

INTERVAL VALUED SECONDARY κ-RANGE SYMMETRIC FUZZY MATRICES

M. KALIRAJA and T. BHAVANI

P. G. and Research Department of Mathematics
H. H. The Rajah's College
Affiliated to Bharathidasan University
Pudukkottai, Tamilnadu, India
E-mail: mkr.maths009@gmail.com

Department of Science and Humanities (Mathematics) Sri Krishna College of Technology Coimbatore, Tamilnadu, India E-mail: bhavaniskct@gmail.com

Abstract

In this paper, we have investigated the characterization of interval valued secondary κ -range symmetric fuzzy matrices. The relationship between interval valued $s - \kappa$ range symmetric, interval valued *s*-range symmetric, interval valued κ -range symmetric and interval valued range symmetric matrices are discussed. The necessary and sufficient conditions for a matrix to be interval valued $s - \kappa$ range symmetric fuzzy matrices are established.

1. Introduction

All the matrices in this paper are interval valued fuzzy matrices [9]. We have defined a (*IVFM*) as $X = (x_{ij}) = [x_{ijL}, x_{ijU}]$ where each x_{ij} is the subinterval of interval [0, 1] [5]. Let \mathcal{F}_{nn} be the set of all $n \times n$ fuzzy matrices over the fuzzy algebra with the support [0, 1] under the operation $(+, \cdot)$ as $x, y \in \mathcal{F}, x + y = \max\{x, y\}$ and $x \cdot y = \min\{x, y\}$. Let $A^T, A^+, R(A), C(A), N(A), \rho(A)$ denote the transpose of the matrix A, Moore-pen rose inverse, Row space of A, Column space of A, Null space of A and the rank of A

2020 Mathematics Subject Classification: 54A05, 54A40.

Keywords: Interval valued fuzzy matrix, range symmetric, $s-\kappa\,$ range symmetric. Received April 8, 2022; Accepted April 19, 2022

respectively. $A\{1\}$ denote the set of all g-inverses of a regular fuzzy matrix A. For a fuzzy matrix, A^+ if A exist then it is coincide with A^+ [1]. A fuzzy matrix A is range symmetric if $R(A) = R(A^T)$ and kernels symmetric $N(A) = N(A^T)$ [3]. It is well understood that the idea of range and kernel symmetric are the same for complex matrices. Furthermore, for interval valued fuzzy matrices, this fails. Ann Lee [2] pioneered the research of secondary symmetric matrices, or matrices with symmetric entries around the secondary diagonal. Antoni, Cantoni, and Butler Paul [7] investigated the importance of per symmetric matrices, or matrices that are symmetric about both diagonals, in communication theory. Water and Hill [10] established a theory of s-real and s-Hermitian matrices as a generalization of κ -real and κ -Hermitian matrices [8]. Meenakshi and Jayashree developed the concepts of κ -kernel symmetric fuzzy matrices [4] and of κ -range symmetric fuzzy matrices [11].

We established and developed the notion of interval valued $s - \kappa$ range symmetric matrices for fuzzy matrices as a special example of equivalent to the results on complex matrices, and we enlarged various basic results on $s - \kappa$ Hermitian and interval valued range symmetric matrices. In section 3, an interval valued secondary $s - \kappa$ range symmetric fuzzy matrices can be characterized [6]. In section 4, appropriate criteria are discovered for various g-inverses of an interval valued secondary κ -range symmetric fuzzy matrix to be interval valued secondary κ -range symmetric.

2. Preliminaries

This section contains a few key definitions and outcomes that are required.

Definition 2.1. $A = (a_{ij})_{m \times n}$ is an interval valued fuzzy matrix (IVFM) of order mn where $(a_{ij}) = [a_{ijL}, a_{ijU}]$ the ij^{th} entry of the matrix A is an interval representing the membership values. Every element of a (IVFM) is an interval, and every interval is a subinterval of the interval [0, 1]. Any two IVFMs can be represented by C and D. For any two elements $c \in C$ and $d \in D$ where $c = [c_L, c_U]$ and $d = [d_L, d_U]$ are intervals in [0, 1] so that $c_L < c_U$ and $d_L < d_U$.

(i)
$$c + d = [\max \{c_L, d_L\}, \max \{c_U, d_U\}]$$

(ii) $c \cdot d = [\min \{c_L, d_L\}, \min \{c_U, d_U\}]$

In this case, we have used the basic IVFM operation described in [5].

For $X = (x_{ij}) = ([x_{ijL}, x_{ijU}])$ and $Y = (y_{ij}) = ([y_{ijL}, y_{ijU}])$ of order $m \times n$ with their sum denoted as X + Y

$$X + Y = (x_{ij} + y_{ij}) = ([x_{ijL} + y_{ijL}, x_{ijU} + y_{ijU}])$$

For $X = (x_{ij})_{m \times n}$ and $Y = (y_{ij})_{n \times p}$ with their product denoted as,

$$XY = (z_{ij})_{m \times p} = \left[\sum_{k=1}^{n} c_{ik} d_{kj}\right] \quad i = 1, 2, ..., m$$
$$= \left[\sum_{k=1}^{n} (c_{ikL} \cdot d_{kjL}), \sum_{k=1}^{n} (c_{ikU} \cdot d_{kjU}),\right]$$

 $X \leq Y$ if and only if $x_{ijL} \leq y_{ijL}$ and $x_{ijU} \leq y_{ijU}$

If $x_{ijL} = x_{ijU}$ and $y_{ijL} = y_{ijU}$, then it is reduces to the standard max. min fuzzy matrix composition.

Definition 2.2. Consider 'V which has units on its secondary diagonal and K is the fixed product of disjoint transpositions in $S_n = 1$ to n, and K be the related permutation matrix everywhere.

If $a_{ij} = a_{k(j)k(i)}$ for i, j = 1, 2, ..., n then a matrix $(a_{ij}) \in IVFM$ is κ symmetric. For $x = (x_1, ..., x_n)^T \in \mathcal{F}_{n \times 1}$. Let us defined the function $\Re(x)$

 $\Re(x) = (x_{k(1)}, x_{k(2)}, ..., x_{k(n)})^T \in \mathcal{F}_{n \times 1}$ Because K is involuntary, it is possible to verify that the related permutation matrix meets the conditions given in [12].

By the definition of 'V',

$$(C \cdot 2 \cdot 2 \cdot 1) KK^T = K^T K = I, K = K^T, K^2 = I \text{ and } \Re(x) = Kx$$

 $(C \cdot 2 \cdot 2 \cdot 2) V = V^T, V^T V = VV^T = I \text{ and } V^2 = I$

$$(C \cdot 2 \cdot 2 \cdot 3) (VA)^T = A^T V, (AV)^T = VA^T$$

 $(C \cdot 2 \cdot 2 \cdot 4)$ If A^+ exist, then $(VA)^+ = A^+V, (AV)^+ = VA^+$
 $(C \cdot 2 \cdot 2 \cdot 5) R(A) = R(VA), R(A) = R(KA).$

Theorem 2.3 [3], P.120.

For $A \in \mathcal{F}_n$ the subsequent statements are equal

- (1) $\rho(A) = r$ and A is a range symmetric and
- (2) $C(A^T) = C(A)$
- (3) For some fuzzy matrices $AH = KA = A^T H$, K and $\rho(A) = r$

(4) PAP^{T} is range symmetric matrix of rank of r for few permutation matrix P.

Lemma. 2.4 [3], P.123

For $A \in \mathcal{F}_n$, If A^+ exists then the subsequent statements are equal

- (1) A is a range symmetric
- $(2) A^+A = AA^+$
- (3) A^+ is range symmetric
- (4) A is normal.

Lemma 2.5 [3], P.119. For $A \in \mathcal{F}_n$ and a permutation matrix $P, R(A) = R(B) \Leftrightarrow R(PAP^T) = R(PBP^T).$

Definition 2.6. For a matrix $A \in \mathcal{F}_{nn}$ is s-symmetric $\Leftrightarrow A = VA^T V$.

Definition 2.7. For a matrix $A \in \mathcal{F}_{nn}$ is s-range symmetric $\Leftrightarrow R(A) = R(VA^T V)$.

Definition 2.8. For a matrix $A \in \mathcal{F}_{nn}$ is $s - \kappa$ range symmetric $\Leftrightarrow R(A) = R(KVA^TVK).$

Lemma 2.9. For a matrix $A \in \mathcal{F}_{nn}$ is a range symmetric $\Leftrightarrow AV$ is range symmetric $\Leftrightarrow VA$ is range symmetric.

Definition 2.10 [12]. A matrix $A = [A_L, A_U] \in IVFM_{nn}$ is stated to be interval valued range symmetric if $R(A_L) = R(A_L^T)$ where $R(A_L) = \{x/xA_L = 0 \text{ and } x \in \mathcal{F}_{n \times 1}\}.$

$$R(A_U) = R(A_U^T)$$
, where $R(A_U) = \{x/xA_U = 0 \text{ and } x \in \mathcal{F}_{n \times 1}\}$.

3. Internal Valued Secondary ĸ-range Symmetric Fuzzy Matrices

We have classified and acquired some results on interval valued $s - \kappa$ range symmetric fuzzy matrices in this section.

Definition 3.1. A matrix $A = [A_L, A_U] \in IVFM_{nn}$ is an interval valued *s*-symmetric if and only if

$$A_L = V A_L^T V, A_U = V A_U^T V$$

Definition 3.2. A matrix $A = [A_L, A_U] \in IVFM_{nn}$ is an interval valued s-range symmetric if and only if $R(A_L) = R(VA_L^T V), R(A_U) = R(VA_U^T V)$.

Definition 3.3. A matrix $A = [A_L, A_U] \in IVFM_{nn}$ is an interval valued $s - \kappa$ range symmetric $\Leftrightarrow R(A_L) = R(KVA_L^TVK), R(A_U) = R(KVA_U^TVK).$

Lemma 3.4. A matrix $A = [A_L, A_U] \in IVFM_{nn}$ is an interval valued srange symmetric $\Leftrightarrow VA = [VA_L, VA_U]$ is an interval valued range symmetric $\Leftrightarrow AV = [A_LV, A_UV]$ is an interval valued range symmetric.

Proof. A matrix $A = [A_L, A_U] \in IVFM_{nn}$ is an interval valued s-range symmetric $\Leftrightarrow R(A_L) = R(VA_L^T V)$ [By definition 3.2]

$$\Leftrightarrow R(A_L V) = R(A_L V)^T$$
 [By C 2.2.2]

 $\Leftrightarrow A_L V$ is a range symmetric

$$\Leftrightarrow R(VA_LVV^T) = R(VVA_L^TV)$$

$$\Leftrightarrow R(VA_L) = R(VA_L)^T$$
 [By C 2.2.2]

 $\Leftrightarrow VA_L$ is a range symmetric.

Similar manner,

$$\Leftrightarrow R(A_U) = R(VA_U^T V)$$
 [By definition 3.2]

$$\Leftrightarrow R(A_UV) = R(A_UV)^T \text{ [By C 2.2.2]}$$

 $\Leftrightarrow A_U V$ is a range symmetric

$$\Leftrightarrow R(VA_UVV^T) = R(VVA_U^TV)$$

$$\Leftrightarrow R(VA_U) = R(VA_U)^T \text{ [By C 2.2.2]}$$

 $\Leftrightarrow VA_U$ is a range symmetric.

 \therefore VA = [VA_L, VA_U] is an interval valued symmetric.

Remark 3.5. When k(i) = i for each i = 1 to n, the related permutation matrix K becomes the identity matrix, and definition 3.3 becomes $R(A_L) = R(VA_L^T V), R(A_U) = R(VA_U^T V)$, implying that $A = [A_L, A_U]$ are interval valued s-range symmetric matrices.

Remark 3.6. When k(i) = n - i + 1, the related permutation matrix K becomes V, and definition 3.3 obtains $R(A_L) = R(A_L^T)$, $R(A_U) = R(A_U^T)$, implying that $A = [A_L, A_U]$ an interval valued range symmetric.

Remark 3.7. We note that, an interval valued $s - \kappa$ symmetric matrix is an interval valued $s - \kappa$ range symmetric for if $A = [A_L, A_U]$ is an interval valued $s - \kappa$ symmetric then $A_L = KVA_L^T VK$, $A_U = KVA_U^T VK$. Hence $R(A_L) = R(KVA_L^T VK)$, $R(A_U) = R(KVA_U^T VK)$ which implies that A is an interval valued $s - \kappa$ kernel symmetric. The inverse on the other hand does not have to be true. The following studies illustrate this.

Example 3.8. For
$$K = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. Let $A = \begin{bmatrix} A_L, A_U \end{bmatrix} =$

 $\begin{bmatrix} [0.1, 0.1] & [0.5, 0.7] \\ [0.5, 0.7] & [0.1, 0.1] \end{bmatrix}$ is an interval valued symmetric, interval valued $s - \kappa$

symmetric and hence therefore interval valued $s - \kappa$ range symmetric.

Here
$$[A_L] = \begin{bmatrix} 0.1 & 0.5 \\ 0.5 & 0.1 \end{bmatrix}$$
, $[A_U] = \begin{bmatrix} 0.1 & 0.7 \\ 0.7 & 0.1 \end{bmatrix}$
Consider $KVA_L^T VK = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0.1 & 0.5 \\ 0.5 & 0.1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0.1 & 0.5 \\ 0.5 & 0.1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
 $= \begin{bmatrix} 0.1 & 0.5 \\ 0.5 & 0.1 \end{bmatrix}$
 $= A_L$

 $KVA_L^T VK = A_L$. Similar we can get $KVA_U^T VK = A_U$ $\Rightarrow A = [A_L, A_U]$ is an interval valued $s - \kappa$ symmetric.

Example 3.9. For
$$\kappa = (1, 2)(3) K = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $V = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

Here $K \neq I$, $K \neq V$ and $V \neq VK$

Now $A = [A_L, A_U] = \begin{bmatrix} [0, 0] & [0, 0] & [1, 1] \\ [0.3, 0.4] & [1, 1] & [0, 0] \\ [0.3, 0.6] & [0.1, 0.1] & [0, 0] \end{bmatrix}$ is an interval valued

 $s - \kappa$ range symmetric but not an interval valued $s - \kappa$ symmetric.

Consider
$$KVA_L^T VK = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0.3 & 0.3 \\ 0 & 1 & 0.1 \\ 1 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0.3 & 0.3 \\ 0 & 1 & 0.1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0.1 & 0 \\ 0 & 0 & 1 \\ 0.3 & 0.3 & 0 \end{bmatrix} \neq A_L$$

Similarly, we can prove that

$$KVA_U^T VK \neq A_U$$

Hence $A = [A_L, A_U]$ is not an interval valued $s - \kappa$ symmetric

But $R(A_L) = N(KVA_L^T VK) = \{0\}$

$$R(A_U) = N(KVA_U^T VK) = \{0\}$$

 $\therefore A = [A_L, A_U]$ an interval valued $s - \kappa$ range symmetric

Theorem 3.10 (Characterization Theorem). The following statements are identical for $A \in IVFM_{n \times n}$

- (1) $A = [A_L, A_U]$ is an interval valued $s \kappa$ range symmetric
- (2) $KVA = [KVA_L, KVA_U]$ is an interval valued range symmetric
- (3) $AKV = [A_LKV, A_UKV]$ is an interval valued range symmetric
- (4) $VA = [VA_L, VA_U]$ is an interval valued κ -range symmetric
- (5) $AK = [A_L K, A_U K]$ is an interval valued s-range symmetric
- (6) A^T is an interval valued $s \kappa$ range symmetric
- (7) $R(A_L) = R(A_L^T V K), R(A_U) = R(A_U^T V K)$
- (8) $R(A_L^T) = R(A_L V K), R(A_U^T) = R(A_U V K)$
- (9) $C(KVA_L) = C((KVA_L)^T) C(KVA_U) = C((KVA_U)^T)$

(10)
$$A_L = VKA_L^T VKH_1$$
, $A_U = VKA_U^T VKH_1$ for $H_1 \in IVFM$

(11)
$$A_L = H_1 K V A_L^T K V$$
, $A_U = H_1 K A_U^T V K$ for $H_1 \in IVFM$

(12)
$$A_L^T = KVA_LVKH_1, A_U^T = KVA_UVKH_1 \text{ for } H_1 \in IVFM$$

(13)
$$A_L^T = H_1 K V A_L K V, A_U^T = H_1 K V A_U V K$$
 for $H_1 \in IVFM$.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (4) Consider $A = [A_L, A_U]$ is an interval valued $s - \kappa$ range symmetric

Let us consider A_L is a $s - \kappa$ range symmetric

$$\Leftrightarrow R(A_L) = R(KVA_L^T VK), \ R(A_U) = R(KVA_U^T VK)$$

[By Definition 3.3]

$$\Leftrightarrow R(KVA_L) = R((KVA_L)^T) R(KVA_U) = R((KVA_U)^T)$$
[By C 2.2.5]

 \Leftrightarrow *KVA* = [*KVA_L*, *KVA_U*] is an interval valued range symmetric \Leftrightarrow *VA* = [*VA_L*, *VA_U*] is an interval valued κ-range symmetric As a result (1) \Leftrightarrow (2) \Leftrightarrow (4) are true

 $(1) \Leftrightarrow (3) \Leftrightarrow (5)$

 $A = [A_L, A_U]$ is an interval valued $s - \kappa$ range symmetric

$$\Leftrightarrow R(A_L) = R(KVA_L^T VK), \ R(A_U) = R(KVA_U^T VK)$$

[By Definition 3.3]

$$\Leftrightarrow R(KVA_L) = R((KVA_L)^T)R(KVA_U) = R((KVA_U)^T)$$
[By C 2.2.5]

$$\Leftrightarrow R(VK(KVA_L)) = R((VK)A_L^T VK(VK)^T),$$

$$R(VK(KVA_U)) = R((VK)A_U^T VK(VK)^T) \text{ [By Lemma. 2.2]}$$

$$\Leftrightarrow R(A_L KV) = R((A_L KV)^T), R(A_U KV) = R((A_U KV)^T)$$
$$\Leftrightarrow AKV = [A_L KV, A_U KV] \text{ is an interval valued range symmetric}$$
$$\Leftrightarrow AK = [A_L K, A_U K] \text{ is an interval s-range symmetric}$$
As a result (1) \Leftrightarrow (3) \Leftrightarrow (5) are true
(2) \Leftrightarrow (9)

 $KVA = [KVA_L, KVA_U]$ is interval valued range symmetric

$$\Leftrightarrow R(KVA_L) = R((KVA_L)^T), \ R(KVA_U) = R((KVA_U)^T)$$
$$\Leftrightarrow C((KVA_L)^T) = C(KVA_L)C((KVA_U)^T) = C(KVA_U)$$

As a result, $(2) \Leftrightarrow (9)$ hold

(2)
$$\Leftrightarrow$$
 (7)
 $KVA = [KVA_L, KVA_U]$ is an interval valued range symmetric
 $\Leftrightarrow R(KVA_L) = R((KVA_L)^T), R(KVA_U) = R((KVA_U)^T)$
 $\Leftrightarrow R(A_L) = R((KVA_L)^T), R(A_U) = R((KVA_U)^T)$ [By C 2.2.5]
 $\Leftrightarrow R(A_L) = R(A_L^TVK), R(A_L) = R(A_L^TVK)$

As a conclusion $(2) \Leftrightarrow (7)$ is true

 $(3) \Leftrightarrow (8)$

 $AVK = [A_LVK, A_UVK]$ is an interval valued range symmetric

$$\Leftrightarrow R(A_L V K) = R((A_L V K)^T), \ R(A_U V K) = R((A_U V K)^T)$$
$$\Leftrightarrow R(A_L V K) = R((A_L V K)^T), \ R(A_U V K) = R((A_U V K)^T)$$
$$\Leftrightarrow R(A_L V K) = R((A_L)^T), \ R(A_U V K) = R((A_U)^T)$$

As a conclusion (3) \Leftrightarrow (8) hold

 $(1) \Leftrightarrow (6)$

$$\begin{aligned} A &= [A_L, A_U] \text{ is an interval valued } s - \kappa \text{ range symmetric} \\ \Leftrightarrow R(A_L) &= R(KVA_L^TVK), R(A_U) = R(KVA_U^TVK) \text{ [By Definition 3.3]} \\ \Leftrightarrow R(KVA_L) &= R((KVA_L)^T), R(KVA_U) = R((KVA_U)^T) \\ \Leftrightarrow (KVA)^T &= (KVA_L, KVA_U)^T \text{ is an interval valued range symmetric} \\ \Leftrightarrow A^TVK &= [A_LVK, A_UVK] \text{ is an interval valued range symmetric} \\ \Leftrightarrow A^T &= [A_L^T, A_U^T] \text{ is an interval valued } s - \kappa \text{ range symmetric} \\ \text{As a conclusion (1) } \Leftrightarrow (6) \text{ is true} \\ (1) \Leftrightarrow (12) \Leftrightarrow (11) \\ A &= [A_L, A_U] \text{ is an interval valued } s - \kappa \text{ range symmetric} \\ \Leftrightarrow R(A_L) &= R(KVA_L^TVK), R(A_U) = R(KVA_U^TVK) \\ \Leftrightarrow C(A_L^T) &= C(KVA_LVK), C(A_U^T) = C(KVA_UVK) \\ \Leftrightarrow A_L^T &= KVA_LVK, A_U^T = KVA_UVK \text{ [By Theorem 2.3]} \\ \Leftrightarrow A_L &= H_1KVA_L^TVK, A_U = H_1KVA_U^TVK \text{ for } H_1 \in IVFM \\ \text{As a result (1) } \Leftrightarrow (12) \Leftrightarrow (11) \text{ hold} \\ (2) \Leftrightarrow (13) \Leftrightarrow (10) \\ KVA &= [KVA_L, KVA_U] \text{ is an interval valued κ-range symmetric} \\ \Leftrightarrow R(A_L) &= R(K(A_L)^TK), R(A_U) = R(K(A_U)^TK) \\ \Leftrightarrow R(A_L) &= R(K(A_L)^TK), R(A_U) = R(K(VA_U)^TK) \\ \Leftrightarrow R(A_L) &= R(A_L^TVK), R(A_U) = R(A_U^TVK) \text{ [By C2.2.5]} \\ \Leftrightarrow C(A_L^T) &= C(KVA_L), C(A_U^T) = C(KVA_U) \\ \Leftrightarrow A_L^T &= HKVA_L, A_U^T = HKVA_U \text{ for } H \in IVFM \end{aligned}$$

$$\Leftrightarrow A_{L}^{T} = H_{1}KVA_{L}KV, A_{U}^{T} = H_{1}KVA_{U}KV$$
$$\Leftrightarrow A_{L} = VKA_{L}^{T}VKH_{1}, A_{U} = VKA_{U}^{T}VKH_{1} \text{ for } H_{1} \in IVFM$$

As a conclusion (2) \Leftrightarrow (13) \Leftrightarrow (10) are true. As a result, the theorem is valid.

The preceding theorem simplifies to the analogous constraint for a matrix to be an interval valued s-range symmetric for K = I in particular.

Corollary 3.11. The following propositions are equal for $A \in IVFM_{n \times n}$

- 1. $A = [A_L, A_U]$ is an interval valued s-range symmetric
- 2. $VA = [VA_L, VA_U]$ is an interval valued range symmetric
- 3. $AV = [A_LV, A_UV]$ is an interval valued range symmetric
- 4. $A^T = [A_L^T, A_U^T]$ is an interval valued s-range symmetric

5.
$$R(A_L) = R(A_L^T V), R(A_U) = R(A_U^T V)$$

- 6. $R(A_L^T) = R(A_L V), R(A_U^T) = R(A_U V)$
- 7. $C(KVA_L) = C((VA_L)^T), C(KVA_U) = C((VA_L)^T)$
- 8. $A_L = VA_L^T VH_1$, $A_U = VA_U^T VH_1$ for $H_1 \in IVFM$
- 9. $A_L = H_1 V A_L^T V$, $A_{U} = H_1 V A_U^T V$ for $H_1 \in IVFM$
- 10. $A_L^T = VA_L VH_1$, $A_U^T = VA_U VH_1$ for $H_1 \in IVFM$
- 11. $A_L^T = H_1 V A_L V$, $A_U^T = H_1 V A_U V H_1$ for $H_1 \in IVFM$

Lemma 3.12. For $A = [A_L, A_U] \in IVFM_{nn}, A = [A_L^+, A_U^+]$ exist $\Leftrightarrow (KA_L)^+, (KA_U)^+$ exits $\Leftrightarrow (VKA_L)^+, (VKA_U)^+$ exits

Proof. For $A = [A_L, A_U] \in IVFM_{nn}$ if A_L^+ exists then $A_L^+ = A_L^T$ which A_L^T is a generalized inverse of A_L .

Consider
$$A_L^+$$
, A_U^+ exists $\Leftrightarrow (KA_L)^+$, $(KA_U)^+$ exist [lemma 3.4 in [11]]
 $\Leftrightarrow (KA_L)(KA_L)^T(KA_L)$, $(KA_U)(KA_U)^T(KA_U)$
 $\Leftrightarrow (KA_L)^+$, $(KA_U)^+$ exits
 $\Leftrightarrow (VKA_L)(VKA_L)^T(VKA_L)$, $(VKA_U)(VKA_U)^T(VKA_U)$
 $\Leftrightarrow (VKA_L)^T \in (VKA_L)\{1\}$, $(VKA_L)^T \in (VKA_U)\{1\}$
 $\Leftrightarrow (VKA_L)^+$, $(VKA_U)^+$ exists

Hence the result

Remark 3.13. For $A = [A_L, A_U] \in IVFM_{nn}, A_L^+, A_U^+$ exits $\Leftrightarrow (KVA_L)^+, (KVA_U)^+$ exits.

Corollary 3.14. The subsequent statements are equivalent for $A = [A_L, A_U] \in IVFM_{nn}, A = [A_L^+, A_U^+]$ exits

(1) $A = [A_L, A_U]$ is an interval valued $s - \kappa$ range symmetric

(2)
$$(VKA_L)(VKA_L)^+ = (VKA_L)^+(VKA_L), (VKA_U)(VKA_U)^+ = (VKA_U)^+(VKA_U)^+$$

- (3) $A^+ = [A_L^+, A_U^+]$ is an interval valued $s \kappa$ range symmetric
- (4) $VKA = [VKA_L, VKA_U]$ is normal.

Lemma 3.15. For $A = [A_L, A_U] \in IVFM_{nn}$ the following statements are equal

(1) $A = [A_L, A_U]$ is an interval valued $s - \kappa$ range symmetric

(2)
$$A_L A_L^+ KV = KVA_L^+ A_L, A_U A_U^+ KV = KVA_U^+ A_U$$

(3)
$$VKA_LA_L^+ = A_L^+A_LVK, VKA_UA_U^+ = A_U^+A_UVK$$

Proof. (1) \Leftrightarrow (2)

Since $A^+ = [A_L^+, A_U^+]$ exits By Corollary (3.14)

$$A = [A_L, A_U] \text{ is an interval valued } s - \kappa \text{ range symmetric}$$

$$\Leftrightarrow VKA = [VKA_L, VKA_U] \text{ is normal}$$

$$\Leftrightarrow (VKA_L)(VKA_L)^T = (VKA_L)^T(VKA_L), (VKA_U)(VKA_U)^T$$

$$= (VKA_U)^T(VKA_U)$$

$$\Leftrightarrow VKA_LA_L^TKV = A_L^TKVVKA_L, VKA_UA_U^TKV = A_U^TKVVKA_U$$

$$\Leftrightarrow VKA_LA_L^TKV = A_L^TA_L, VKA_UA_U^TKV = A_U^TA_U \text{ [By C 2.2.1 and C 2.2.2]}$$

$$\Leftrightarrow A_LA_L^TKV = KVA_L^TA_L, A_UA_U^TKV = KVA_U^TA_U$$

$$\Leftrightarrow A_LA_L^+KV = KVA_L^+A_L, A_UA_U^+KV = KVA_U^+A_U$$

$$(2) \Leftrightarrow (3)$$

Since By [C 2.2.1 and C 2.2.2], $K^2 = I$ and V = I As a result, equivalent is maintained by pre- and post-multiplying $A_L A_L^+ KV = KVA_L^+ A_L$, $A_U A_U^+ KV$ $= KVA_U^+ A_U$ by VK.

Theorem 3.16. For $A = [A_L, A_U] \in IVFM_{n \times n}$ then any two of the conditions below imply the other

1
$$A = [A_L, A_U]$$
 is an interval valued κ - range symmetric
2 $A = [A_L, A_U]$ is an interval valued $s - \kappa$ range symmetric
3 $R(A_L^T) = R((VKA_L)^T), R(A_U^T) = R((VKA_U)^T).$
Proof. (1) and (2) \Rightarrow (3)
 $A = [A_L, A_U]$ is an interval valued $s - \kappa$ range symmetric
 $\Rightarrow R(A_L) = R(A_L^T VK), R(A_U) = R(A_U^T VK)$ [By Theorem 3.1]
 $\Rightarrow R(KA_LK) = R(KA_L^T K), R(KA_UK) = R(KA_U^T K)$ [By Lemma 2.2]
 $\Rightarrow R(A_L^T) = R((VA_LK)^T), R(A_U^T) = R((VA_UK)^T)$

Therefore (1) and (2) As a result (3) is true (1) and (3) \Rightarrow (2) $A = [A_L, A_U]$ is an interval valued κ -range symmetric $\Rightarrow R(A_L) = R(KA_L^T K), R(A_U) = R(KA_U^T K)$ $\Rightarrow R(KA_L K) = R((A_L)^T), R(KA_U K) = R((A_U)^T)$ [By Lemma 2.5] \therefore (1) and (3) $\Rightarrow R(KA_L K) = R((VA_L K)^T), R(KA_U K) = R((VA_U K)^T)$ $\Rightarrow R(A_L) = R(A_L^T V K), R(A_U) = R(A_U^T V K)$ $\Rightarrow R(A_L) = R((KVA_L)^T), R(A_U) = R((KVA_U)^T)$

 $\Rightarrow A = [A_L, A_U]$ is an interval valued $s - \kappa$ range symmetric [By Theorem 3.10]

As a result (2) is true

(2) and (3)
$$\Rightarrow$$
 (1)
 $A = [A_L, A_U]$ is an interval valued $s - \kappa$ range symmetric
 $\Rightarrow R(A_L) = R(A_L^T VK), R(A_U) = R(A_U^T VK)$
 $\Rightarrow R(KA_LK) = R(KA_L^T K), R(KA_UK) = R(KA_U^T K)$ [By C 2.2.5]
 \therefore (2) and (3) $\Rightarrow R(KA_L K) = R(A_L^T), R(KA_U K) = R(A_U^T)$
 $\Rightarrow R(A_L) = R(KA_L^T K), R(A_U) = R(KA_U^T K)$
 $\Rightarrow A = [A_L, A_U]$ is an interval valued κ -range symmetric
As a result (1) is true.
Hence the theorem.

4. Interval valued $s - \kappa$ range symmetric regular fuzzy matrices

This section revealed the existence of several generalized inverses of a matrix in *IVFM*. It is also established what are the equivalent criteria for various g-inverses of an interval valued $s - \kappa$ range symmetric fuzzy matrix to be an interval valued $s - \kappa$ range symmetric. The generalized inverses of an interval valued $s - \kappa$ range symmetric A corresponding to the sets $A\{1, 2\}, A\{1, 2, 3\}$ and $A\{1, 2, 4\}$ are characterized.

When A is an interval valued $s - \kappa$ range symmetric matrix under certain criteria, any $X \in A\{1, 2\}$ is proved an interval valued $s - \kappa$ range symmetric matrix in the subsequent manner.

Theorem 4.1. Let us assume $A \in IVFM_{n \times n}$, $X \in A\{1, 2\}$ and AX, XA are an interval valued $s - \kappa$ range symmetric. Then A is an interval valued $s - \kappa$ range symmetric $\Leftrightarrow X$ is an interval valued $s - \kappa$ range symmetric.

Proof. $R(KVA_L) = R(KVA_LXA_L) \subseteq R(XA_L)$ Since A = AXA= $R(XVVA_L) \subset R(XVKKVA_L) \subset R(KVA_L)$

Hence,

 $\begin{aligned} R(KVA_L) &= R(XA_L) \\ &= R(KV(XA_L)^T VK), \text{ [XA is interval valued } s - \kappa \text{ range symmetric]} \\ &= R(A_L^T X_L^T VK) \\ &= R(X_L^T VK) \\ &= R((KVX_L)^T) \\ R((KVA_L)^T) &= R(A_L^T VK) \\ &= R(X_L^T A_L^T VK) \end{aligned}$

Advances and Applications in Mathematical Sciences, Volume 21, Issue 10, August 2022

 $= R((KVA_IX_I)^T)$

= $R(KVA_LX_L)$ [VA is an interval valued $s - \kappa$ range symmetric]

$$= R(KVX_L)$$

Similarly we can prove that $R(KVX_U) = R((KVA_U)^T) KVX$ is an interval valued range symmetric.

$$\Leftrightarrow R(KVA_L) = R((KVA_L)^T), \ R(KVA_U) = R((KVA_U)^T)$$
$$\Leftrightarrow R(KVX_L) = R((KVX_L)^T), \ R(KVX_U) = R((KVX_U)^T)$$

 $\Leftrightarrow KVX = [KVX_L, KVX_U]$ is an interval valued range symmetric $\Leftrightarrow X$ is an interval valued $s - \kappa$ range symmetric.

Theorem 4.2. Let the matrix $[A_L, A_U] \in IVFM_{n \times n}, X = [X_L, X_U] \in A$ $\{1, 2, 3\}, R(KVA_L) = (R(KVX_L)^T). R(KVA_U) = R(KVX_U)^T).$ Then $A = [A_L, A_U]$ is an interval valued $s - \kappa$ range symmetric $\Leftrightarrow X = [X_L, X_U]$ is an interval valued $s - \kappa$ range symmetric.

Proof. Since $X \in A\{1, 2, 3\}$. We acquire $A_L X_L A_L = A_L$, $X_L A_L X_L = X_L$, $(A_L X_L)^T = A_L X_L$

$$A_U X_U A_U = A_U, \ X_U A_U X_U, \ (A_U X_U)^T = A_U X_U$$

Consider $R((KVA_L)^T) = R(X_L^T A_L^T VK)$ [By C 2.2.5]
 $= R(KV(A_L X_L)^T)$
 $= R((A_L X_L)^T)$ [By C 2.2.5]
 $= R(A_L X_L) [(AX)^T = AX]$

$$= R(X_L)$$
 By using $X = XAX$

$$= R(KVX_L)$$
 [By C 2.2.5]

Similarly, we can consider $R((KVA_U)^T) = R(X_U^T A_U^T V K)$ [By C 2.2.5]

$$= R(KV(A_UX_U)^T)$$

$$= R((X_UA_U)^T) [By C 2.2.5]$$

$$= R(X_UA_U) [(AX)^T = AX]$$

$$= R(X_U) By using X = XAX$$

$$= R(KVX_U) [By C 2.2.5]$$

If KVA is an interval valued range symmetric

$$\Leftrightarrow R(KVA_L) = R((KVA_L)^T), \ R(KVA_U) = R((KVA_U)^T)$$
$$\Leftrightarrow R(KVX_L) = R((KVX_L)^T), \ R(KVX_U) = R((KVX_U)^T)$$

 $\Leftrightarrow KVX = [KVX_L, KVX_U] \text{ is an interval valued range symmetric}$ $\Leftrightarrow X = [X_L, X_U] \text{ is a } s - \kappa \text{ is an interval valued range symmetric.}$

Theorem 4.3. Let $[A_L, A_U] \in IVFM_{nn}, X \in A\{1, 2, 4\}, R((KVA_L)^T)$ = $R(KVX_L), R((KVA_U)^T) = R(KVX_U)$. Then KVA is an interval valued $s - \kappa$ range symmetric $\Leftrightarrow X = [X_L, X_U]$ is an interval valued $s - \kappa$ range symmetric.

Proof. Since $X \in A\{1, 2, 4\}$ We acquire $A_L X_L A_L = A_L, X_L X_L,$ $(X_L A_L)^T = X_L A_L$

$$A_U X_U A_U = A_U, X_U A_U X_U, (X_U A_U)^T = X_U A_U$$
$$R(KVA_L) = R(A_L) [By C2.2.5]$$
$$= R(X_L A_L)$$
$$= R(A_L^T X_L^T)$$
$$= R((X_L)^T)$$
$$= R(KVX_L)^T [By C 2.2.5]$$

Similar manner = $R(KVA_U) = R(A_U)$ [By C 2.2.5]

$$= R(X_U A_U)$$
$$= R(X_U^T A_U^T)$$
$$= R(X_U^T)$$
$$= R(KVX_U)^T [By C 2.2.5]$$

 $KVA = [KVA_L, KVA_U]$ is an interval valued range symmetric

$$\Leftrightarrow R(KVA_L) = R((KVA_L)^T), \ R(KVA_U) = R(KVA_U)^T)$$
$$\Leftrightarrow R(KVX_L) = R((KVX_L)^T), \ R(KVX_U) = R(KVX_U)^T)$$

 \Leftrightarrow *KVX* = [*KVX*_L, *KVX*_U] is an interval valued range symmetric

 $\Leftrightarrow X = [X_L, X_U]$ is an interval valued $s - \kappa$ range symmetric

[Theorem 2.3]

The following theorem reduces various *g*-inverses of an interval valued srange symmetric fuzzy matrix to interval valued secondary range symmetric fuzzy matrix to similar requirements for K = I.

Corollary 4.4. Let $[A_L, A_U] \in IVFM_{nn}, X \in A\{1, 2\}$ and $AX = [A_LX_L, A_UX_U], XA = [X_LA_L, X_UA_U]$ are interval valued s-range symmetric then A is an interval valued s-range symmetric $\Leftrightarrow X$ is an interval valued s-range symmetric.

Corollary 4.5. Let $[A_L, A_U] \in IVFM_{nn}, X \in A\{1, 2, 3\}$ and $R(KVA_L) = R((VX_L)^T), R(KVA_U) = R((VX_U)^T)$ then A is an interval valued s-range symmetric $\Leftrightarrow X$ is an interval valued s-range symmetric.

Corollary 4.6. Let $[A_L, A_U] \in IVFM_{nn}, X \in A\{1, 2, 4\}$ and $R((VA_L)^T) = R(VX_L), R((VA_U)^T) = R(VX_U)$ then A is an interval valued s-range symmetric $\Leftrightarrow X$ is an interval valued s-range symmetric.

5. Conclusion

The classification of interval valued secondary κ -range symmetric fuzzy matrices has been defined. In addition, we investigated into various cases of Proposition of interval valued $s - \kappa$ range symmetric fuzzy matrices.

6. Acknowledgement

I render my heartful thanks to Prof. Dr. (Mrs.) AR. Meenakshi, Former AICTE - Emeritus Professor of Mathematics, Annamalai University, for her expert guidance and Dr. D. Jayashree, Assistant Professor, Department of Mathematics. Government Arts and Science College, Hosur.

References

- K. H. Kim and F. W. Roush, Generalized fuzzy matrices, Fuzzy Sets and Systems 4(3) (1980), 293-315.
- [2] A. Lee., Secondary Symmetric, Secondary Skew Symmetric, Secondary Orthogonal Matrices, Period Math, Hungary (1976), 63-76.
- [3] A. R. Meenakshi, Fuzzy Matrix: Theory and Application, MJP, Publishers, Chennai, India, (2008).
- [4] A. R. Meenakshi and D. Jaya Shree, On k-Kernel Symmetric Matrices, International Journal of Mathematics and Mathematical Science Article ID 926217, (2009), 1-8.
- [5] A. R. Meenakshi and M. Kalliraja, Regular Interval valued Fuzzy matrices, Advance in Fuzzy Mathematics 5(1) (2010), 7-15.
- [6] D. Jaya Shree, Secondary k-Range Symmetric Matrices, Journal of Discrete Mathematical Science and Cryptography and Mathematical Science 21 (2018), 1-11.
- [7] C. Antonio and B. Paul, Properties of the Eigen vectors of per symmetric Matrices with application to communication theory IEEE Transactions on Communication 24(8) (1976), 804-809.
- [8] A. R. Meenakshi and S. Krishnamoorthy, On k-EP matrices, Linear Algebra and its Applications 269 (1998), 219-232.
- [9] A. K. Shyamal and M. Pal, Interval valued Fuzzy matrices, Journal of Fuzzy Mathematics 14(3) (2006), 582-592.
- [10] R. D. Hills and S. R. Waters, On k real and Hermitian matrices, Linear Algebra and its Applications 169 (1992), 17-29.
- [11] A. R. Meenakshi and D. Jaya Shree, On k-range symmetric matrices, Proceedings of the National Conference on Algebra and Graph Theory, MS University (2009), 58-67.
- [12] M. Kaliraja and T. Bhavani, Interval valued κ-kernel symmetric fuzzy Matrices, (Communicated).