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Abstract 

For a connected graph of order n, the metric basis of a G is a smallest set 

 kvvvS ,,, 21   of vertices of G such that for vertex ,Gu   the ordered k-tuples of distances 

        kvudvudvudvud ,,,,,,,, 321   are all distinct. The metric dimension of G, denoted as 

 ,dim G  is the cardinality of a metric basis for G. In the present work we investigate metric 

dimension of intersection graphs and annihilator ideal graphs of commutative ring R. 

1. Introduction 

Throughout this work, we consider ring R as commutative ring with 

unity, unless otherwise stated. For the ring  RZR,  denotes the set of all 

zero-divisors while  GZ  denotes the set of all non-zero zero-divisors. 

Moreover, we denote the set of all proper ideals of a ring R by  .RI  For any 

element ,Rr   the ideal generated by the element r is denoted by (r) and an 

ideal I is said to be annihilating ideal of R if there exist an ideal J of R such 

that ,0IJ  where 0 denotes the zero ideal of R. The annihilator of I, 
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denoted as  ,IAnnR  is defined as    .0:  IJJIAnnR  The set of all 

annihilating ideals of R is denoted as  RA  and, in addition, the set of all 

non-zero annihilating ideals denoted by  .RA  For any element x of R, the 

set of all annihilators of x is, denoted as  ,xannR  defined as  xannR  

 .0:  xyy  For any ideal I of R, nilpotency   nI   if 0nI  for some 

least integer n. For any rings, R and S the direct product of R and S, denoted 

as ,SR   is defined as   .,:, SsRrsrSR    

The concept of graph associated with ring was first studied by Beck [7], 

known as zero-divisor graph, in which all the elements of R were considered 

as the vertices of graph and two vertices x and y are adjacent if and only if 

.0xy  Later on, this definition was reformed by Anderson and Livingston 

[3], in which they considered the set of all non-zero zero-divisors as the set of 

vertices. Chakra arty et al. [8] have introduced the concept of intersection 

graph for a commutative ring, denoted as  ,RG  with the vertex set  ,RI  

where two distinct vertices I and J are adjacent if and only if .0JI   

Salehifar et al. [23] have introduced the concept of annihilator ideal graph for 

a commutative ring, denoted as  RAI  with the vertex set  ,RA  where two 

distinct vertices I and J are adjacent if and only if    IAnnIJAnn RR   

 .JAnnR  Badawi [5] introduced the concept of annihilator graph for a 

commutative ring with the set of non-zero zero-divisors considered as the set 

of vertices and two distinct vertices x and y are adjacent if and only if 

     .xyannxannxann RRR    

Let  EVG ,  be a graph, where V is the set of vertices and E is the set 

of edges. Now recall that a graph is connected if there exist a path between 

any pair of vertices. The distance between any two vertices x and y is denoted 

as  yxd ,  and defined as the length of the shortest path between them. If 

such path does not exist then we say   ., yxd  The diameter of a 

connected graph G, denoted as  ,Gdiam  defined as the maximum distance 

between any pair of vertices of G. A graph in which every pair of vertices is 

joined by an edge is called complete graph and we denote nK  as the complete 

graph of n vertices. For the graph theoretic terminology we rely on [6, 25] and 
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for commutative ring theory we refer to [4, 11]. 

The next section is aimed to provide preliminaries needed for the present 

work.  

2. Preliminaries and Exiting Results 

Let G be any connected graph with 2n  vertices. For an ordered subset 

 kvvvW ,,, 21   of vertices of G, we refer to the k-vectors as the metric 

representation of u with respect to W as  

          kvudvudvudvudWur ,,,,,,,,| 321   

The set W is said to be resolving set of G if distinct vertices have distinct 

metric representations. A resolving set containing minimum number of 

vertices is called a metric basis. The metric dimension, denoted by  ,dim G  of 

G is the cardinality of a metric basis. The metric basis and metric dimension 

are also known as locating set and locating number. This implies that the 

metric dimension of G is at most .1n  In fact, for every connected graph G 

of order   .1dim1,2  nGn  The metric dimension of graphs arising 

from rings have been extensively studied in [14, 15, 16, 17, 18, 19]. 

The following results are some existing results for metric dimension of 

some graphs. 

Lemma 2.1. [20] A connected graph G of order n has metric dimension 1 

if and only if ,nPG   where nP  is a path on n vertices. 

Lemma 2.2. [20] A connected graph G of order 2n  has metric 

dimension 1n  if and only if .nKG   

Lemma 2.3. [20] For ,3n  metric dimension of a cycle nC  is 2. 

Lemma 2.4. [20] For ,3n  the metric dimension for the bipartite graph 

1,1 nK  is 2n  and for ,5,2  nr  the metric dimension for the bipartite 

graph mnrnr KK ,,   with rn   and rnm   is .2n  

Lemma 2.5. [20] Let G be a connected graph with   . mGdiam  If 

  , kGdim  then     .1 kmGV    
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Lemma 2.6. [20] Let G be a connected graph with finite diameter. Then 

 GV  is finite if and only if  Gdim  is finite. 

Lemma 2.7. [21] Let R be a commutative ring with unity. Then 

  Rdim   is finite if and only if R is finite. 

Lemma 2.8. [24] Let 2n  be a positive integer and  


n

i
R

1 2.  Then 

the following statements hold. 

(1)    ,1
1 2  

nAGdim
n

i
  for .3,2n   

(2)    ,
1 2 nAGdim

n

i
 

  for .4n   

The present work is intended to investigate metric dimension of the 

graphs obtained from commutative ring. 

3. Metric Dimension of Intersection Graph of ideals of Ring 

We begin with a commutative ring R with unity such that R is not 

isomorphic to product of two fields because intersection graph of product of 

two fields is not a connected graph. 

Theorem 3.1. Let R be any ring. Then 

(i)   RGdim  is finite if R is finite. 

(ii)   RGdim  is undefined if and only if R is a field. 

Proof. (i) It is clear that R has finitely many ideals as R is finite. Hence 

by Lemma 2.6,   RGdim  is finite. 

(ii) It follows from the fact that the metric dimension of  RG  is 

undefined if and only if the vertex set of  RG  is empty. □ 

Remark 3.2. The converse of (i) in Theorem 3.1 is not true in general. 

For example, Let 8  be a ring and  be a field of rational numbers. Then 8  

has only 4 ideals namely (0), (2), (4) and 8  itself and  has only 2 ideals 
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namely (0) and . That implies   8R  is infinite ring with 6 proper 

ideals namely                      0,0,4,0,2,,4,,2,,0 8  and 2 

trivial ideals namely       .,,0,0 8   Now it is easy to check that the set 

                0,4,0,2,,4,,2   is metric bases of  .RG  Hence 

   .4dim RG   

Theorem 3.3. For any ring R 

(i)    1RGdim  if and only if  RG is a path. 

(ii)    2RGdim  if  RG  is a cycle. 

(iii)      1  RIRGdim  if and only if  RG is a complete graph. 

(iv)      2  RIRGdim  if and only if  RG is a star graph (other 

than 1,1K  or a bipartite graph. 

Proof. The proof is immediate from Lemma 2.1 to Lemma 2.4. □ 

Theorem 3.4. If R is a finite local principal ideal ring with nil potency 

  ,2,  nnR   then    .2 nRGdim   

Proof. Since R is finite local principal ideal ring with nil potency   nR   

there exist a maximal ideal m of R such that  .0nm  So R has only 1n  

proper ideals, namely 132 ,,,, nmmmm   such that   21 nn mm  

.2 mm   Moreover  0ji mm   for any  .1,,2,1,  nji   Hence 

 RG  is complete graph with ,1n  vertices and so by Lemma 2.2 

   .2dim  nRG   □ 

Theorem 3.5. Let R be any ring with n proper ideals and  be any field. 

If    1 nRGdim  then    .2nRGdim     

Proof. Since    1dim  nRG  which implies   .nKRG   Let 

nIII ,,, 21   be proper ideals of R, then   .,0 jiII ji   Then R  

has total 42 n  ideals in which 22 n  proper ideals which are   ,0,R  
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     0,,,0 iI  and  ,, iI  where ni ,,3,2,1   also     ,0, ji II   

  .,,0 ji  Since  0ji II   and also we have        ,00,0, RIi   

             .0,0,,00,,    ii IRI  Now let       ,0,0, iIRA   

  niIi ,,3,2,1,,   be the set of vertices such that they are mutually 

adjacent and the vertex   ,0  is adjacent only with  ,, iI  

.,,3,2,1 ni   So, set of vertices A forms a complete sub graph of 

 RG  with 12 n  vertices say it ,1G  then   .2dim 1 nG   Hence 

   .2dim nRG    Now suppose that    ,12dim  nRG   but 

  RG  has 22 n  vertices that implies   22  nKRG   which is not 

true. Therefore    .2dim nRG    □ 

Corollary 3.6. If  nG   is connected and non Hamiltonian, then 

    .2,1,0dim nG    

Proof. As proved by Chakrabarty et al. [8]  nG   is non Hamiltonian if 

and only if 322 ,,, pqppqPn   and  nG   is disconnected for .pqn   If 

,2pn   then  nG   is a graph with a single vertex. Hence    .0dim nG   

If ,3pn   then  nG   is path of order 2. Hence    .1dim nG   If ,2qpn   

then  nG   is shown in Figure 1 which has dimension 2. Hence proved. 

 

Figure 1.  .2qp
G    

Theorem 3.7. If 1R  and 2R  are any finite local principle ideal rings with 

nilpotency   11 nR   and nilpotency   22 nR   then   21 RRGdim   

.32121  nnnn  

Proof. Let 1R  and 2R  be any finite local principle ideal rings with 
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nilpotency 1n  and 2n  respectively then   11 1 
 nKRG  and   .12 2 

 nKRG  

Moreover 1R  and 2R  has total 11 n  and 12 n  ideals in which 11 n  and 

12 n  are proper ideals. Let 121 1
,,, nIII   and 121 1

,,, nJJJ   be 

proper ideals of 1R  and 2R  respectively, then 21 RR   will have 

    211 21  nn  proper ideals namely        ji jIRR ,0,0,,,0,0, 21  

     jiji JRRIJI ,,,,, 12  for 1,,2,1 1  ni   and .1,,2,1 2  nj   

Now consider all the proper ideals of 21 RR   as vertices of  .21 RRG   Since 

ideal iI  is adjacent with all other ideals of ,1R  so the vertices    jii JII ,,0,   

and  2, RIi  are mutually adjacent and also ideal jJ  is adjacent with all 

other ideals of 2R  then the vertices    jij JIJ ,,,0  and  jJR ,1  are 

mutually adjacent. Moreover the vertices      jij JIJRR ,,,,0, 11  are 

mutually adjacent and vertices      jii JIRIR ,,,,,0 22  are also mutually 

adjacent. Now consider three disjoint subsets of vertices 

         0,,0,,,,,,, 12211 ijiij IRVjIRIJRV   and  ,,0 23 RV   

 .,0 jJ  Then sub graph induced from ,, 21 VV  and 3V  will form complete 

graphs 
2121

,,1 nnnn KKK   respectively. Hence the result follows. □ 

Corollary 3.8. Let nRRR ,,, 21   be rings and ,1 nRRR    then 

   RGdim  if and only of    ,iRGdim  for every .1, nii    

Proof. Let nRRR ,,, 21   be rings and .21 nRRRR    Now 

suppose that    iRGdim  for every ,1, nii   then it is clear that iR  

has finitely many ideals, that means  iRI  is finite. Since R is direct 

product of RRi ,  has finitely many ideals which implies   RGV  is finite. 

Hence    .dim RG  Conversely suppose that    .dim RG  Now 

suppose, if possible, that there is a ring iR  such that    ,dim RG  then 

   ,iRGV  which implies that    .RGV  This contradicts to our 

supposition that   RGdim  is finite. Hence    ,dim RG  for every 

.1, nii   □  
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4. Metric Dimension of Annihilator Ideal Graph of a Ring 

A very obvious but important result has been proved in following 

theorem. 

Theorem 4.1. Let R be any commutative ring, then 

(i) If   Rdim   is finite then   Rdim   is finite. 

(ii)   Rdim   is undefined if and only if R is an integral domain. 

Proof. (i) Suppose   Rdim  is finite then, by Lemma 2.7 R is finite. 

(ii) It follows from the fact that an integral domain has no non-zero 

annihilating ideals. □ 

It can be seen from Illustration 4.2 that converse of Theorem 4.1 (i) need 

not be true. 

Illustration 4.2. Let   6R  then   Rdim  is infinite as R is 

infinite. Also R has 8 ideals and            ,,0,,3,0,3  RV  

        .0,2,,2,,1   Then  R  is as shown in Figure 2 and 

   .2dim R  

 

Figure 2. Graph  .R  

Theorem 4.3. Let R be a ring. Then   Rdim   is finite if and only if 

every vertex of  R  has finite degree. 

Proof. Suppose that   Rdim  is finite, say k. Hence the metric 

representation of any vertex v has k-tuple. As proved by Salehifar et al. [23] 
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   ,2diam R  it follows that each co-ordinate is either of 0, 1 or 2. Hence 

the number of vertices in  R  is at most .3k  Therefore every vertex has 

finite degree. Conversely suppose that every vertex of  R  has finite 

degree. Then  R  is finite as    .2diam R  □ 

Theorem 4.4. Let R be a reduced commutative ring such that 

  .3R  If    Rgr   then      .2  RRdim    

Proof. If R is a reduced commutative ring with   3R  then as 

proved by Salehifar et al. [23]   
  1,1 
R

KR
  and by Lemma 2.4 

     .2  RRdim    □ 

Theorem 4.5. Let R be any ring then 

(i)    0Rdiam   if and only if    .0Rdim   

(ii)    1Rdiam   if and only if      .1  RRdim   

Proof. (i)    0diam R  if and only if it has a single vertex. 

Hence    .0dim R  □ 

(ii)    1diam R  if and only if it is complete graph. Hence result 

follows. □ 

Theorem 4.6. If R is any local principle ideal ring with nil potency 

  ,nR   then    .2 nRdim   

Proof. Let R be any finite local principal ideal ring with nilpotency 

  ,nR   this implies that there exist a maximal ideal m of R such that 

 .0nm  Then ring R has only 1n  proper ideals, namely 

132 ,,,, nmmmm   and      21 , mAnnmmAnn n   ,, 21  nn mm  

     13213 ,,,,  nnnn mAnnmmmmAnn    ,,,, 21 mmm nn   in 

general we can write    .1: ijmmAnn jni    Now by the definition of 

annihilator ideal graph, the ideals im  and jm  are adjacent if nji   as 
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 .0jimm  Now what happens when .nji   In other words, we have to 

check the adjacency of ideals whenever  0 kji mmm  and also in          

this case, it is clear that ., jik   In this case    2mAnnmAnn   

   13  nmAnnmAnn   as mentioned earlier    ,1 nmAnnmAnn  

     3212 ,, mAnnmmmAnn nn      1321 ,,,,  nnnn mAnnmmm   

 .,,, 21 mmm nn   Therefore  ji mmAnn ,     ji mAnnmAnn   

which implies that im  and jm  are also adjacent whenever .nji   Hence 

all ideals of the ring R are mutually adjacent in  ,R  that means 

  .1 nKR  Hence the result follows. □ 

Theorem 4.7. If R is a finite principle ideal ring with nil potency   nR   

and  is any field, then    .32  nRdim    

Proof. As nilpotency   nR   and  is a field, R  has total 22 n   

ideals, in which n2  ideals are proper. Since R is a finite local principal ideal 

ring, there exist maximal ideal m of R such that  .0nm  Therefore proper 

ideals of R and R  are  132 ,,,, nmmmm   and       ,0,,,0 R  

     1,,3,2,1,,,0,  nimm ii   respectively. Now, we will check the 

adjacency of ideals of .R  Thus, we have   ,0RAnn  

                 ,,00,,,00,,11:0,   i
RR

i mAnnRAnnnim

      ijmm jnjn  1:,,0,   and     0,, jni
R mmAnn   

.1: ij   As we know that if  0IJ  then I and J are adjacent in 

annihilator ideal graph, the ideal   ,0  is adjacent to all elements of the    

set    1,,2,1,0,  nimi   and similarly,   0,R  is adjacent to 

      0,,,0 im  is adjacent to all the elements of the set 

         ,,,0,,,0 1
i
j

jnjn mm 
   and  ,im  is adjacent to all elements of 

the set    .0, 1
i
j

jnm 
  Now, the mutual product of remaining combinations 
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of ideals are               ,,,,,0,,0, jijijiji mmmmmm      

whenever      0,0,, Rmnji i            ,,0,0,,0,   ii mm  and 

       .0,0,, ii mRm   The pairs of vertices which are adjacent in 

annihilator ideal graphs are           0,,0,,,,0, jiji mmmm   

    ,,, ji mm  and     ,0,,, Rmj   while      0,,0, Rmj  and 

     ,0,,im  are also non-adjacent. Onsider disjoint partitions of     

vertex set    V  such that     BnimA i ,1,,3,2,1:0,    

       ,0,1,,3,2,1:,  Cnimi   and    ,0,RD   then sub 

graphs induced from A as well as B are complete. Moreover, the element of C 

is adjacent with all the elements of A and D, the element of D is adjacent with 

all the elements of B and all the elements of A are adjacent with all the 

elements of B. Therefore the annihilator ideal graph     has complete 

sub graph of order .22 n  Hence result follows.  □ 

Theorem 4.8. Let nR 1  for ,21 kpppn   where ip ’s are distinct 

primes and ,212 kFFFR    where each ,1, kiFi   is a field and 

.
1 23  


k

i
R   Then      .321 RAGRR      

Proof. First of all note that       ,1,0:,,, 213  ik xxxxRAGV   

but not all ix ’s are 0 or 1 together. Also, the vertices of  1R  are ideals 

generated by the divisors of n which are k2  because kpppn 21  has total 

k2  divisors. 

Let  be the set of all divisors of n. for d  and   ,321 ,,, Rxxx k    

define a map 3: R  by 

   ,,,, 21 kxxxd   where 





otherwise,1

|if,0 dp
x i

i  

For ,, 21 dd  if ,21 dd   then 1|dpi  if and only if .| 2dpi  Therefore,  

 is bijection. Let 1d  and 2d  be two divisors of n such that 1d  and 2d  are 

adjacent in  ,1R  then      .2121 111
ddAnndAnndAnn RRR   Let 
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   ,,,, 211 kxxxd   where 0ix  if 1|dpi  and    ,,,, 212 kyyyd   

where 0iy  if 2|dpi  then        ,,,, 2121 kzzzdd   where 0iz  if 

1|dpi  or .| 2dpi  Also      0:,,, 2113
 ikR xxxxdann   if 1dpi   

and      0:,,, 2123
 ikR yyyydann   if 2dpi   implies that 

        0:,,, 2121 33
 ikRR wwwwdanndann   if 1dpi   or 2dpi   

and         0:,,, 21213
 ikR zzzzddann   if 1dpi   and .2dpi   By 

using our assumption that 1d  and 2d  are adjacent, that means  11
dAnnR  

   ,212 11
ddAnndAnn RR   then it is clear that      21 33

danndann RR    

     .213
ddannR   Therefore  1d  and  2d  are adjacent in  .3RAG  

Thus  preserves adjacency. Similarly we can prove that  preserves non-

adjacency and hence    .31 RAGR   Since each field iF  has two ideals, 

the numbers of ideals of 2R  is .2k  The vertices of  2R  are of the form 

,21 kIII    where at least one  0iI  and at least one .ii FI   

Therefore,    .222  kRV   Also, we have    .223  kRAGV   

Now, define a map      32: RAGVRV   by  kIII  21  

 ,,,, 21 kaaa   where 0ia  if and only if  .0iI  Then,  clearly a 

bijection and also preserves the adjacencies and non-adjacencies in  2R  

and  3RAG  and therefore,    .31 RAGR   □ 

Theorem 4.9. If nFFFR  21  or ,
21 npppZ   then 

(i)    1 nRdim   for .3,2n   

(ii)    nRdim    for .4n  

Proof. The result follows from Lemma 2.8 and Theorem 4.8. □  

Corollary 4.10. Let nRRR ,,, 21   be rings and .21 nRRRR     

Then    Rdim   if and only if    ,Rdim   for every 

.1, nii    

Proof. Let nRRR ,,, 21   be rings and .21 nRRRR    Now 
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suppose that    iRdim  for every ,1, nii   then it is clear that it 

has finitely many ideals. That means  iRI  is finite. Since R is direct 

product of RRi ,  has finitely many ideals which implies   RV   is finite. 

Hence    .dim R  Conversely suppose that    ,dim R  Now 

suppose that there is a ring ,iR  such that    ,dim iR  then 

   .iRV   Which implies that    .RV   This is contradicts to 

our supposition that   Rdim  is finite. Therefore    ,dim iR  for 

every .1, nii   

5. Conclusion 

There are ample number of graphs arising from commutative rings 

available in literature and study of properties of these graphs is also 

interesting. The metric dimension has been studied in zero-divisor graphs, 

annihilator graphs and total graphs of commutative ring. To investigate such 

parameter for graphs from commutative ring is an open area of research. 
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