

ON MAX-IDEAL GRAPH OF THE COMMUTATIVE RING $Z_n, n \text{ IS NON-PRIME}$

KAMAL JYOTI BARMAN and KUNTALA PATRA

Department of Mathematics Gauhati University Guwahati-781014, India E-mail: kamaljyotibarman@yahoo.in kuntalapatra@gmail.com

Abstract

Max-ideal graph is a graph associated to ring $Z_n, n \neq$ prime, denoted by $M_I(Z_n)$ and is defined as the graph whose vertices are the ideals of the ring Z_n and any two distinct vertices I_1 and I_2 are adjacent in $M_I(Z_n)$ whenever $I_1 \cap I_2 = \{0\}$ or $I_1 \cap I_2 = I_1$ or I_2 , which is a maximal ideal of Z_n . In this paper we try to analyze the various structural properties of maxideal graph of ring $Z_n, n \neq$ prime.

1. Introduction

The study of graph of a commutative ring was first introduced by I. Beck [5] in the year 1988. The graph known as zero-divisor graph of a commutative ring defined by Beck has vertex set to be the ring R and two distinct elements $x, y \in R$ are adjacent if and only if xy = 0. Later it was modified by Anderson and Livingston [3]. After that, many authors have discussed about various kind of graphs associated to both commutative and non-commutative rings.

Since many of the algebraic properties of the rings are studied with the help of ideals of rings, so it will be interesting to associate a graph structure to the set of ideals and then study the graph theoretical properties of it. A new approach for constructing a graph for the commutative ring R known as

2010 Mathematics Subject Classification: 05C25, 05C45. Keywords: Max-ideal graph, Commutative ring, ideal, Maximal ideal. Received February 7, 2020; April 1, 2021 a comaximal graph was proposed by Sharma and Bhatwadekar [9]. Also, Ye and Wu [8] defined the comaximal graph on the set of ideals.

In this paper we introduce a new graph structure associated to a commutative ring Z_n called Max-Ideal graph. Max-Ideal graph denoted by $M_I(Z_n)$ is a graph whose vertices are the ideals of the ring Z_n and any two distinct vertices I_1 and I_2 are adjacent in $M_I(Z_n)$ whenever $I_1 \cap I_2 = \{0\}$ or $I_1 \cap I_2 = I_1$ or I_2 which is a maximal ideal of Z_n . In this paper we try to analyse the various structural properties of Max-Ideal graph of ring Z_n , $n \neq$ prime, which comprises girth, diameter, clique number and chromatic number and also investigate whether $M_I(Z_n)$ is bipartite, planar, eulerian, Hamiltonian or not.

2. Some Preliminary Definitions

Definition 2.1. A ring *R* in which $a \cdot b = b \cdot a$ for every $a, b \in R$ is called a commutative ring.

Definition 2.2. A non-empty subset *I* of a ring *R* is called an ideal of *R* if $a, b \in I \Rightarrow a - b \in I$ and $a \in I, r \in R \Rightarrow ar, ra \in I$.

Definition 2.3. Let R be a ring. An ideal $M \neq R$ of R is called a maximal ideal of R if whenever A is an ideal of R such that $M \subseteq A \subseteq R$ then either A = M or A = R.

Definition 2.4. A graph G with n vertices is said to be complete graph if every pair of vertices are joined by a line. It is denoted by K_n .

Definition 2.5. A graph G is said to be a bipartite graph, if the vertex set of G can be partitioned into two sets V_1 and V_2 such that every line of G joins a vertex of V_1 with a vertex of V_2 .

Definition 2.6. A star graph is a graph with *n* vertices such that exactly one vertex has degree n-1 and the remaining n-1 vertices have degree 1.

Definition 2.7. In a graph *G* the maximal complete subgraph is called a clique. The number of vertices in a clique is called the clique number, denoted by $\omega(G)$.

Definition 2.8. The diameter of G, $diam(G) = \sup\{d(x, y) | x, y \in V(G)\}$.

Definition 2.9. The girth of *G*, gr(G) is the length of a shortest cycle in *G*. If *G* contains no cycle then $gr(G) = \infty$

Definition 2.10. The chromatic number, $\chi(G)$ is defined as the minimum *n* for which *G* has an *n*-coloring (Assignment of colors to its vertices so that no two adjacent vertices have the same color).

Definition 2.11. A graph G is called Eulerian if there exist a walk which traverses each line exactly once and goes through all the vertices and ends at the starting vertex.

Definition 2.12. A graph G is Hamiltonian if it has a spanning cycle.

Definition 2.13. A graph G is planar if it can be embedded in the plane without edges crossing.

3. Main Results

Some obvious consequence of the definition of Max-Ideal graph are:

(I) $M_I(Z_n)$ is connected for all n.

(II) The degree of the vertex corresponding to the ideal $I_1 = \langle n \rangle$ in $M_I(Z_n)$ is $\tau(n) - 1$, where $\tau(n)$ denotes the number of positive divisors of n.

(III) $M_I(Z_n)$ is always cyclic as it contains K_3 .

Theorem 3.1. Girth of $M_I(Z_n)$ is always 3, n > 3.

Proof. In Max-Ideal graph of Z_n , the vertex corresponding to the ideal generated by n, $I_1 = \langle n \rangle = \{0\}$ is adjacent with all the remaining vertices.

Moreover, for any $n \in N$, $n \neq$ prime there exist a prime number p such that p/n. Implying there exist a maximal ideal generated by p, $I_2 = \langle p \rangle$ in Z_n . Now, the vertex corresponding to ideal $I_2 = \langle p \rangle$ is adjacent with the vertex corresponding to the ideal generated by 1, $I_3 = \langle 1 \rangle = Z_n$ in $M_I(Z_n)$.

Hence the vertices I_1 , I_2 and I_3 forms a cycle of length 3 in $M_I(Z_n)$. Therefore, girth of $M_I(Z_n)$, $gr[M_I(Z_n)] = 3$.

Theorem 3.2. Diameter of Max-Ideal graph of Z_n , is

(i) 1, *if* $n = p_1 p_2$.

(ii) 2, if $n = p_1^r$ or $p_1^r p_2^r$ or $p_1 p_2, ..., p_r$; where $p_1, p_2, ..., p_r$ are distinct primes and r > 1 is natural number.

Proof.

(i) The Max-Ideal graph of $Z_{(p_1p_2)}$ is a complete graph K_4 and so diam $[M_I(Z(p_1p_2))] = 1$.

(ii) For $n = p_1^r$ or $p_1^r p_2^r$ or $p_1, p_2, ..., p_r$; where $p_1, p_2, ..., p_r$ are distinct primes and r > 1 is natural number, the Max-Ideal graph of Z_n is not complete as the vertex corresponding to the ideal generated by $1, I_3 = \langle 1 \rangle = Z_n$ is adjacent only with the vertices corresponding to a maximal ideal of Z_n and $I_1 = \langle n \rangle = \{0\}$ in $M_I(Z_n)$ and so there always exist two vertices I_i and I_j such that I_i and I_j are not adjacent in $M_I(Z_n)$.

Since both I_i and I_j are adjacent with the vertex corresponding to ideal generated by n, $I_1 = \langle n \rangle = \{0\}$ in $M_I(Z_n)$, so there exist a path $I_i - I_1 - I_j$ of length 2 joining I_i and I_j in $M_I(Z_n)$. Implying, $d(I_i, I_j) = 2$ in $M_I(Z_n)$. Therefore $diam[M_I(Z_n)] = 2$.

Theorem 3.3. The clique number of the Max-Ideal graph of Z_n , is

(i) 4, *if* $n = p_1 p_2$.

(ii) 3, if $n = p_1^r$ or $p_1^r p_2$; where p_1 and p_2 are distinct primes and r > 1 is natural number.

Proof. (i) The result follows from the fact that $M_I(Z_{p_1p_2})$ is a complete graph of order 4.

(ii) For
$$n = p_1^r$$
, $r \ge 2$.
If $r = 2$, then $M_I(Z_{p_1^2}) \cong K_3 \Rightarrow$ Clique number of

Advances and Applications in Mathematical Sciences, Volume 20, Issue 8, June 2021

1552

 $M_I(Z_{p_1^2}), w[M_I(Z_{p_1^2})] = 3.$ Otherwise, if r > 2 then the vertices corresponding to the ideals $\langle 1 \rangle, \langle p_1 \rangle$ and $\langle p_1^r \rangle$ forms a complete graph of order 3 in $M_I(Z_{p_1^r})$. While the remaining vertices $\langle p_1^2 \rangle, \langle p_1^3 \rangle, \dots, \langle p_1^{r-1} \rangle$ are adjacent only with the vertex $\langle p_1^r \rangle$. Hence the maximal complete subgraph of $M_I(Z_{p_1^r}), r > 2$ is of order 3. Therefore, $w[M_I(Z_{p_1^r})] = 3, r > 2$.

For $n = p_1^r p_2, r \ge 2$.

In $M_I(Z_{p_1^r p_2})$, the vertices corresponding to the ideals $\langle p_1^r p_2 \rangle$, $\langle 1 \rangle$, $\langle P_2 \rangle$ and $\langle p_1^r \rangle$ have degree greater than or equal to 3 while all the remaining vertices have degree 1 or 2. But the vertex corresponding to the ideal $\langle 1 \rangle$ is not adjacent with the vertex corresponding to ideal $\langle p_1^r \rangle$ and so the vertices corresponding to the ideals $\langle p_1^r p_2 \rangle$, $\langle 1 \rangle$, $\langle P_2 \rangle$ and $\langle p_1^r \rangle$ will not form a complete subgraph, hence the maximal complete subgraph of $M_I(Z_{p_1^r p_2})$ is of order 3 which is formed by the vertices corresponding to the ideals $\langle p_1^r p_2 \rangle$, $\langle 1 \rangle$ and $\langle P_2 \rangle$. Hence, $w[M_I(Z_{p_1^r p_2})] = 3$.

Theorem 3.4. The clique number of the graph $M_I(Z_{p_1, p_2, \dots, p_n})$ is $n+1, n \ge 3$.

Proof. For n = 3, $M_I(Z_{p_1p_2p_3})$ has 8 vertices and the vertices corresponding to the ideals $\langle p_1p_2p_3 \rangle$, $\langle p_1p_2 \rangle$, $\langle p_2p_3 \rangle$ and $\langle p_1p_3 \rangle$ forms a complete graph K_4 .

Moreover, no other vertex in $M_I(Z_{p_1p_2p_3})$ have degree greater than or equal to 4 except the vertex corresponding to the ideal $\langle 1 \rangle$ but the vertex corresponding to ideal $\langle 1 \rangle$ is not adjacent with all four of the above mentioned vertices and so the maximal complete subgraph in $M_I(Z_{p_1p_2p_3})$ is of order 4.

For n = 4, $M_I(Z_{p_1p_2p_3p_4})$ has 16 vertices and the vertices corresponding to the ideals $\langle p_1p_2p_3p_4 \rangle$, $\langle p_1p_2p_3 \rangle$, $\langle p_2p_3p_4 \rangle$, $\langle p_3p_4p_1 \rangle$ and $\langle p_4p_1p_2 \rangle$ forms a complete graph K_5 .

Moreover, no other vertex in $M_I(Z_{p_1p_2p_3p_4})$ have degree greater than or equal to 5 except the vertex corresponding to the ideal $\langle 1 \rangle$ but the vertex corresponding to ideal $\langle 1 \rangle$ is not adjacent with all five of the above mentioned vertices and so the maximal complete subgraph in $M_I(Z_{p_1p_2p_3p_4})$ is of order 5.

In this way, for n = r, $M_I(Z_{p_1p_2p_3, ..., p_r})$ has 2^r vertices and the vertices corresponding to the ideals $\langle p_1p_2, ..., p_r \rangle$, $\langle p_1p_2p_3, ..., p_{r-1} \rangle$, $\langle p_2p_3, ..., p_r \rangle$, $\langle p_3p_4, ..., p_rp_1 \rangle$, ..., $\langle p_rp_1p_2, ..., p_{r-2} \rangle$ forms a complete graph K_{r+1} , which is maximal complete subgraph in $M_I(Z_{p_1p_2p_3, ..., p_r})$.

Hence, $\omega[M_I(Z_{p_1p_2p_3,...,p_r})] = r + 1, r \ge 3.$

Theorem 3.5. The Max-Ideal graph of Z_n is neither a bipartite nor a star.

Proof. By Theorem 3.1, there always exist a cycle of length 3 in $M_I(Z_n)$ and since a graph is bipartite if and only if all its cycle are of even length, so $M_I(Z_n)$ is not bipartite.

Next, a star S_k is the complete bipartite graph $K_{1,k}$ and since $M_I(Z_n)$ will never be a bipartite graph. So $M_I(Z_n)$ is not a star as well.

Theorem 3.6. The Max-Ideal graph of Z_n is planar whenever $n = p_1 p_2$ or $n = p_1^r$.

Proof. For $n = p_1 p_2$, the result follows from the fact that $M_I(Z_{p_1 p_2})$ is a complete graph of order 4. Next, for $n = p_1^r$.

In the ring $Z_{p_1^r}$, the ideal generated by $p_1, \langle p_1 \rangle$ is the only maximal ideal. So the vertices corresponding to the ideals $\langle 1 \rangle$ and $\langle p_1 \rangle$ are adjacent in

 $M_I(Z_{p_1^r})$. Apart from that all the remaining vertices $\langle p_1^2 \rangle$, $\langle p_1^3 \rangle$, ..., $\langle p_1^{r-1} \rangle$ are adjacent with the vertex $\langle p_1^r \rangle$ only.

Hence however large the value of r may be, the Max-Ideal graph of $Z_{p_1^r}$ can always be embedded in a plane without edge crossing. Hence $M_I(Z_{p_1^r})$ is planar.

Theorem 3.7. The Max-Ideal graph of $Z_{p_1p_2}$ is Hamiltonian but not Eulerian.

Proof. The Max-Ideal graph of $Z_{p_1p_2}$, $M_I(Z_{p_1p_2})$ is a complete graph K_4 . So it contains a spanning cycle and moreover degree of each of its vertices is odd.

Hence, $M_I(Z_{p_1p_2})$ is Hamiltonian but not Eulerian.

Theorem 3.8. The Max-Ideal graph of $Z_{p_1p_2, \ldots, p_n}$ is not Eulerian.

Proof. In the Max-Ideal graph of $Z_{p_1p_2, \ldots, p_n}$, the degree of the vertex corresponding to the ideal $I_1 = \langle p_1p_2, \ldots, p_n \rangle = \{0\}$ is $2^n - 1$, which is odd for all *n*. Hence, $M_I(Z_{p_1p_2, \ldots, p_n})$ is not Eulerian.

Theorem 3.9. The Max-Ideal graph of Z_{p^n} is

- (i) Both Eulerian and Hamiltonian if n = 2.
- (ii) Neither Eulerian nor Hamiltonian if n > 2.

Proof. (i) The Max-Ideal graph of Z_{p^2} is complete graph K_3 and so is both Eulerian and Hamiltonian.

(ii) For n > 2, the ideals of Z_{p^n} are $I_1 = \langle p^n \rangle = \{0\}, I_2 = \langle 1 \rangle = Z_{p^n}, I_3$ = $\langle p \rangle, I_4 = \langle p^2 \rangle, \dots, I_{n+1} = \langle p^{n-1} \rangle.$

Out of all the ideals of Z_{p^n} , I_3 is the only maximal ideal and so the vertex corresponding to I_3 is adjacent with the vertex corresponding to I_2 in

 $M_I(Z_{p^n})$. While all the remaining vertices corresponding to the ideals $I_4, I_5, \ldots, I_{n+1}$ are of degree 1. Which implies that $M_I(Z_{p^n})$ is neither Eulerian nor Hamiltonian.

Theorem 3.10. The Max-Ideal graph of Z_n is neither Eulerian nor Hamiltonian whenever $n = p_1^r p_2$ or $p_1^r p_2^r$ where $r \ge 3$.

Proof. For $n = p_1^r p_2$,

The ideals of the ring
$$Z_{p_1^r p_2}$$
 are $I_1 = \langle p_1^r p_2 \rangle = \{0\}, I_2 = \langle 1 \rangle$
= $Z_{p_1^r p_2}, I_3 = \langle p_1 \rangle, I_4 = \langle p_2 \rangle, I_5 = \langle p_1^2 \rangle, I_6 = \langle p_1^3 \rangle, \dots, I_{r+2} = \langle p_1^{r-1} \rangle, I_{r+3} = \langle p_1^r \rangle,$
 $I_{r+4} = \langle p_1 p_2 \rangle, I_{r+5} = \langle p_1^2 p_2 \rangle, \dots, I_{r+(r-1+3)} = I_{2(r+1)} = \langle p_1^{r-1} p_2 \rangle.$

Now, in Max-Ideal graph of $Z_{p_1^r p_2}$, the vertices corresponding to the ideals I_5 , I_6 , ..., I_{r+2} are adjacent with the vertex corresponding to the ideal I_1 only. which implies that $M_I(Z_{p_1^r p_2})$ is neither Eulerian nor Hamiltonian.

For $n = p_1^r p_2^r$.

As above the vertices corresponding to the ideals $\langle p_1^2 \rangle$, $\langle p_1^3 \rangle$, ..., $\langle p_1^{n-1} \rangle$, $\langle p_2^2 \rangle$, $\langle p_2^3 \rangle$, ..., $\langle p_2^{n-1} \rangle$ are adjacent only with the vertex corresponding to the ideal $\langle p_1^r p_2^r \rangle$ in $M_I(Z_{p_1^r p_2^r})$.

Hence the graph $M_I(Z_{p_1^r p_2^r})$ is neither Eulerian nor Hamiltonian. \Box

Theorem 3.11. The chromatic number of the Max-Ideal graph of Z_n is

(i) 4, if $n = p_1 p_2$ or $p_1 p_2 p_3$

(ii) 3, if $n = p_1^r$, r > 1 or $n = p_1^r p_2$, r > 2 where p_1 , p_2 , p_3 are distinct primes and r is natural number.

Proof. (i) For $n = p_1 p_2$, $M_I(Z_{p_1 p_2}) \cong K_4 \Rightarrow \chi[M_I(Z_{p_1 p_2})] = 4$.

For $n = p_1 p_2 p_3$,

The vertices corresponding to the ideals $\langle p_1 p_2 p_3 \rangle$, $\langle p_1 p_2 \rangle$, $\langle p_2 p_3 \rangle$ and $\langle p_1 p_3 \rangle$ forms a complete graph K_4 . So we can assign color-1 to color-4 to the subgraph K_4 . No other vertex is adjacent with all four of them and so we can assign the above mentioned colors to the remaining vertices of $M_I(Z_{p_1 p_2 p_3})$ in such a way that no two adjacent vertices have same color. Hence, $\chi[M_I(Z_{p_1 p_2})] = 4$.

(ii) For $n = p_1^r, r \ge 2$,

If r = 2 then $M_I(Z_{p_1^2}) \cong K_3 \Rightarrow \chi[M_I(Z_{p_1^2})] = 3$. Otherwise, if r > 2then the vertices corresponding to the ideals $\langle 1 \rangle, \langle p_1 \rangle$ and $\langle p_1^r \rangle$ forms a complete graph K_3 in $M_I(Z_{p_1^r})$. So we can assign color-1 to color-3 to the subgraph K_3 .

Moreover the remaining vertices $\langle p_1^2 \rangle$, $\langle p_1^3 \rangle$, ..., $\langle p_1^{r-1} \rangle$ are adjacent only with the vertex $\langle p_1^r \rangle$. So we can assign either of the two color which is not assign to the vertex $\langle p_1^r \rangle$ to the remaining vertices of $M_I(Z_{p_1^r})$.

Hence, $\chi[M_I(Z_{p_I^r})] = 3.$

For $n = p_1^r p_2, r \ge 2$. The ideals of the ring $Z_{p_1^r p_2}$ are $I_1 = \langle p_1^r p_2 \rangle = \{0\}, I_2 = \langle 1 \rangle = Z_{p_1^r p_2}, I_3 = \langle p_1 \rangle, I_4 = \langle p_2 \rangle, I_5 = \langle p_1^2 \rangle, I_6 = \langle p_1^3 \rangle, \dots,$ $I_{r+2} = \langle p_1^{r-1} \rangle, I_{r+3} = \langle p_1^r \rangle, I_{r+4} = \langle p_1 p_2 \rangle, I_{r+5} = \langle p_1^2 p_2 \rangle, \dots, I_{r+(r-1+3)}$ $= I_{2(r+1)} = \langle p_1^{r-1} p_2 \rangle.$

We can assign color-1 to vertex I_1 .

In $M_I(Z_{p_1^r p_2})$, the vertex corresponding to the ideal I_1 is adjacent with all the remaining vertices and so we can not assign color-1 to the remaining vertices.

Next, we can assign color-2 to vertex I_2 .

The vertices corresponding to the ideals $I_5, I_6, ..., I_{r+2}$ are adjacent only with the vertex I_1 , so we can assign color-2 to each of the vertices $I_5, I_6, ..., I_{r+2}$.

Also, the vertex corresponding to the ideal I_{r+3} is not adjacent with the vertices corresponding to the ideals I_2 , I_5 , I_6 , ..., I_{r+2} and so we can assign color-2 to the vertex I_{r+3} .

Next, the vertices corresponding to the maximal ideal I_3 and I_4 are adjacent with both the vertices I_1 and I_2 and so we assign color-3 to each of them.

Moreover the vertices corresponding to the ideals I_{r+4} , I_{r+5} , ..., I_{2r+2} are adjacent only with vertices I_1 and I_{r+3} and hence we can assign color-3 to all of them.

Hence, $\chi[M_I(Z_{p_1^r p_2})] = 3, r > 2.$

References

- A. Amini, B. Amini, E. Momtahan and M. H. Shirdareh Haghighi, On a graph of ideals, Acta Math. Hungar. 134(3) (2012), 369-384.
- [2] Chris Godsil and Gordon Royle, Algebraic Graph Theory, Springer-Verlag Publishing Company, Inc. 2001.
- [3] D. F Anderson and P. S Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217(2) (1999), 434-447.
- [4] Frank Harary, Graph Theory, Addison-Wesley Publishing Company, Inc. 1969.
- [5] I. Beck, Coloring of commutative rings, J. Algebra 116(1) (1988), 208-226.
- [6] I. Chakrabarty, S. Ghosh, T. K. Mukherjee and M. K. Sen, Intersection graphs of ideals of rings, J. Discrete Mathematics 309 (2009), 5381- 5392.
- [7] Joseph A. Gallian, Contemporary Abstract Algebra, Narosa Publishing House Pvt. Ltd, 4th Edition, 1999.
- [8] M. Ye and T. Wu, Co-maximal ideal graph of commutative rings, J. Algebra and its Application 2012 11(6).
- [9] P. K. Sharma and S. M. Bhatwadekar, A note on graphical representation of rings, J. Algebra 176(1) (1995), 124-127.
- [10] S. Akbari and A. Mohammadian, On zero-divisor graph of finite rings, J. Algebra 314(1) (2007), 168-184.