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Abstract 

This paper discusses a randomized threshold discrete-time queueing system with starting 

failures in which customer arrives under three different policies. Two correspond to the LCFS 

(Last Come First Served) discipline, in which displacements or removal of arriving customers 

occur. The third strategy acts as a signal, that is, it becomes a negative customer. Also 

examined is the possibility of failures at each service commencement epoch. A threshold policy 

is adopted in this model i.e. the server provides the service only when N customers available in 

the system other wise the server is idle. We carry out a thorough study of the model, deriving 

analytical results for the stationary distribution. We obtain probability generating function PGF 

at an arbitrary time by using generating function technique and an analytical expressions for 

mean queue length and average waiting time are derived as performance measure. In numerical 

examples the effects of mean queue length and average waiting time are analyzed at various 

arrival and service rates. 

1. Introduction 

In Queuing models many researchers have found a lot of application in 

computer communications and manufacturing systems. Currently many 

researchers are interested in discrete queue, due to applications in a various 

slotted digital communicated systems and other related areas. The analysis of 

discrete queuing model has received considerable attention in the scientific 
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literature over the past years because of its applications which are widely 

used in the real life. 

Only at the end 20 century most of queueing models literature survey are 

motivated and developed. At these time most of the researchers concentrate 

only on continuous models and only few of them focus on discrete models 

because of its applications in many parts of real life such as 

telecommunication, computer system etc. The analysis of discrete queuing 

model has received considerable attention in the scientific literature over the 

past years because of its applications which are widely used in the real life. 

Initially the discrete queues are discussed by Meisling [1], Bindsall, 

Ristenbatt, and Weinstein [2] and also by powell and Avi – Lizha [3]. 

In Queuing models many researchers have found a lot of application in 

computer communications and manufacturing systems. Currently many 

researchers are interested in discrete queue, due to applications in a various 

slotted digital communicated systems and other related areas. The analysis of 

discrete queuing model has received considerable attention in the scientific 

literature over the past years because of its applications which are widely 

used in the real life. 

Recently, many researchers increase their attention in queuing system 

with N policy and this concept N policy is used to control the service in 

queuing system. This model is widely used for modelling purpose of any 

production and manufacturing system as well as network communication and 

telecommunication system. From this policy we infers that when N or more 

customers are present in the system the server is activated and deactivated 

when the server is empty. In earlier Yadin and Noor [4], ke and warg [5] were 

first introduce this policy. They focussed on a single removable server 

queuing system with finite capacity operating under N policy. Jain et al. [6] 

discussed unreliable kMM 1  queuing model under N and F policy with 

multi optional phase repair and start up. Moreover Wang et al [7] has 

examined the concept strategic behaviour of 1MM  constant retrial queue 

with N policy Moreno [8] discussed a discrete time single server queue model 

with general N policy and fixing close down times. Zhang and Tian [9] 

investigated a discrete time 1GGeo  queue with multiple adaptive vacation. 
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In most of the queueing literature, it is understood that the server is 

always busy, but this assumption is practically not true. In queueing system 

a notable and unavoidable phenomenon in the service facility is its 

breakdown and consequent repair. The waiting time of a customer will 

increase with a consequence effect over the impatience of the customer until 

the server facility is recovered again. Indeed, queueing systems with server 

breakdowns are very common in communication systems. Queues with 

service interruptions were first studied by White and Christie [10]. In 

queueing theory the periods on which the service not available are called as 

server vacation, server break down and server interruption. 

Upgrading analytical models to be applicable for discussing their 

performance is a very major issue, which has been handled by several 

researchers. Mostly all the existing models concentrate on continuous-time 

ones and application to networks with blocking and truncation. Works related 

to discrete-time systems with server interruptions with or without expulsions 

and vacations can be found, including those by Fiems et al. [11-12]. 

The 1MM  queue, the 1GM  queue and the 1MGI  queue have all 

used the idea of the negative consumer. Artalejo [13], and Gelenbe [14] have 

all done excellent surveys on negative clients. This topic has recently been 

expanded to include a discrete-time queueing mechanism. Due to the 

packetized nature of transport protocols, the discrete-time queue is better 

suited to represent the behavior of time-slotted digital communication 

systems. Atencia and Moreno [15] looked into 1GeoGeo  delays with bad 

consumers and the numerous removal disciplines that these customers 

caused. 

The server is assumed to be reliable on a permanent basis in most of the 

literature on queueing systems with negative consumers, independent of the 

arrival of negative customers. In many real systems, however, the entrance of 

a negative customer can result in server failure and the destruction of work. 

Few studies have been conducted on repairing queueing systems with 

negative clients. The 1GeoGeo  retrial queue with negative consumers was 

studied by Wang and Zhang [16]. unreliable server, where the server fails at 

any time customers that are unhappy arrive at a system. Lee et al. [17] 

presented the results of repairable 1GGeo  queues with catastrophes, in 
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which if a disaster strikes a system, all current customers (i.e., a queue) will 

be affected. Customers in service (as well as those in line) are compelled toget 

out of the system. The authors defined a disaster in as a server failure that 

results in the loss of all work in progress in a system. Neither of them, 

however, thought the negative customers in the case of repairable queueing 

systems. This results in server failure as well as the cancellation of a single 

transaction a typical consumer. 

We need to find configurations and rules that will optimise a queueing 

system before we can construct it. To accomplish so, we must first 

comprehend how the queueing system would work under various 

configurations and rules, such as the length of the queue, which relates to the 

number of items in the queue or consumers who must wait in a queue or in a 

buffer to be dealt with. This is frequently a useful measure of a queueing 

system’s performance. From the user’s perspective, the longer the line, the 

poorer the performance. Another indicator of the system’s behaviour is the 

length of time it takes for a client to receive service of course, the longer this 

performance metric is, the poorer the customer’s perception of the system in 

terms of service time becomes. 

Atenciaanalyzied a discrete time system with service control and repairs 

in a detailed manner along with this a threshold policy is introduced and a 

new queueing model is developed namely. A randomized threshold discrete 

time system with service control and repairs. 

2. Model description 

Let the time axis be divided into equal intervals of unit length called 

slots. Since in discrete queue many events occur simultaneously, so the order 

of these must be stated. There are two arrivals namely Late Arrival system 

(LAS) and early Arrival system (EAS). In this model we follow LAS. 

In this study, we look at a discrete-time queueing system with starting 

failures in which a client arrives and uses one of three techniques. With 

displacements and expulsions, the first and second follow the LCFS 

discipline, respectively. The third one acts as a negative customer, i.e., it 

kicks the client who is now being served out of the system has no effect on the 

system any longer. Customers arrive using a Bernoulli arrival process with 
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rate, where a represents the likelihood of a client arriving at a specific slot. 

When a customer enters the server, the service station must be turned on. If 

the server is successfully launched (with probability ), the customer can 

begin using his or her service right away and if the server is busy at the time 

of his/her arrival, the client who is currently being serviced gets displaced to 

the first place of the queue with probability 1p  the customer who was in 

service is expelled from the system with probability ,2p  and the arriving 

customer becomes a negative customer with a probability of 3p  i.e., kills the 

customer in service while having no effect on an empty room, otherwise, if the 

server fails to start (with a complementary chance  ), it is sent directly to 

repair, and the customer is placed at the front of the line. Customers who 

arrive at the system during a repair time are placed at the back of the line 

and also the server provides the service only when N customers present in 

the system otherwise the service idle. i.e., The  NP,  policy is introduced. 

Clearly .1321  ppp  

The service times are identically independent random variables and are 

generally distributed with generating function 

  






1

,11

i

i
ixSxS  

The served consumer will, without a doubt, depart the system after the 

service is completed and will have no further impact on the system. 

The repair times are identically independent random variables and are 

generally distributed with generating function  

  






1

,22

i

i
ixSxS  

and the nth factorial moments n,2  Naturally, the service station is as 

good as new following repairs. 

The load of the system is given by ,21   where 

 b31 1    



P. GUNASEKARAN 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022 

3910 

 

    111

1,23
2

1

1

pSp

p




  

where b  is the mean sojourn time of the customer in the server 3. 

Markov chain 

3. Markov chain 

The state of the system at time n  is defined as 

   nnn
n

n NC ,,, ,2,1   

where   2,1,0 n  denotes the state of the server  

when   ,0 n  the server is free  

,1  the server is busy and ,,1 n  represents remaining service 

time of the customer 

,2  the server is under repair ,,2 n  represents remaining repair 

time and nN  represent number of customers in the queue, It can be shown 

that  1; nCn  is the markov process of our queuing system. 

The limiting probabilities are defined as 

       kNi nn
n

n
ki

n

n



,,1Prlim,0Prlim ,11,,110  

   kNi nn
n

n
ki 


,,2Prlim ,21,,2  

The Kolmogorov equations for the stationary distribution of the system 

under consideration are 

  






1

0,,130,1,1030

i

ipp  (1) 

  1,1,11,1,1,110,13,01,,1 1  jjjkj sspsp   
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   














2 1

2,,1

2

,131,,1,120,,2,11,01

j j

j

j

ijijik spspsp  

      2,1,2,131,1,2,13,0 11  iik spsp  (2) 

  1,1,1,1,1,1,110,13,0,,1 1  kjkjjkki sspsp  

  




 

2

1,1,11,011,1,1,1 1

j

jkikkjkj sp  

    








 

2 2

,1,2,13,01,,1,13,,1,12 11

j j

kikkjikji spspsp  

  1,1,2,13  kisp  (3) 

  1,1,1,1,1,1,110,13,0,1 1  NjNjjkN sspsp  

  




 

2

1,,1,11,01,1,1,1,1 1

j

NjikNjNj sp  

    








 

2 2

,1,2,13,01,,1,13,,1,12 11

j j

NikNjiNji spspsp  

  1,1,2,13  Nisp  (4) 

    1,,1,230,1,1,210,23,11,,2 1 jiiiki spspsp   

    










2 1

0,1,2,2311,,1,230,,1,22 11

j j

ikjiji spspsp  

        1,1,20,11,23,11,1,2,2 33
11   jpkip ps  (5) 

    kiikiikkj spspsp ,,1,231,1,1,210,23,1,,2 1    
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    








 

2 1

1,1,2,231,,1,231,,1,22 11

j j

kikkjikji spspsp  

        Nikkkii ppSap ,1,231,11,23,0,,2,23 11    

 (6) 

    NiiNiikki spspsp ,,1,231,1,1,210,23,1,,2 1    

    








 

2 1

1,1,2,231,,1,231,,1,22 11

j j

NikNjiNji spspsp  

        NipNkNip ps ,1,21,11,23,0,1,2,2 33
11     

 (7) 

where k,0  and k,1  the Kronecker’s symbol, and the normalization 

condition is 




 



 



1 0

,,1

1 0

,,10 1

i

N

k

ki

i

N

k

ki  

We introduce following generating function to solve the above system of 

equations 

    


 



 



1 1 1 1

,,22,,11 ,,

i

N

k i

N

k

ki
ki

ki
ki zxzxzxzx  

Also, we introduce auxiliary generating function 

    



N

k

N

k

k
kii

k
kii zzzz

1
1

,,2,2,,1,1  

In equations (2), (3) and (4) multiply both sides by kz  and taking 

summation over k and use equation (1), we get, 

   
  

 zs
z

zp
zz iji 1,1,1

1
1,1,1

21



   
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   
 

 
  0,131,2,1

3 1
11







 ii sp
z

z
zs

z

zpz
 

 










 


z

pzpzp
zs z

i
3

2
1

1,1 ,1  (8) 

In equations (5), (6) and (7) multiply both sides by kz  and taking 

summation over k and use equation (1), we get, 

           zzpszzzpzz iji   11 1,11,131,2,2  

        zpzzspzppzzs izi  1,1 321,23
2

1,2  

    03,2 11  psz i  (9) 

In equation (8) multiply both sides by ix  and taking summations over I 

and after some algebraic simplifications, we get 

 
 

   zxS
z

zzp
zx

x

x
1,11

1
1

1
, 













 

   zxS
z

pzpzp z ,13
2

1 


  

 
      031,21

3 1
11







 p
z

z
zxS

z

zpz
 (10) 

In equation (9) multiply both sides by ix  and taking summations over i 

and after some algebraic simplifications, we get 

  
        zxSzzpzx

x

zpz
x 1,1212

3 1,
1




  

          xSzpzzxSpzpzp 231232
2

1 1,1    

           0231,23 111  xSpzzzpz  (11) 

Put 1x  in (10) and on simplifications, we get 
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 
 

     

    

    


























03

1,23

1,11

32
2

1

1

11

1

1

1
,1

pz

zzpz

zzzzp

pzpzpz
z  (12) 

Using (12) in (10) and on simplification, we get 

  


zx
x

x
,1  

 

     

     

     

     






























023

1,213

1,132
2

1

131

32
2

1

11

1

11

1

xSpz

zxSzpz

zpzpzpzz

xSzpzp

pzpzpz
  (13) 

Using (12) in (11) and on simplification, we get 

 

  
  


zx

x

zpzx
,

1
2

3  

 

        

  
 

 
 

    







































023

1,2
32

2
1

2
3

1,1231

32
2

1

1

1

11

1

xSpz

z
pzpzp

zxSz
zp

zxSzzpzp

pzpzpz
 (14) 

Put x  in (13) and on simplification, we get 

 
     

  0
13

1,1
11





zD

Spz
z  

Put   zpzx  13  in (14) and on simplification, we get 

 
      zDSzpz

z



13

1,2
1

1
 

        0323 111  zpzSpzz  

Where 
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           zpzzSSzpzpzD  111 32131  

  32
2

1 pzpzpz   

Substituting the above equations in (10) and (11), we get following 

generating function after some algebraic simplifications, 

 
       

  0
311

1
11

, 







zD

pzx

x

SxS
zx  

 
    

  

  
  0

3

3

322
2

11

1

1
, 








zD

pzxz

zpzx

zpzSxS
zx  

The marginal generating function of the number of customers in the 

queue when the server is busy is given by, 

 
     

  0
31

1
111

,1 



zD

pzS
z  

The marginal generating function of the number of customers in the 

queue when the server is down is given by, 

 
   

  0
32

2
11

1 



zD

zzpzS
z  

By using the normalizaton condition 

    11,11,1 210   

We obtain the unknown quantity namely steady state condition is derived 

which is given below, 

    
        311,23131

111
0 11

1

1
pPpSpp

pSp



  

Which is obviously less than one. 

The Probability generating function PGF of an queue size at an arbitrary 

time is given by, 

     zzz ,1,1 210   

 
     

  0
311 11





zD

zpzSpz
z  
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4. Performance Measure 

Mean Queue Length 

The average number of customers in the queue i.e., mean queue length 

E(N) is obtained by differentiating PGF  z  with respect to z and then put 

 z  which is given below, 

   

     

        

    

   

    111

3131,2

31

32,23
2

11

1,2111

1

1

1
2

11

212

1
pSp

ppp

ppS

ppSp

SSp

NE




















































  

5. Numerical examples 

In this section we presented numerical examples in two cases. In both 

cases we analysed the following concepts. 

(i) The effect on mean queue length when customer arrival increases 

(ii) The effect on mean queue length when service rate increases. 

Case (i). In case (I) inter arrival times follow geometrical distribution. 

Service times, repair times, are also geometrically distributed. 

(1). When the arrival rate increases the effect on mean queue length is  

discussed below with the following graph and table. 

Table 1.1. Arrival rate Vs Mean queue length. 

Arrival rate 0  Mean queue length 

0.2 0.22 .11 

0.4 0.35 53 

0.6 0.43 .57 

0.8 0.59 .76 

1.0 0.72 .96 
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Graph 1.1. Arrival rate Vs mean queue length. 

From the above graph and table we conclude that mean queue length 

increase as customer arrival increases. 

(2). When the server time increases the effect on mean queue length is 

discussed below with the following graph and table. 

Table 1.2. Service rate Vs Mean queue length. 

Service rate 0  Mean queue length 

0.2 0.93 15.9 

0.4 0.75 14.8 

0.6 0.58 4.57 

0.8 0.42 3.61 

1.0 0.36 2.34 
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Graph 1.2. Service rate Vs Mean queue length. 

From the above graph and table we conclude that mean queue length 

decrease as service rate increases. 

6. Conclusion 

In this article a randomized threshold discrete time system with service 

control and repairs is discussed. In this model an analytical expression for 

probability generating function is derived by using generating function 

technique and in performance measure an analytical expression for mean 

queue length is obtained. In numerical examples the influence of mean queue 

length is discussed at various arrival and service rates. This model is most 

suitable for many situations of our real life.  
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