introduction 

Let  be the class of analytic functions defined on the open unit disc 

 1:  zz  of the form 

  






2

.

n

n
nzazzf  (1.1) 

Suppose that  is the subclass of  consisting of univalent functions. 
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Being univalent, the functions in the class  are invertible; however, the 

inverse need not be defined on entire unit disc. The Koebe’s one quarter 

theorem ensures that the image of the unit disc under every univalent 

function contains a disc of radius .41  Thus, a function f  has an inverse 

defined on a disc contains .41w  

It can be noted that 

    ,,2 3
3

2
2

2
2

1 waawawwf   (1.2) 

in some disc of radius at least .41  A function f  is said to be bi-

univalent in , if both f and 
1f  are univalent in , and is denoted by . 

Lewin [3] investigated the class  of bi-univalent functions and obtained 

the bound for the second coefficient. Several authors have subsequently 

studied similar problems in this direction (see [2, 5, 8]). Brannan and Taha 

[2] considered certain subclasses of bi-univalent functions, similar to the 

familiar subclasses of univalent functions consisting of strongly starlike, 

starlike and convex functions. They introduced bi-starlike and bi-convex 

function and obtained bounds for initial coefficients. Serap Bulut in [1] 

investigated the subclass phB ,
  of analytic bi-univalent function and obtain 

estimates on the first two coefficients 2a  and .3a  The class 
phB ,

  

generalize familier classes of bi-starlike, strongly bi-starlike. It should be 

remarked that, only very few articles that deal with higher order coefficients 

(See [12, 13, 15]). 

Motivated by the aforementioned works, in this paper, we introduce and 

investigate an interesting subclass  phR ,,  of analytic and bi-univalent 

function and obtain initial coefficients 2a  and 3a  and higher order 

coefficients 4a  and .5a  Our results would generalize and improve the 

results obtained in [1, 5]. 

For any two analytic functions f and  in , we say that f is subordinate to 

 written as ,f  if there exists a Schwarz function w analytic in  with 
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  00 w  and   1zw  such that       . zzwzf  In particular, if the 

function  is univalent in , the above subordination is equivalent to 

   00 f  and    . f  

Definition 1.1. Let the functions  :, ph  be constrained that  

          zzpzh 0,min  and     100  ph  (1.3) 

A function f  given by (1.1) is said to be in the class  ,,, phR   if it 

satisfies 

   
     

   

   
     

   

.

10,
1

and

10,
1

2

2



























p
wgwgw

wgwwgaw

h
zfzfz

zfzzfz

 (1.4) 

We note that, by choosing appropriate values for h,  and p, the class 

 phR ,,  reduces to several earlier known subclasses of biunivalent 

function. 

(1)   phBphR ,,,0    [1, Definition 3] 

(2)    pKphR  ,,1  [15] 

(3) 
   

   10
1

211
,

1

211
,0 
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z

z

z
R  [2, Definition 

3.1] 
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1
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R  [2, Definition 2.1] 
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2. Coefficient Estimates 

Theorem 2.1. Let f given by (1.1) be in the class  .,, phR   Then 

   

 

   

     
,

122142
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,

12

00
min

22

22
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phph
a  

   

 

   
 

,
21
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8

1
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00
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2

22
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phph
a  

           

       
.

21412214

120122180
2

22





















 ph
 

Proof. Let  phRf ,,   and g be the analytic extension of 
1f  to . It 

follows from (1.4) that 

   
     

 zh
zfzfz

zfzzfz






1

2

 (2.1) 

and  

   
     

 ,
1

2

wp
wgwgw

wgwwgw





 (2.2) 

where  zh  and  wp  satisfy the conditions of Definition 1.1. 

Furthermore the functions  zh  and  wp  have the following Taylor 

series expansions 

  ,1 2
21  zhzhzh  

  ,1 2
21  wpwpwp  

respectively. 

Now from (2.1), we have 

  12 1 ha   (2.3) 

    2123 1212 hhaa   (2.4) 
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      322134 121313 hhahaa   (2.5) 

        .12131414 43223145 hhahahaa   (2.6) 

From (2.2), we have 

  12 1 pa   (2.7) 

      2123
2
2 12122 ppaaa   (2.8) 

          32213
2
2432

3
2 121231553 ppapaaaaaa   (2.9) 

       432
3
25

2
3423

2
2

4
2 551413621144 aaaaaaaaaaa   

  311p  

      .1212 43223
2
2 ppapaa   (2.10) 

From (2.3) and (2.7), we obtain 

11 ph   (2.11) 

and 

  .12 2
1

2
1

22
2 pha   (2.12) 

From (2.4) and (2.8), we get 

     
.

12214
2

222
2






ph
a  (2.13) 

Therefore, from (2.12) and (2.13) we find that 

   

 2

22

2
12

00






ph
a  

and 

   

     
.

122142

00

22





ph
a  

By using (2.4) and (2.8), we obtain 
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.
214

1 222
23 




ph
aa  (2.14)  

Using (2.12) and (2.13) in (2.14), we have 
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phph
a  (2.15) 

and 

       

       
.

21412214

1212218
2

2
22

2
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ph
a  (2.16) 

We thus find that 
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1
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22

3
phph

a  

and 
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214122142

120122180
2

22
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ph
a  

This completes the proof of theorem. □ 

Remark 2.1. For 0  and ,1  Theorem 2.1 gives the estimates for 

starlike and convex function which is given in [1] and [15] respectively. 

Remark 2.2. 

(i) For  
 

z

z
zh






1

211
,0  and  

 
,

1

211

z

z
zp




  Theorem 2.1 

gives the estimates for starlike function of order , obtained in [2]. 

(ii) For  
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1

1
,0  and   ,

1
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z

z
zp  Theorem 2.1 gives the 

estimates for strongly starlike function, obtained in [2]. 

Remark 2.3. 

(i) For the choice of  
 

z

z
zh






1

211
,1  and  

 
z

z
zp






1

211
 in 

Theorem 2.1, reduces to the estimates for convex function of order  obtained 
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by Brannan and Taha [2]. 

(ii) By taking  
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1

1
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1

1
 in Theorem 2.1, 

we have the result obtained in [15]. 

Theorem 2.2. If the function  ,,, phRf    then the coefficients an 

 5,4n  of f satisfy 
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Proof. From (2.5) and (2.9) we have 
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Using (2.12) and (2.13) in (2.17), we get 
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We thus find that 
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Using (2.6) and (2.10) we obtain 
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      .46
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225 hKphK   (2.21) 

Using (2.12) and (2.13) we get 
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which completes the proof of the theorem. □ 

For  
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  Theorem 2.2 

gives the following estimates for starlike function of order . 

Corollary 2.1. If  , 
Sf  then 
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gives the following estimates for strongly starlike function of order . 

Corollary 2.2. If   
SSf  then 
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For  
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  Theorem 2.2 

gives the following estimates for convex function of order . 

Corollary 2.3. If  , 
Cf  then 
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Corollary 2.4. If   
SCf  then 
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5 




 a  

3. Second Hankel Determinant 

The qth Hankel determinant (denoted by  nHq  for ,3,2,1q  and 

,3,2,1n  of the function f is the qq   determinant given by 

   .det 2 jinq anH  Here 2 jina  denotes the entry for the ith row and jth 

column of the matrix. The second Hankel determinant   2
3422 2 aaaH   for 

the class of functions whose derivative has positive real part, the classes of 

starlike and convex functions with respect to symmetric points have been 

studied in [3, 4]. The upper bound for the functional  22H  for bi-starlike and 

bi-convex functions of order  obtained in [8]. 

For the recent works on second Hankel determinant of certain subclass of 

analytic and bi-univalent function see ([6, 9, 13]). In this section, we obtain 

second Hankel determinant for function in the class  .,, phR   

To establish our results, we recall the following. 

Lemma 3.1 [17]. If ,p  then 2kP  for each ,Nk   where  is the 

family of all functions p analytic in  for which     zpzpzp 11,0Re   

 2
2zp  for .z  

Lemma 3.2 [18]. If the function ,p  then 

 2
1

2
12 42 pxpp   

        ,14224424
22

1
2

111
2
1

3
13 sxpxppxpppp   

for some sx,  with 1x  and .1s  

Theorem 3.1. Let f given by (1.1) be in the class  ,,, phR   then 
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Proof. Let   .10,,,   phRf  Then from (2.1), (2.14) and (2.17), 

we have 
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According to Lemma 3.2, we write 
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for some yx,  and wz,  with .1,1,1,1  zwyx  

Using (3.2), (3.3) and (3.4), then triangle inequality and letting 

 yx ,  from the last equality, we obtain 
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We need to maximize the function  ,F  in the closed square 

    1,0,:, S  for  .2,0h  We must investigate the maximum of 

the function F in the case 2,0  hh  and  .2,0h  

Let 0h  then 
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For ,2h  the function  ,F  is constant as follows 
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Now, let  .2,0h  In this case, we must investigate the maximum of the 

function F according to  2,0h  taking into account the sign of 

.2
  FFF  

Since   0,24 3433  TTTT  and 02 43  TT  for every 

  ,0,2,0 h  that is, the function  ,F  cannot have a local maximum 

in the interior of the square S. 

Now, we investigate the maximum of F on the boundary of the square S. 

For 0  and  1,0  (the case  1,0,0   investigated. 

Similarly), we write 

      GTTTTF 2
4321,0  

It is clear that 043  TT  and 043  TT  for some values of  .2,0h  

In the case ,043  TT  the function  G  cannot have a local maximum 

in the interval  ,1,0  but   10 TG   and   43211 TTTTG   in the 
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extremes of the interval  .1,0  

Let 043  TT  for some values of  .2,0h  Then, the function  G  is 

an increasing function and the maximum occurs at .1  

Therefore, 

       .11,0:max 4321 TTTTGG   

For 1  and  1,0  (the case 1  and  1,0  investigated 

Similarly), we write 

         .2,1 432142
2

43  HTTTTTTTTF  

Similar to the above, we write 

       .42211,0:,1max 4321 TTTTHF   

Thus,    ,11 HG   the maximum of the function  ,F  occurs at the 

point (1, 1) and 

      11,1,:,max HFSF   

on the boundary of the square S. 

Define the function    2,0:  as follows: 

   .1,1422 4321 FTTTTh   

Substituting the values of 321 ,, TTT  and 4T  in the expression of , we 

obtain 
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Thus we have 
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which completes the proof. 
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