M. KALIRAJA and T. BHAVANI

P. G. and Research Department of Mathematics
H. H. The Rajah's College
Affiliated to Bharathidasan University
Pudukkottai, Tamilnadu, India
E-mail: mkr.maths009@gmail.com
Department of Science and Humanities (Mathematics)
Sri Krishna College of Technology
Coimbatore, Tamilnadu, India
E-mail: bhavaniskct@gmail.com

Abstract

In this paper, we have investigated the characterization of interval valued secondary κ range symmetric fuzzy matrices. The relationship between interval valued $s-\kappa$ range symmetric, interval valued s-range symmetric, interval valued κ-range symmetric and interval valued range symmetric matrices are discussed. The necessary and sufficient conditions for a matrix to be interval valued $s-\kappa$ range symmetric fuzzy matrices are established.

1. Introduction

All the matrices in this paper are interval valued fuzzy matrices [9]. We have defined a $(I V F M)$ as $X=\left(x_{i j}\right)=\left[x_{i j L}, x_{i j U}\right]$ where each $x_{i j}$ is the subinterval of interval [0, 1] [5]. Let $\mathcal{F}_{n n}$ be the set of all $n \times n$ fuzzy matrices over the fuzzy algebra with the support $[0,1]$ under the operation $(+, \cdot)$ as $x, y \in \mathcal{F}, x+y=\max \{x, y\}$ and $x \cdot y=\min \{x, y\}$. Let A^{T}, A^{+}, $R(A), C(A), N(A), \rho(A)$ denote the transpose of the matrix A, Moore-pen rose inverse, Row space of A, Column space of A, Null space of A and the rank of A
respectively. $A\{1\}$ denote the set of all g-inverses of a regular fuzzy matrix A. For a fuzzy matrix, A^{+}if A exist then it is coincide with A^{+}[1]. A fuzzy matrix A is range symmetric if $R(A)=R\left(A^{T}\right)$ and kernels symmetric $N(A)=N\left(A^{T}\right)$ [3]. It is well understood that the idea of range and kernel symmetric are the same for complex matrices. Furthermore, for interval valued fuzzy matrices, this fails. Ann Lee [2] pioneered the research of secondary symmetric matrices, or matrices with symmetric entries around the secondary diagonal. Antoni, Cantoni, and Butler Paul [7] investigated the importance of per symmetric matrices, or matrices that are symmetric about both diagonals, in communication theory. Water and Hill [10] established a theory of s-real and s-Hermitian matrices as a generalization of κ-real and кHermitian matrices [8]. Meenakshi and Jayashree developed the concepts of κ-kernel symmetric fuzzy matrices [4] and of к-range symmetric fuzzy matrices [11].

We established and developed the notion of interval valued $s-\kappa$ range symmetric matrices for fuzzy matrices as a special example of equivalent to the results on complex matrices, and we enlarged various basic results on $s-\kappa$ Hermitian and interval valued range symmetric matrices. In section 3, an interval valued secondary $s-\kappa$ range symmetric fuzzy matrices can be characterized [6]. In section 4, appropriate criteria are discovered for various g -inverses of an interval valued secondary к-range symmetric fuzzy matrix to be interval valued secondary κ-range symmetric.

2. Preliminaries

This section contains a few key definitions and outcomes that are required.

Definition 2.1. $A=\left(a_{i j}\right)_{m \times n}$ is an interval valued fuzzy matrix (IVFM) of order $m n$ where $\left(a_{i j}\right)=\left[a_{i j L}, a_{i j U}\right]$ the $i j^{\text {th }}$ entry of the matrix A is an interval representing the membership values. Every element of a (IVFM) is an interval, and every interval is a subinterval of the interval $[0,1]$. Any two IVFMs can be represented by C and D. For any two elements $c \in C$ and $d \in D$ where $c=\left[c_{L}, c_{U}\right]$ and $d=\left[d_{L}, d_{U}\right]$ are intervals in [0,1] so that $c_{L}<c_{U}$ and $d_{L}<d_{U}$.
(i) $c+d=\left[\max \left\{c_{L}, d_{L}\right\}, \max \left\{c_{U}, d_{U}\right\}\right]$
(ii) $c \cdot d=\left[\min \left\{c_{L}, d_{L}\right\}, \min \left\{c_{U}, d_{U}\right\}\right]$

In this case, we have used the basic IVFM operation described in [5].
For $X=\left(x_{i j}\right)=\left(\left[x_{i j L}, x_{i j U}\right]\right)$ and $Y=\left(y_{i j}\right)=\left(\left[y_{i j L}, y_{i j U}\right]\right)$ of order $m \times n$ with their sum denoted as $X+Y$

$$
X+Y=\left(x_{i j}+y_{i j}\right)=\left(\left[x_{i j L}+y_{i j L}, x_{i j U}+y_{i j U}\right]\right)
$$

For $X=\left(x_{i j}\right)_{m \times n}$ and $Y=\left(y_{i j}\right)_{n \times p}$ with their product denoted as,

$$
\begin{aligned}
X Y & =\left(z_{i j}\right)_{m \times p}=\left[\sum_{k=1}^{n} c_{i k} d_{k j}\right] \quad i=1,2, \ldots, m \\
& =\left[\sum_{k=1}^{n}\left(c_{i k L} \cdot d_{k j L}\right), \sum_{k=1}^{n}\left(c_{i k U} \cdot d_{k j U}\right),\right]
\end{aligned}
$$

$X \leq Y$ if and only if $x_{i j L} \leq y_{i j L}$ and $x_{i j U} \leq y_{i j U}$
If $x_{i j L}=x_{i j U}$ and $y_{i j L}=y_{i j U}$, then it is reduces to the standard max. min fuzzy matrix composition.

Definition 2.2. Consider ' V ' which has units on its secondary diagonal and K is the fixed product of disjoint transpositions in $S_{n}=1$ to n, and K be the related permutation matrix everywhere.

If $a_{i j}=a_{k(j) k(i)}$ for $i, j=1,2, \ldots, n$ then a matrix $\left(a_{i j}\right) \in I V F M$ is κ symmetric. For $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathcal{F}_{n \times 1}$. Let us defined the function $\mathfrak{R}(x)$
$\mathfrak{R}(x)=\left(x_{k(1)}, x_{k(2)}, \ldots, x_{k(n)}\right)^{T} \in \mathcal{F}_{n \times 1}$ Because K is involuntary, it is possible to verify that the related permutation matrix meets the conditions given in [12].

By the definition of ' V,

$$
\begin{aligned}
& (C \cdot 2 \cdot 2 \cdot 1) K K^{T}=K^{T} K=I, K=K^{T}, K^{2}=I \text { and } \mathfrak{R}(x)=K x \\
& (C \cdot 2 \cdot 2 \cdot 2) V=V^{T}, V^{T} V=V V^{T}=I \text { and } V^{2}=I
\end{aligned}
$$

$(C \cdot 2 \cdot 2 \cdot 3)(V A)^{T}=A^{T} V,(A V)^{T}=V A^{T}$
$(C \cdot 2 \cdot 2 \cdot 4)$ If A^{+}exist, then $(V A)^{+}=A^{+} V,(A V)^{+}=V A^{+}$
$(C \cdot 2 \cdot 2 \cdot 5) R(A)=R(V A), R(A)=R(K A)$.

Theorem 2.3 [3], P.120.

For $A \in \mathcal{F}_{n}$ the subsequent statements are equal
(1) $\rho(A)=r$ and A is a range symmetric and
(2) $C\left(A^{T}\right)=C(A)$
(3) For some fuzzy matrices $A H=K A=A^{T} H, K$ and $\rho(A)=r$
(4) $P A P^{T}$ is range symmetric matrix of rank of r for few permutation matrix P.

Lemma. 2.4 [3], P. 123
For $A \in \mathcal{F}_{n}$, If A^{+}exists then the subsequent statements are equal
(1) A is a range symmetric
(2) $A^{+} A=A A^{+}$
(3) A^{+}is range symmetric
(4) A is normal.

Lemma 2.5 [3], P.119. For $A \in \mathcal{F}_{n}$ and a permutation matrix $P, R(A)=R(B) \Leftrightarrow R\left(P A P^{T}\right)=R\left(P B P^{T}\right)$.

Definition 2.6. For a matrix $A \in \mathcal{F}_{n n}$ is s-symmetric $\Leftrightarrow A=V A^{T} V$.
Definition 2.7. For a matrix $A \in \mathcal{F}_{n n}$ is s-range symmetric $\Leftrightarrow R(A)=R\left(V A^{T} V\right)$.

Definition 2.8. For a matrix $A \in \mathcal{F}_{n n}$ is $s-\kappa$ range symmetric $\Leftrightarrow R(A)=R\left(K V A^{T} V K\right)$.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 10, August 2022

Lemma 2.9. For a matrix $A \in \mathcal{F}_{n n}$ is a range symmetric $\Leftrightarrow A V$ is range symmetric $\Leftrightarrow V A$ is range symmetric.

Definition 2.10 [12]. A matrix $A=\left[A_{L}, A_{U}\right] \in I V F M_{n n}$ is stated to be interval valued range symmetric if $R\left(A_{L}\right)=R\left(A_{L}^{T}\right) \quad$ where $R\left(A_{L}\right)=\left\{x / x A_{L}=0\right.$ and $\left.x \in \mathcal{F}_{n \times 1}\right\}$.

$$
R\left(A_{U}\right)=R\left(A_{U}^{T}\right), \text { where } R\left(A_{U}\right)=\left\{x / x A_{U}=0 \text { and } x \in \mathcal{F}_{n \times 1}\right\}
$$

3. Internal Valued Secondary k-range Symmetric Fuzzy Matrices

We have classified and acquired some results on interval valued $s-\kappa$ range symmetric fuzzy matrices in this section.

Definition 3.1. A matrix $A=\left[A_{L}, A_{U}\right] \in I V F M_{n n}$ is an interval valued s-symmetric if and only if

$$
A_{L}=V A_{L}^{T} V, A_{U}=V A_{U}^{T} V
$$

Definition 3.2. A matrix $A=\left[A_{L}, A_{U}\right] \in I V F M_{n n}$ is an interval valued s-range symmetric if and only if $R\left(A_{L}\right)=R\left(V A_{L}^{T} V\right), R\left(A_{U}\right)=R\left(V A_{U}^{T} V\right)$.

Definition 3.3. A matrix $A=\left[A_{L}, A_{U}\right] \in I V F M_{n n}$ is an interval valued s - к range symmetric $\Leftrightarrow R\left(A_{L}\right)=R\left(K V A_{L}^{T} V K\right), R\left(A_{U}\right)=R\left(K V A_{U}^{T} V K\right)$.

Lemma 3.4. A matrix $A=\left[A_{L}, A_{U}\right] \in I V F M_{n n}$ is an interval valued s range symmetric $\Leftrightarrow V A=\left[V A_{L}, V A_{U}\right]$ is an interval valued range symmetric $\Leftrightarrow A V=\left[A_{L} V, A_{U} V\right]$ is an interval valued range symmetric.

Proof. A matrix $A=\left[A_{L}, A_{U}\right] \in I V F M_{n n}$ is an interval valued s-range symmetric $\Leftrightarrow R\left(A_{L}\right)=R\left(V A_{L}^{T} V\right)$ [By definition 3.2]

$$
\begin{aligned}
& \left.\Leftrightarrow R\left(A_{L} V\right)=R\left(A_{L} V\right)^{T} \text { [By C } 2.2 .2\right] \\
& \Leftrightarrow A_{L} V \text { is a range symmetric } \\
& \Leftrightarrow R\left(V A_{L} V V^{T}\right)=R\left(V V A_{L}^{T} V\right)
\end{aligned}
$$

$\Leftrightarrow R\left(V A_{L}\right)=R\left(V A_{L}\right)^{T} \quad[$ Ву C 2.2.2]
$\Leftrightarrow V A_{L}$ is a range symmetric.
Similar manner,
$\Leftrightarrow R\left(A_{U}\right)=R\left(V A_{U}^{T} V\right)$ [By definition 3.2]
$\Leftrightarrow R\left(A_{U} V\right)=R\left(A_{U} V\right)^{T}[$ By C 2.2.2]
$\Leftrightarrow A_{U} V$ is a range symmetric
$\Leftrightarrow R\left(V A_{U} V V^{T}\right)=R\left(V V A_{U}^{T} V\right)$
$\Leftrightarrow R\left(V A_{U}\right)=R\left(V A_{U}\right)^{T}[$ By C 2.2.2]
$\Leftrightarrow V A_{U}$ is a range symmetric.
$\therefore V A=\left[V A_{L}, V A_{U}\right]$ is an interval valued symmetric.
Remark 3.5. When $k(i)=i$ for each $i=1$ to n, the related permutation matrix K becomes the identity matrix, and definition 3.3 becomes $R\left(A_{L}\right)=R\left(V A_{L}^{T} V\right), R\left(A_{U}\right)=R\left(V A_{U}^{T} V\right)$, implying that $A=\left[A_{L}, A_{U}\right]$ are interval valued s-range symmetric matrices.

Remark 3.6. When $k(i)=n-i+1$, the related permutation matrix K becomes V, and definition 3.3 obtains $R\left(A_{L}\right)=R\left(A_{L}^{T}\right), R\left(A_{U}\right)=R\left(A_{U}^{T}\right)$, implying that $A=\left[A_{L}, A_{U}\right]$ an interval valued range symmetric.

Remark 3.7. We note that, an interval valued $s-\kappa$ symmetric matrix is an interval valued $s-\kappa$ range symmetric for if $A=\left[A_{L}, A_{U}\right]$ is an interval valued $s-\kappa \quad$ symmetric then $A_{L}=K V A_{L}^{T} V K, A_{U}=K V A_{U}^{T} V K$. Hence $R\left(A_{L}\right)=R\left(K V A_{L}^{T} V K\right), R\left(A_{U}\right)=R\left(K V A_{U}^{T} V K\right)$ which implies that A is an interval valued $s-\kappa$ kernel symmetric. The inverse on the other hand does not have to be true. The following studies illustrate this.

Example 3.8. For $K=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] V=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Let $A=\left[A_{L}, A_{U}\right]=$
$\left[\begin{array}{cc}{[0.1,0.1]} & {[0.5,0.7]} \\ {[0.5,0.7]} & {[0.1,0.1]}\end{array}\right]$ is an interval valued symmetric, interval valued $s-\kappa$ symmetric and hence therefore interval valued $s-\kappa$ range symmetric.

$$
\begin{aligned}
& \text { Here }\left[A_{L}\right]=\left[\begin{array}{ll}
0.1 & 0.5 \\
0.5 & 0.1
\end{array}\right],\left[A_{U}\right]=\left[\begin{array}{ll}
0.1 & 0.7 \\
0.7 & 0.1
\end{array}\right] \\
& \text { Consider } K V A_{L}^{T} V K=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0.1 & 0.5 \\
0.5 & 0.1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \qquad=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0.1 & 0.5 \\
0.5 & 0.1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
0.1 & 0.5 \\
0.5 & 0.1
\end{array}\right] \\
& =A_{L} \\
& K V A_{L}^{T} V K=A_{L} . \text { Similar we can get } K V A_{U}^{T} V K=A_{U} \\
& \Rightarrow A=\left[A_{L}, A_{U}\right] \text { is an interval valued } s-\kappa \text { symmetric. }
\end{aligned}
$$

Example 3.9. For $\kappa=(1,2)(3) K=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $V=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
Here $K \neq I, K \neq V$ and $V \neq V K$
Now $A=\left[A_{L}, A_{U}\right]=\left[\begin{array}{ccc}{[0,0]} & {[0,0]} & {[1,1]} \\ {[0.3,0.4]} & {[1,1]} & {[0,0]} \\ {[0.3,0.6]} & {[0.1,0.1]} & {[0,0]}\end{array}\right]$ is an interval valued $s-\kappa$ range symmetric but not an interval valued $s-\kappa$ symmetric.

Consider $K V A_{L}^{T} V K=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}0 & 0.3 & 0.3 \\ 0 & 1 & 0.1 \\ 1 & 0 & 1\end{array}\right]$

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 0.3 & 0.3 \\
0 & 1 & 0.1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 0.1 & 0 \\
0 & 0 & 1 \\
0.3 & 0.3 & 0
\end{array}\right] \neq A_{L}
\end{aligned}
$$

Similarly, we can prove that

$$
K V A_{U}^{T} V K \neq A_{U}
$$

Hence $A=\left[A_{L}, A_{U}\right]$ is not an interval valued $s-\kappa$ symmetric
But $R\left(A_{L}\right)=N\left(K V A_{L}^{T} V K\right)=\{0\}$

$$
R\left(A_{U}\right)=N\left(K V A_{U}^{T} V K\right)=\{0\}
$$

$\therefore A=\left[A_{L}, A_{U}\right]$ an interval valued $s-\kappa$ range symmetric
Theorem 3.10 (Characterization Theorem). The following statements are identical for $A \in I V F M_{n \times n}$
(1) $A=\left[A_{L}, A_{U}\right]$ is an interval valued $s-\kappa$ range symmetric
(2) $K V A=\left[K V A_{L}, K V A_{U}\right]$ is an interval valued range symmetric
(3) $A K V=\left[A_{L} K V, A_{U} K V\right]$ is an interval valued range symmetric
(4) $V A=\left[V A_{L}, V A_{U}\right]$ is an interval valued κ-range symmetric
(5) $A K=\left[A_{L} K, A_{U} K\right]$ is an interval valued s-range symmetric
(6) A^{T} is an interval valued $s-\kappa$ range symmetric
(7) $R\left(A_{L}\right)=R\left(A_{L}^{T} V K\right), R\left(A_{U}\right)=R\left(A_{U}^{T} V K\right)$
(8) $R\left(A_{L}^{T}\right)=R\left(A_{L} V K\right), R\left(A_{U}^{T}\right)=R\left(A_{U} V K\right)$
(9) $C\left(K V A_{L}\right)=C\left(\left(K V A_{L}\right)^{T}\right) C\left(K V A_{U}\right)=C\left(\left(K V A_{U}\right)^{T}\right)$
(10) $A_{L}=V K A_{L}^{T} V K H_{1}, A_{U}=V K A_{U}^{T} V K H_{1}$ for $H_{1} \in I V F M$
(11) $A_{L}=H_{1} K V A_{L}^{T} K V, A_{U}=H_{1} K A_{U}^{T} V K$ for $H_{1} \in I V F M$
(12) $A_{L}^{T}=K V A_{L} V K H_{1}, A_{U}^{T}=K V A_{U} V K H_{1}$ for $H_{1} \in I V F M$
(13) $A_{L}^{T}=H_{1} K V A_{L} K V, A_{U}^{T}=H_{1} K V A_{U} V K$ for $H_{1} \in I V F M$.

Proof. (1) $\Leftrightarrow(2) \Leftrightarrow(4)$ Consider $A=\left[A_{L}, A_{U}\right]$ is an interval valued $s-\kappa$ range symmetric

Let us consider A_{L} is a $s-\kappa$ range symmetric

$$
\Leftrightarrow R\left(A_{L}\right)=R\left(K V A_{L}^{T} V K\right), R\left(A_{U}\right)=R\left(K V A_{U}^{T} V K\right)
$$

[By Definition 3.3]

$$
\Leftrightarrow R\left(K V A_{L}\right)=R\left(\left(K V A_{L}\right)^{T}\right) R\left(K V A_{U}\right)=R\left(\left(K V A_{U}\right)^{T}\right)
$$

[By C 2.2.5]
$\Leftrightarrow K V A=\left[K V A_{L}, K V A_{U}\right]$ is an interval valued range symmetric
$\Leftrightarrow V A=\left[V A_{L}, V A_{U}\right]$ is an interval valued κ-range symmetric
As a result $(1) \Leftrightarrow(2) \Leftrightarrow(4)$ are true
$(1) \Leftrightarrow(3) \Leftrightarrow(5)$
$A=\left[A_{L}, A_{U}\right]$ is an interval valued $s-\kappa$ range symmetric

$$
\Leftrightarrow R\left(A_{L}\right)=R\left(K V A_{L}^{T} V K\right), R\left(A_{U}\right)=R\left(K V A_{U}^{T} V K\right)
$$

[By Definition 3.3]
$\Leftrightarrow R\left(K V A_{L}\right)=R\left(\left(K V A_{L}\right)^{T}\right) R\left(K V A_{U}\right)=R\left(\left(K V A_{U}\right)^{T}\right)$
[By C 2.2.5]
$\Leftrightarrow R\left(V K\left(K V A_{L}\right)\right)=R\left((V K) A_{L}^{T} V K(V K)^{T}\right)$,
$R\left(V K\left(K V A_{U}\right)\right)=R\left((V K) A_{U}^{T} V K(V K)^{T}\right.$) [By Lemma. 2.2]

Advances and Applications in Mathematical Sciences, Volume 21, Issue 10, August 2022
$\Leftrightarrow R\left(A_{L} K V\right)=R\left(\left(A_{L} K V\right)^{T}\right), R\left(A_{U} K V\right)=R\left(\left(A_{U} K V\right)^{T}\right)$
$\Leftrightarrow A K V=\left[A_{L} K V, A_{U} K V\right]$ is an interval valued range symmetric
$\Leftrightarrow A K=\left[A_{L} K, A_{U} K\right]$ is an interval s-range symmetric
As a result $(1) \Leftrightarrow(3) \Leftrightarrow(5)$ are true
(2) $\Leftrightarrow(9)$
$K V A=\left[K V A_{L}, K V A_{U}\right]$ is interval valued range symmetric

$$
\begin{aligned}
& \Leftrightarrow R\left(K V A_{L}\right)=R\left(\left(K V A_{L}\right)^{T}\right), R\left(K V A_{U}\right)=R\left(\left(K V A_{U}\right)^{T}\right) \\
& \Leftrightarrow C\left(\left(K V A_{L}\right)^{T}\right)=C\left(K V A_{L}\right) C\left(\left(K V A_{U}\right)^{T}\right)=C\left(K V A_{U}\right)
\end{aligned}
$$

As a result, $(2) \Leftrightarrow(9)$ hold
(2) $\Leftrightarrow(7)$
$K V A=\left[K V A_{L}, K V A_{U}\right]$ is an interval valued range symmetric
$\Leftrightarrow R\left(K V A_{L}\right)=R\left(\left(K V A_{L}\right)^{T}\right), R\left(K V A_{U}\right)=R\left(\left(K V A_{U}\right)^{T}\right)$
$\Leftrightarrow R\left(A_{L}\right)=R\left(\left(K V A_{L}\right)^{T}\right), R\left(A_{U}\right)=R\left(\left(K V A_{U}\right)^{T}\right) \quad[$ By C 2.2.5]
$\Leftrightarrow R\left(A_{L}\right)=R\left(A_{L}^{T} V K\right), R\left(A_{L}\right)=R\left(A_{L}^{T} V K\right)$
As a conclusion $(2) \Leftrightarrow(7)$ is true
(3) $\Leftrightarrow(8)$
$A V K=\left[A_{L} V K, A_{U} V K\right]$ is an interval valued range symmetric

$$
\begin{aligned}
& \Leftrightarrow R\left(A_{L} V K\right)=R\left(\left(A_{L} V K\right)^{T}\right), R\left(A_{U} V K\right)=R\left(\left(A_{U} V K\right)^{T}\right) \\
& \Leftrightarrow R\left(A_{L} V K\right)=R\left(\left(A_{L} V K\right)^{T}\right), R\left(A_{U} V K\right)=R\left(\left(A_{U} V K\right)^{T}\right) \\
& \Leftrightarrow R\left(A_{L} V K\right)=R\left(\left(A_{L}\right)^{T}\right), R\left(A_{U} V K\right)=R\left(\left(A_{U}\right)^{T}\right)
\end{aligned}
$$

As a conclusion (3) \Leftrightarrow (8) hold
(1) $\Leftrightarrow(6)$

Advances and Applications in Mathematical Sciences, Volume 21, Issue 10, August 2022
$A=\left[A_{L}, A_{U}\right]$ is an interval valued $s-\kappa$ range symmetric
$\Leftrightarrow R\left(A_{L}\right)=R\left(K V A_{L}^{T} V K\right), R\left(A_{U}\right)=R\left(K V A_{U}^{T} V K\right)$ [By Definition 3.3]
$\Leftrightarrow R\left(K V A_{L}\right)=R\left(\left(K V A_{L}\right)^{T}\right), R\left(K V A_{U}\right)=R\left(\left(K V A_{U}\right)^{T}\right)$
$\Leftrightarrow(K V A)^{T}=\left(K V A_{L}, K V A_{U}\right)^{T}$ is an interval valued range symmetric
$\Leftrightarrow A^{T} V K=\left[A_{L} V K, A_{U} V K\right]$ is an interval valued range symmetric
$\Leftrightarrow A^{T}=\left[A_{L}^{T}, A_{U}^{T}\right]$ is an interval valued $s-\kappa$ range symmetric
As a conclusion $(1) \Leftrightarrow(6)$ is true
$(1) \Leftrightarrow(12) \Leftrightarrow(11)$
$A=\left[A_{L}, A_{U}\right]$ is an interval valued $s-\kappa$ range symmetric
$\Leftrightarrow R\left(A_{L}\right)=R\left(K V A_{L}^{T} V K\right), R\left(A_{U}\right)=R\left(K V A_{U}^{T} V K\right)$
$\Leftrightarrow C\left(A_{L}^{T}\right)=C\left(K V A_{L} V K\right), C\left(A_{U}^{T}\right)=C\left(K V A_{U} V K\right)$
$\Leftrightarrow A_{L}^{T}=K V A_{L} V K, A_{U}^{T}=K V A_{U} V K$ [By Theorem 2.3]
$\Leftrightarrow A_{L}=H_{1} K V A_{L}^{T} V K, A_{U}=H_{1} K V A_{U}^{T} V K$ for $H_{1} \in I V F M$
As a result $(1) \Leftrightarrow(12) \Leftrightarrow(11)$ hold
$(2) \Leftrightarrow(13) \Leftrightarrow(10)$
$K V A=\left[K V A_{L}, K V A_{U}\right]$ is an interval valued range symmetric
$\Leftrightarrow V A=\left[V A_{L}, V A_{U}\right]$ is an interval valued κ-range symmetric
$\Leftrightarrow R\left(V A_{L}\right)=R\left(K\left(V A_{L}\right)^{T} K\right), R\left(V A_{U}\right)=R\left(K\left(V A_{U}\right)^{T} K\right)$
$\Leftrightarrow R\left(A_{L}\right)=R\left(A_{L}^{T} V K\right), R\left(A_{U}\right)=R\left(A_{U}^{T} V K\right)$ [By C2.2.5]
$\Leftrightarrow C\left(A_{L}^{T}\right)=C\left(K V A_{L}\right), C\left(A_{U}^{T}\right)=C\left(K V A_{U}\right)$
$\Leftrightarrow A_{L}^{T}=H K V A_{L}, A_{U}^{T}=H K V A_{U}$ for $H \in I V F M$

$$
\begin{aligned}
& \Leftrightarrow A_{L}^{T}=H_{1} K V A_{L} K V, A_{U}^{T}=H_{1} K V A_{U} K V \\
& \Leftrightarrow A_{L}=V K A_{L}^{T} V K H_{1}, A_{U}=V K A_{U}^{T} V K H_{1} \text { for } H_{1} \in I V F M
\end{aligned}
$$

As a conclusion $(2) \Leftrightarrow(13) \Leftrightarrow(10)$ are true. As a result, the theorem is valid.

The preceding theorem simplifies to the analogous constraint for a matrix to be an interval valued s-range symmetric for $K=I$ in particular.

Corollary 3.11. The following propositions are equal for $A \in I V F M_{n \times n}$

1. $A=\left[A_{L}, A_{U}\right]$ is an interval valued s-range symmetric
2. $V A=\left[V A_{L}, V A_{U}\right]$ is an interval valued range symmetric
3. $A V=\left[A_{L} V, A_{U} V\right]$ is an interval valued range symmetric
4. $A^{T}=\left[A_{L}^{T}, A_{U}^{T}\right]$ is an interval valued s-range symmetric
5. $R\left(A_{L}\right)=R\left(A_{L}^{T} V\right), R\left(A_{U}\right)=R\left(A_{U}^{T} V\right)$
6. $R\left(A_{L}^{T}\right)=R\left(A_{L} V\right), R\left(A_{U}^{T}\right)=R\left(A_{U} V\right)$
7. $C\left(K V A_{L}\right)=C\left(\left(V A_{L}\right)^{T}\right), C\left(K V A_{U}\right)=C\left(\left(V A_{L}\right)^{T}\right)$
8. $A_{L}=V A_{L}^{T} V H_{1}, A_{U}=V A_{U}^{T} V H_{1}$ for $H_{1} \in I V F M$
9. $A_{L}=H_{1} V A_{L}^{T} V, A_{U}=H_{1} V A_{U}^{T} V$ for $H_{1} \in I V F M$
10. $A_{L}^{T}=V A_{L} V H_{1}, A_{U}^{T}=V A_{U} V H_{1}$ for $H_{1} \in I V F M$
11. $A_{L}^{T}=H_{1} V A_{L} V, A_{U}^{T}=H_{1} V A_{U} V H_{1}$ for $H_{1} \in I V F M$

Lemma 3.12. For $A=\left[A_{L}, A_{U}\right] \in \operatorname{IVFM}_{n n}, A=\left[A_{L}^{+}, A_{U}^{+}\right]$exist $\Leftrightarrow\left(K A_{L}\right)^{+},\left(K A_{U}\right)^{+}$exits $\Leftrightarrow\left(V K A_{L}\right)^{+},\left(V K A_{U}\right)^{+}$exits

Proof. For $A=\left[A_{L}, A_{U}\right] \in I V F M_{n n}$ if A_{L}^{+}exists then $A_{L}^{+}=A_{L}^{T}$ which A_{L}^{T} is a generalized inverse of A_{L}.

Consider A_{L}^{+}, A_{U}^{+}exists $\Leftrightarrow\left(K A_{L}\right)^{+},\left(K A_{U}\right)^{+}$exist [lemma 3.4 in [11]]

$$
\begin{aligned}
& \Leftrightarrow\left(K A_{L}\right)\left(K A_{L}\right)^{T}\left(K A_{L}\right),\left(K A_{U}\right)\left(K A_{U}\right)^{T}\left(K A_{U}\right) \\
& \Leftrightarrow\left(K A_{L}\right)^{+},\left(K A_{U}\right)^{+} \text {exits } \\
& \Leftrightarrow\left(V K A_{L}\right)\left(V K A_{L}\right)^{T}\left(V K A_{L}\right),\left(V K A_{U}\right)\left(V K A_{U}\right)^{T}\left(V K A_{U}\right) \\
& \Leftrightarrow\left(V K A_{L}\right)^{T} \in\left(V K A_{L}\right)\{1\},\left(V K A_{L}\right)^{T} \in\left(V K A_{U}\right)\{1\} \\
& \Leftrightarrow\left(V K A_{L}\right)^{+},\left(V K A_{U}\right)^{+} \text {exists }
\end{aligned}
$$

Hence the result
Remark 3.13. For $A=\left[A_{L}, A_{U}\right] \in I V F M_{n n}, A_{L}^{+}, A_{U}^{+}$exits $\Leftrightarrow\left(K V A_{L}\right)^{+}$, $\left(K V A_{U}\right)^{+}$exits.

Corollary 3.14. The subsequent statements are equivalent for $A=\left[A_{L}, A_{U}\right] \in I V F M_{n n}, A=\left[A_{L}^{+}, A_{U}^{+}\right]$exits
(1) $A=\left[A_{L}, A_{U}\right]$ is an interval valued $s-\kappa$ range symmetric
(2) $\left(V K A_{L}\right)\left(V K A_{L}\right)^{+}=\left(V K A_{L}\right)^{+}\left(V K A_{L}\right),\left(V K A_{U}\right)\left(V K A_{U}\right)^{+}=\left(V K A_{U}\right)^{+}\left(V K A_{U}\right)$
(3) $A^{+}=\left[A_{L}^{+}, A_{U}^{+}\right]$is an interval valued $s-\kappa$ range symmetric
(4) $V K A=\left[V K A_{L}, V K A_{U}\right]$ is normal.

Lemma 3.15. For $A=\left[A_{L}, A_{U}\right] \in I V F M_{n n}$ the following statements are equal
(1) $A=\left[A_{L}, A_{U}\right]$ is an interval valued $s-\kappa$ range symmetric
(2) $A_{L} A_{L}^{+} K V=K V A_{L}^{+} A_{L}, A_{U} A_{U}^{+} K V=K V A_{U}^{+} A_{U}$
(3) $V K A_{L} A_{L}^{+}=A_{L}^{+} A_{L} V K, V K A_{U} A_{U}^{+}=A_{U}^{+} A_{U} V K$

Proof. (1) $\Leftrightarrow(2)$
Since $A^{+}=\left[A_{L}^{+}, A_{U}^{+}\right]$exits By Corollary (3.14)
Advances and Applications in Mathematical Sciences, Volume 21, Issue 10, August 2022

$$
\begin{aligned}
& A=\left[A_{L}, A_{U}\right] \text { is an interval valued } s-\kappa \text { range symmetric } \\
& \Leftrightarrow V K A=\left[V K A_{L}, V K A_{U}\right] \text { is normal } \\
& \Leftrightarrow\left(V K A_{L}\right)\left(V K A_{L}\right)^{T}=\left(V K A_{L}\right)^{T}\left(V K A_{L}\right),\left(V K A_{U}\right)\left(V K A_{U}\right)^{T} \\
& =\left(V K A_{U}\right)^{T}\left(V K A_{U}\right) \\
& \Leftrightarrow V K A_{L} A_{L}^{T} K V=A_{L}^{T} K V V K A_{L}, V K A_{U} A_{U}^{T} K V=A_{U}^{T} K V V K A_{U} \\
& \Leftrightarrow V K A_{L} A_{L}^{T} K V=A_{L}^{T} A_{L}, V K A_{U} A_{U}^{T} K V=A_{U}^{T} A_{U}[\text { By C } 2.2 .1 \text { and C 2.2.2] } \\
& \Leftrightarrow A_{L} A_{L}^{T} K V=K V A_{L}^{T} A_{L}, A_{U} A_{U}^{T} K V=K V A_{U}^{T} A_{U} \\
& \Leftrightarrow A_{L} A_{L}^{+} K V=K V A_{L}^{+} A_{L}, A_{U} A_{U}^{+} K V=K V A_{U}^{+} A_{U} \\
& (2) \Leftrightarrow(3)
\end{aligned}
$$

Since By [C 2.2.1 and C 2.2.2], $K^{2}=I$ and $V=I$ As a result, equivalent is maintained by pre- and post-multiplying $A_{L} A_{L}^{+} K V=K V A_{L}^{+} A_{L}, A_{U} A_{U}^{+} K V$ $=K V A_{U}^{+} A_{U}$ by $V K$.

Theorem 3.16. For $A=\left[A_{L}, A_{U}\right] \in I V F M_{n \times n}$ then any two of the conditions below imply the other
$1 A=\left[A_{L}, A_{U}\right]$ is an interval valued κ - range symmetric
$2 A=\left[A_{L}, A_{U}\right]$ is an interval valued $s-\kappa$ range symmetric
$3 R\left(A_{L}^{T}\right)=R\left(\left(V K A_{L}\right)^{T}\right), R\left(A_{U}^{T}\right)=R\left(\left(V K A_{U}\right)^{T}\right)$.
Proof. (1) and (2) \Rightarrow (3)
$A=\left[A_{L}, A_{U}\right]$ is an interval valued $s-\kappa$ range symmetric
$\Rightarrow R\left(A_{L}\right)=R\left(A_{L}^{T} V K\right), R\left(A_{U}\right)=R\left(A_{U}^{T} V K\right)$ [By Theorem 3.1]
$\Rightarrow R\left(K A_{L} K\right)=R\left(K A_{L}^{T} K\right), R\left(K A_{U} K\right)=R\left(K A_{U}^{T} K\right)$ [By Lemma 2.2]
$\Rightarrow R\left(A_{L}^{T}\right)=R\left(\left(V A_{L} K\right)^{T}\right), R\left(A_{U}^{T}\right)=R\left(\left(V A_{U} K\right)^{T}\right)$

Therefore (1) and (2)
As a result (3) is true
(1) and (3) $\Rightarrow(2)$
$A=\left[A_{L}, A_{U}\right]$ is an interval valued κ-range symmetric
$\Rightarrow R\left(A_{L}\right)=R\left(K A_{L}^{T} K\right), R\left(A_{U}\right)=R\left(K A_{U}^{T} K\right)$
$\Rightarrow R\left(K A_{L} K\right)=R\left(\left(A_{L}\right)^{T}\right), R\left(K A_{U} K\right)=R\left(\left(A_{U}\right)^{T}\right)$ [By Lemma 2.5]
$\therefore(1)$ and $(3) \Rightarrow R\left(K A_{L} K\right)=R\left(\left(V A_{L} K\right)^{T}\right), R\left(K A_{U} K\right)=R\left(\left(V A_{U} K\right)^{T}\right)$
$\Rightarrow R\left(A_{L}\right)=R\left(A_{L}^{T} V K\right), R\left(A_{U}\right)=R\left(A_{U}^{T} V K\right)$
$\Rightarrow R\left(A_{L}\right)=R\left(\left(K V A_{L}\right)^{T}\right), R\left(A_{U}\right)=R\left(\left(K V A_{U}\right)^{T}\right)$
$\Rightarrow A=\left[A_{L}, A_{U}\right]$ is an interval valued $s-\kappa$ range symmetric [By
Theorem 3.10]
As a result (2) is true
(2) and (3) \Rightarrow (1)
$A=\left[A_{L}, A_{U}\right]$ is an interval valued $s-\kappa$ range symmetric
$\Rightarrow R\left(A_{L}\right)=R\left(A_{L}^{T} V K\right), R\left(A_{U}\right)=R\left(A_{U}^{T} V K\right)$
$\Rightarrow R\left(K A_{L} K\right)=R\left(K A_{L}^{T} K\right), R\left(K A_{U} K\right)=R\left(K A_{U}^{T} K\right)$ [Ву С 2.2.5]
$\therefore(2)$ and $(3) \Rightarrow R\left(K A_{L} K\right)=R\left(A_{L}^{T}\right), R\left(K A_{U} K\right)=R\left(A_{U}^{T}\right)$
$\Rightarrow R\left(A_{L}\right)=R\left(K A_{L}^{T} K\right), R\left(A_{U}\right)=R\left(K A_{U}^{T} K\right)$
$\Rightarrow A=\left[A_{L}, A_{U}\right]$ is an interval valued к-range symmetric
As a result (1) is true.
Hence the theorem.
4. Interval valued $s-\kappa$ range symmetric regular fuzzy matrices

This section revealed the existence of several generalized inverses of a matrix in $I V F M$. It is also established what are the equivalent criteria for various g-inverses of an interval valued $s-\kappa$ range symmetric fuzzy matrix to be an interval valued $s-\kappa$ range symmetric. The generalized inverses of an interval valued $s-\kappa$ range symmetric A corresponding to the sets $A\{1,2\}, A\{1,2,3\}$ and $A\{1,2,4\}$ are characterized.

When A is an interval valued $s-\kappa$ range symmetric matrix under certain criteria, any $X \in A\{1,2\}$ is proved an interval valued $s-\kappa$ range symmetric matrix in the subsequent manner.

Theorem 4.1. Let us assume $A \in I V F M_{n \times n}, X \in A\{1,2\}$ and $A X, X A$ are an interval valued $s-\kappa$ range symmetric. Then A is an interval valued $s-\kappa$ range symmetric $\Leftrightarrow X$ is an interval valued $s-\kappa$ range symmetric.

Proof. $R\left(K V A_{L}\right)=R\left(K V A_{L} X A_{L}\right) \subseteq R\left(X A_{L}\right)$ Since $A=A X A$

$$
=R\left(X V V A_{L}\right) \subseteq R\left(X V K K V A_{L}\right) \subseteq R\left(K V A_{L}\right)
$$

Hence,

$$
\begin{aligned}
& R\left(K V A_{L}\right)=R\left(X A_{L}\right) \\
& =R\left(K V\left(X A_{L}\right)^{T} V K\right),[\mathrm{XA} \text { is interval valued } s-\kappa \text { range symmetric] } \\
& =R\left(A_{L}^{T} X_{L}^{T} V K\right) \\
& =R\left(X_{L}^{T} V K\right) \\
& =R\left(\left(K V X_{L}\right)^{T}\right) \\
& R\left(\left(K V A_{L}\right)^{T}\right)=R\left(A_{L}^{T} V K\right) \\
& =R\left(X_{L}^{T} A_{L}^{T} V K\right) \\
& =R\left(\left(K V A_{L} X_{L}\right)^{T}\right)
\end{aligned}
$$

$=R\left(K V A_{L} X_{L}\right)$ [VA is an interval valued $s-\kappa$ range symmetric]

$$
=R\left(K V X_{L}\right)
$$

Similarly we can prove that $R\left(K V X_{U}\right)=R\left(\left(K V A_{U}\right)^{T}\right) K V X$ is an interval valued range symmetric.

$$
\begin{aligned}
& \Leftrightarrow R\left(K V A_{L}\right)=R\left(\left(K V A_{L}\right)^{T}\right), R\left(K V A_{U}\right)=R\left(\left(K V A_{U}\right)^{T}\right) \\
& \Leftrightarrow R\left(K V X_{L}\right)=R\left(\left(K V X_{L}\right)^{T}\right), R\left(K V X_{U}\right)=R\left(\left(K V X_{U}\right)^{T}\right)
\end{aligned}
$$

$\Leftrightarrow K V X=\left[K V X_{L}, K V X_{U}\right]$ is an interval valued range symmetric $\Leftrightarrow X$ is an interval valued $s-\kappa$ range symmetric.

Theorem 4.2. Let the matrix $\left[A_{L}, A_{U}\right] \in I V F M_{n \times n}, X=\left[X_{L}, X_{U}\right] \in A$ $\left.\{1,2,3\}, R\left(K V A_{L}\right)=\left(R\left(K V X_{L}\right)^{T}\right) . R\left(K V A_{U}\right)=R\left(K V X_{U}\right)^{T}\right)$. Then $A=\left[A_{L}, A_{U}\right]$ is an interval valued $s-\kappa$ range symmetric $\Leftrightarrow X=\left[X_{L}, X_{U}\right]$ is an interval valued $s-\kappa$ range symmetric.

Proof. Since $X \in A\{1,2,3\}$. We acquire $A_{L} X_{L} A_{L}=A_{L}, X_{L} A_{L} X_{L}=X_{L}$, $\left(A_{L} X_{L}\right)^{T}=A_{L} X_{L}$

$$
A_{U} X_{U} A_{U}=A_{U}, X_{U} A_{U} X_{U},\left(A_{U} X_{U}\right)^{T}=A_{U} X_{U}
$$

Consider $R\left(\left(K V A_{L}\right)^{T}\right)=R\left(X_{L}^{T} A_{L}^{T} V K\right)[B y ~ C ~ 2.2 .5] ~$

$$
\begin{aligned}
& =R\left(K V\left(A_{L} X_{L}\right)^{T}\right) \\
& =R\left(\left(A_{L} X_{L}\right)^{T}\right)[\text { By C } 2.2 .5] \\
& =R\left(A_{L} X_{L}\right)\left[(A X)^{T}=A X\right] \\
& =R\left(X_{L}\right) \text { By using } X=X A X \\
& =R\left(K V X_{L}\right)[\text { By C } 2.2 .5]
\end{aligned}
$$

Similarly, we can consider $R\left(\left(K V A_{U}\right)^{T}\right)=R\left(X_{U}^{T} A_{U}^{T} V K\right)$ [By C 2.2.5]

$$
\begin{aligned}
& =R\left(K V\left(A_{U} X_{U}\right)^{T}\right) \\
& =R\left(\left(X_{U} A_{U}\right)^{T}\right)[\text { By C } 2.2 .5] \\
& =R\left(X_{U} A_{U}\right)\left[(A X)^{T}=A X\right] \\
& =R\left(X_{U}\right) \text { By using } X=X A X \\
& =R\left(K V X_{U}\right)[\text { By C } 2.2 .5]
\end{aligned}
$$

If $K V A$ is an interval valued range symmetric

$$
\begin{aligned}
& \Leftrightarrow R\left(K V A_{L}\right)=R\left(\left(K V A_{L}\right)^{T}\right), R\left(K V A_{U}\right)=R\left(\left(K V A_{U}\right)^{T}\right) \\
& \Leftrightarrow R\left(K V X_{L}\right)=R\left(\left(K V X_{L}\right)^{T}\right), R\left(K V X_{U}\right)=R\left(\left(K V X_{U}\right)^{T}\right)
\end{aligned}
$$

$\Leftrightarrow K V X=\left[K V X_{L}, K V X_{U}\right]$ is an interval valued range symmetric $\Leftrightarrow X=\left[X_{L}, X_{U}\right]$ is a $s-\kappa$ is an interval valued range symmetric.

Theorem 4.3. Let $\left[A_{L}, A_{U}\right] \in I V F M_{n n}, X \in A\{1,2,4\}, R\left(\left(K V A_{L}\right)^{T}\right)$ $=R\left(K V X_{L}\right), R\left(\left(K V A_{U}\right)^{T}\right)=R\left(K V X_{U}\right)$. Then $K V A$ is an interval valued $s-\kappa$ range symmetric $\Leftrightarrow X=\left[X_{L}, X_{U}\right]$ is an interval valued $s-\kappa$ range symmetric.

Proof. Since $X \in A\{1,2,4\}$ We acquire $A_{L} X_{L} A_{L}=A_{L}, X_{L} X_{L}$, $\left(X_{L} A_{L}\right)^{T}=X_{L} A_{L}$

$$
\begin{aligned}
A_{U} X_{U} A_{U} & =A_{U}, X_{U} A_{U} X_{U},\left(X_{U} A_{U}\right)^{T}=X_{U} A_{U} \\
R\left(K V A_{L}\right) & =R\left(A_{L}\right)[\text { By C2.2.5] } \\
& =R\left(X_{L} A_{L}\right) \\
& =R\left(A_{L}^{T} X_{L}^{T}\right) \\
& =R\left(\left(X_{L}\right)^{T}\right) \\
& =R\left(K V X_{L}\right)^{T}[\text { By C } 2.2 .5]
\end{aligned}
$$

$$
\begin{aligned}
\text { Similar manner } & =R\left(K V A_{U}\right)=R\left(A_{U}\right)[\text { By C 2.2.5] } \\
& =R\left(X_{U} A_{U}\right) \\
& =R\left(X_{U}^{T} A_{U}^{T}\right) \\
& =R\left(X_{U}^{T}\right) \\
& =R\left(K V X_{U}\right)^{T}[\text { By C 2.2.5] }
\end{aligned}
$$

$K V A=\left[K V A_{L}, K V A_{U}\right]$ is an interval valued range symmetric

$$
\begin{aligned}
& \left.\Leftrightarrow R\left(K V A_{L}\right)=R\left(\left(K V A_{L}\right)^{T}\right), R\left(K V A_{U}\right)=R\left(K V A_{U}\right)^{T}\right) \\
& \left.\Leftrightarrow R\left(K V X_{L}\right)=R\left(\left(K V X_{L}\right)^{T}\right), R\left(K V X_{U}\right)=R\left(K V X_{U}\right)^{T}\right)
\end{aligned}
$$

$\Leftrightarrow K V X=\left[K V X_{L}, K V X_{U}\right]$ is an interval valued range symmetric
$\Leftrightarrow X=\left[X_{L}, X_{U}\right]$ is an interval valued $s-\kappa$ range symmetric
[Theorem 2.3]
The following theorem reduces various g-inverses of an interval valued srange symmetric fuzzy matrix to interval valued secondary range symmetric fuzzy matrix to similar requirements for $K=I$.

Corollary 4.4. Let $\left[A_{L}, A_{U}\right] \in I V F M_{n n}, X \in A\{1,2\} \quad$ and $A X=\left[A_{L} X_{L}, A_{U} X_{U}\right], X A=\left[X_{L} A_{L}, X_{U} A_{U}\right]$ are interval valued s-range symmetric then A is an interval valued s-range symmetric $\Leftrightarrow X$ is an interval valued s-range symmetric.

Corollary 4.5. Let $\left[A_{L}, A_{U}\right] \in I V F M_{n n}, X \in A\{1,2,3\}$ and $R\left(K V A_{L}\right)$ $=R\left(\left(V X_{L}\right)^{T}\right), R\left(K V A_{U}\right)=R\left(\left(V X_{U}\right)^{T}\right)$ then A is an interval valued s-range symmetric $\Leftrightarrow X$ is an interval valued s-range symmetric.

Corollary 4.6. Let $\left[A_{L}, A_{U}\right] \in I V F M_{n n}, X \in A\{1,2,4\}$ and $R\left(\left(V A_{L}\right)^{T}\right)$ $=R\left(V X_{L}\right), R\left(\left(V A_{U}\right)^{T}\right)=R\left(V X_{U}\right)$ then A is an interval valued s-range symmetric $\Leftrightarrow X$ is an interval valued s-range symmetric.

5. Conclusion

The classification of interval valued secondary к-range symmetric fuzzy matrices has been defined. In addition, we investigated into various cases of Proposition of interval valued $s-\kappa$ range symmetric fuzzy matrices.

6. Acknowledgement

I render my heartful thanks to Prof. Dr. (Mrs.) AR. Meenakshi, Former AICTE - Emeritus Professor of Mathematics, Annamalai University, for her expert guidance and Dr. D. Jayashree, Assistant Professor, Department of Mathematics. Government Arts and Science College, Hosur.

References

[1] K. H. Kim and F. W. Roush, Generalized fuzzy matrices, Fuzzy Sets and Systems 4(3) (1980), 293-315.
[2] A. Lee., Secondary Symmetric, Secondary Skew Symmetric, Secondary Orthogonal Matrices, Period Math, Hungary (1976), 63-76.
[3] A. R. Meenakshi, Fuzzy Matrix: Theory and Application, MJP, Publishers, Chennai, India, (2008).
[4] A. R. Meenakshi and D. Jaya Shree, On k-Kernel Symmetric Matrices, International Journal of Mathematics and Mathematical Science Article ID 926217, (2009), 1-8.
[5] A. R. Meenakshi and M. Kalliraja, Regular Interval valued Fuzzy matrices, Advance in Fuzzy Mathematics 5(1) (2010), 7-15.
[6] D. Jaya Shree, Secondary k-Range Symmetric Matrices, Journal of Discrete Mathematical Science and Cryptography and Mathematical Science 21 (2018), 1-11.
[7] C. Antonio and B. Paul, Properties of the Eigen vectors of per symmetric Matrices with application to communication theory IEEE Transactions on Communication 24(8) (1976), 804-809.
[8] A. R. Meenakshi and S. Krishnamoorthy, On k-EP matrices, Linear Algebra and its Applications 269 (1998), 219-232.
[9] A. K. Shyamal and M. Pal, Interval valued Fuzzy matrices, Journal of Fuzzy Mathematics 14(3) (2006), 582-592.
[10] R. D. Hills and S. R. Waters, On k real and Hermitian matrices, Linear Algebra and its Applications 169 (1992), 17-29.
[11] A. R. Meenakshi and D. Jaya Shree, On k-range symmetric matrices, Proceedings of the National Conference on Algebra and Graph Theory, MS University (2009), 58-67.
[12] M. Kaliraja and T. Bhavani, Interval valued κ-kernel symmetric fuzzy Matrices, (Communicated).

