

# ON $\theta g^*s$ - CLOSED SETS IN NANO TOPOLOGICAL SPACES

## P. SATHISHMOHAN, V. RAJENDRAN and L. CHINNAPPARAJ

Department of Mathematics Kongunadu Arts and Science College (Autonomous) Coimbatore, India E-mail: cj.chinnapparaj@gmail.com

#### Abstract

We explore a modern class of generalization of closed sets called nano  $\theta$ -generalized star semi-closed (briefly.  $N\theta g^*s$ -closed) sets in nano topological spaces in this paper and also its basic properties are analysed. Besides the view for  $N\theta g^*s$ -continuous functions and  $N\theta g^*s$ -irresolute functions are also initiated and their properties are examined. Also, distinct illustrations are rendered to interpret the behavior of new sets.

# 1. Introduction

Earlier in 1968, Velicko [19] raised the thought of  $\theta$ -closed sets and Levine [7] instigated the idea of generalized closed sets as a generalization of closed sets in topological spaces. Recently Sathishmohan et al [16] have initiated the concept of  $\theta g^*s$ - closed sets in topological spaces. The notation of nano topology was commenced by Lellis Thivagar [5]. Sathishmohan et al [17] explored the idea of nano  $\beta\theta$ -closed set and Rajendran [13] raised the new class of nano set called  $g^*s$ -closed set. Besides we initiate a new class of sets called  $N\theta g^*s$ -closed set in nano topological spaces and also, further we analyse the basic properties and characterizations in this paper.

2010 Mathematics Subject Classification: 54A05.

Keywords:  $N\theta g^*s$ - closed set,  $N\theta g^*s$ - continuous function,  $N\theta g^*s$ - irresolute function. Received July 14, 2019; Accepted September 22, 2019

#### 2. Preliminaries

In this segment, we recall some known definitions which has initiated by various research persons, i.e., Definitions of Apprximationa space [11], nano topology [5], some open sets [5, 15], generalized nano closed sets, nano  $\beta\theta$ -closed sets, [1, 2, 4, 8, 13, 14, 17] and their continuous functions [2, 3, 6, 9,

10, 12, 14, 18] and  $\theta g^*s$ - closed set [16]. Further, we denote the closed as cld and open as open.

# 3. Nano $\theta g^*s$ - closed Sets

In this segment, we initiate and analyse the thought of  $\theta g^*s$ -closed sets via nano topological spaces and brought its basic properties.

**Definition 3.1.** A point x of a space  $(U, \tau R(X))$  is called nano semi  $\theta$ -cluster point of A if  $A \cap Nscl(V)6 = \varphi$ , for every nano semi-open V containing x.

The set of all nano semi  $\theta$ -cluster points of A is called nano semi  $\theta$ -closure of A and is denoted by *Nscl*  $\theta(A)$ . Hence, a subset A is called nano semi  $\theta$ -cld if *Nscl*  $\theta(A) = A$ . The complement of a nano semi  $\theta$ -cld is called nano semi  $\theta$ -open.

**Definition 3.2.** A subset G of a nano topological space  $(U, \tau R(X))$  is called nano  $\theta$ -generalized star semi-cld (briefly  $N\theta g^*s$ - cld) if  $Nscl \ \theta(G) \subseteq D$ whenever  $G \subseteq D$  and D is nano g-open. The complement of  $N\theta g^*s$ - cld is called  $N\theta g^*s$ - open.

**Example 3.3.** Let  $U = \{m, n, o, p\}$  with  $U/R = \{\{n\}, \{p\}, \{n, 0\}\}$  and  $X = \{m, p\}$ . Then  $\tau_R(X) = \{U, \varphi, \{p\}, \{m, o, p\}, \{m, o\}\}$  which are nano opens.

The nano  $cld = \{U, \varphi, \{n\}, \{m, n, o\}, \{n, p\}\}.$ 

The nano g- $cld = \{U, \varphi, \{n\}, \{m, n\}, \{n, o\}, \{n, p\}, \{m, n, o\}, \{m, n, p\}, \{n, o, p\}\}$ .

The nano  $\theta$ -*cld* = {*U*,  $\varphi$ }.

The nano semi  $\theta$ - $cld = \{U, \varphi, \{n\}, \{p\}, \{m, o\}, \{n, p\}, \{m, n, o\}\}$ . The nano  $\theta g^*s$ - $cld = \{U, \varphi, \{n\}, \{p\}, \{m, n\}, \{m, o\}, \{n, o\}, \{n, p\}, \{m, n, o\}, \{m, n, p\}, \{n, o, p\}\}$ .

**Theorem 3.4.** If a nano cld set G in  $(U, \tau R(X))$ , then G is  $N \theta g^* s$ - cld set.

**Proof.** Let a nano cld set G of U and  $G \subseteq D$ , D is Ng-open in U. Since G is nano cld,  $Ncl(G) = G \subseteq D$ . In addition,  $Nscl\theta(G) \subseteq Ncl(G) \subseteq D$  where D is Ng-open in U. Consequently G is a nano  $\theta g^*s$ -cld.

**Theorem 3.5.** If a nano generalized cld set G in  $(U, \tau R(X))$ , then G is  $N \theta g^*s$ - cld set.

**Proof:** Let G be Ng-cld set, then  $Ncl(A) \subseteq D$  whenever  $G \subseteq D$ , D is nano open in U. As every nano open is Ng-open and  $Nscl\theta(G) \subseteq Ncl(G)$ which indicate that  $Nscl\theta(G) \subseteq D$ ,  $G \subseteq D$ , D is Ng-open in U. Hence G is  $N\theta g^*s$ - cld set.

**Theorem 3.6.** If a nano regular cld set G in  $(U, \tau R(X))$ , then G is  $N \theta g^*s$ - cld set.

**Proof.** Let G be nano regular cld set, then A = Nrcl(A). As every Nropn is Ng-opn. Therefore  $Nscl\theta(G) \subseteq Nrcl(G) = D$  then  $Nscl\theta(G) \subseteq D$ , whenever D is nano g-open. Thus every nano r-cld set is  $N\theta g^*s$ - cld set.

**Remark 3.7.** Reverse part of the above theorems is not true from the below illustrations.

**Example 3.8.** Let  $U = \{m, n, o, p\}$  with  $U/R = \{\{n\}, \{p\}, \{m, o\}\}$  and  $X = \{m, p\}$ . Then  $\tau R(X) = \{U, \phi, \{p\}, \{m, o, p\}, \{m, o\}\}$ . Let  $A = \{p\}, D = \{m, o, p\}$  whenever  $A \subseteq D$ , D is Ng-open. Now  $Nscl \Theta(G) = \{p\} \subseteq D$ .

Hence  $A = \{p\}$  is  $N\theta g^*s$ -cld set. But  $Ncl(A) = \{n, p\}^*D$ . However the subset  $A = \{p\}$  is not a nano cld set. Thus every  $N\theta g^*s$ -cld set need not to be a nano cld set.

**Example 3.9.** Let  $U = \{m, n, o, p\}$  with  $U/R = \{\{n, p\}, \{m\}, \{o\}\}$  and  $X = \{o, p\}$ . Then  $\tau R(X) = \{U, \varphi, \{o\}, \{n, o, p\}, \{n, p\}\}$ . Let  $A = \{o\}$ ,  $D = \{n, o, p\}$  whenever  $A \subseteq D$ , D is Ng-open. Now  $Nscl\theta(A) = \{o\} \subseteq D$ . Hence  $A = \{o\}$  is  $N\theta g^*s$ -cld set. But  $Ncl\theta(A) = \{m, o\}^*D$ . However the subset  $A = \{o\}$  is not Ng-cld set. Thus every  $N\theta g^*s$ - cld set need not to be a Ng-cld set.

**Example 3.10.** Let  $U = \{m, n, o, p\}$  with  $U/R = \{\{n, o\}, \{m\}, \{p\}\}$  and  $X = \{n, p\}$ . Then  $\tau R(X) = \{U, \varphi, \{p\}, \{n, o, p\}, \{n, o\}\}$ . Let  $A = \{p\}$ ,  $D = \{o, p\}$  whenever  $A \subseteq D$ , D is Ng-open. Now  $Nscl\theta(A) = \{p\} \subseteq D$ . Hence  $A = \{p\}$  is  $N\theta g^*s$ - cld. But  $Nrcl(A) = \{m, p\}^*D$ . Hence the subset  $A = \{p\}$  is not Nr-cld. Hence every  $N\theta g^*s$ - cld set need not to be a Nr-cld set.

**Theorem 3.11.** In a space  $(U, \tau R(X))$ , the following holds,

- (1) Every nano semi- $\theta$ -cld set is  $N\theta g^*s$  cld set.
- (2) Every  $Ng^*$ -cld set is  $N\theta g^*s$ -cld set.
- (3) Every Ng $\alpha$ -cld set is N $\theta$ g<sup>\*</sup>s- cld set.
- (4) Every Nag-cld set is  $N\theta g^*s$  cld set.

Reverse of the implications need not be true as seen from the following examples.

**Example 3.12.** Let  $U = \{m, n, o, p\}$  with  $U/R = \{\{m, p\}, \{n\}, \{o\}\}\)$  and  $X = \{m, o\}$ . Then  $\tau R(X) = \{U, \phi, \{o\}, \{m, o, p\}, \{m, p\}\}$ . Let  $C = \{m, n\}$ . Then C is  $N \theta g^* s$ - cld but not nano semi- $\theta$ -cld.

**Example 3.13.** Let  $U = \{m, n, o, p\}$  with  $U/R = \{\{n, p\}, \{m\}, \{o\}\}$  and  $X = \{m, p\}$ . Then  $\tau R(X) = \{U, \varphi, \{m\}, \{m, n, p\}, \{n, p\}\}$ . Let  $C = \{n, p\}$  Then C is  $N \theta g^* s$ - cld but not Ng-cld, Nga-cld and Nag-cld.

**Theorem 3.14.** If a  $N \theta g^*s$ -cld set G in  $(U, \tau R(X))$ , then G is nano generalized semi cld set.

**Proof.** Let G be  $\theta g^*s$ -cld set. Let  $G \subseteq D$  and D be nano open in U. Then  $Nscl(G) \subseteq Nscl\theta(G) \subseteq D$ . Hence G is a Ngs-cld set.

**Example 3.15.** Let  $U = \{m, n, o, p\}$  with  $U/R = \{\{m, o\}, \{n\}, \{p\}\}\)$  and  $X = \{m, o\}$ . Then  $\tau R(X) = \{U, \phi, \{n\}, \{m, n, o\}, \{m, o\}\}$ . Let  $C = \{o\}$ . Then C is Ngs-cld set but not  $N \theta g^* s$ - cld set.

**Theorem 3.16.** In a space  $(U, \tau R(X))$ , the following hold

(1) Every  $N\theta g^*s$ - cld set is  $N\beta$ -cld set.

(2) Every  $N\theta g^*s$ - cld set is Nsg-cld set.

(3) Every  $N\theta g^*s$ - cld set is  $Ng^*p$ - cld set.

Reverse of the implications need not be true as seen from the following example.

**Example 3.17.** Let  $U = \{m, n, o, p\}$  with  $U/R = \{\{m, o\}, \{n\}, \{p\}\} U/R = \{\{m, o\}, \{n\}, \{p\}\}$  and  $X = \{m, o\}$ . Then  $\tau R(X) = \{U, \phi, \{n\}, \{m, n, o\}, \{m, o\}\}$ . Let  $C = \{m\}$ . Then C is N\beta-cld set, Nsg-cld set and Ng<sup>\*</sup>p-cld set but not  $N\theta g^*s$ -cld set.

**Theorem 3.18.** The union of any two  $N \theta g^*s$ - clds in  $(U, \tau R(X))$ , is also a  $N \theta g^*s$ - clds in  $(U, \tau R(X))$ .

**Proof.** Let P and Q be any two  $N \theta g^*s$ - cld sets in  $(U, \tau R(X))$ . Let D be a Ng-open in U such that  $P \subseteq D$  and  $Q \subseteq D$ . Then we have  $P \cup Q \subseteq D$ . P and Q are  $N \theta g^*s$ - cld sets in  $(U, \tau R(X))$ ,  $Nscl\theta(P) \subseteq D$  and  $Nscl\theta(Q) \subseteq D$ . Now  $Nscl\theta(P \cup Q) = Nscl\theta(P) \cup Nscl\theta(Q) \subseteq D$ . Thus we have  $Nscl\theta(P \cup Q) \subseteq D$  whenever  $(P \cup Q) \subseteq D$ , D is Ng-opn in U. This implies  $(P \cup Q)$  is a  $N \theta g^*s$ - cld set in  $(U, \tau R(X))$ .

**Remark 3.19.** In general intersection of two  $N\theta g^*s$ -clds need not be  $N\theta g^*s$ - cld in general from the below illustrations.

**Example 3.20.** Let  $U = \{m, n, o, p\}$  with  $U/R = \{\{m, n\}, \{o\}, \{p\}\}$  and  $X = \{m, p\}$ . Then  $\tau R(X) = \{U, \varphi, \{p\}, \{m, n, p\}, \{m, n\}\}$ . The subsets  $\{m, n\}$  and  $\{m, o\}$  are  $N \theta g^*s$ -cld but their intersection  $\{m, n\} \cap \{m, o\} = \{m\}$  is not  $N \theta g^*s$ - cld in U.

**Theorem 3.21.** Let P be a  $N \theta g^*s$ -cld subset if  $(U, \tau R(X))$ . If  $P \subseteq Q \subseteq Nscl\theta(P)$ , then Q is also a  $N \theta g^*s$ -cld subset of  $(U, \tau R(X))$ .

**Proof.** Let D be a Ng-open of a  $N\theta g^*s$ - cld subset of  $\tau R(X)$  such that  $Q \subseteq D$ . As  $P \subseteq Q$ , we have  $P \subseteq D$ . As P is a  $N\theta g^*s$ - cld,  $Nscl\theta(P) \subseteq D$ . Given  $Q \subseteq Nscl\theta(P)$ , we have  $Nscl\theta(Q) \subseteq Nscl\theta(P)$ . As  $Nscl\theta(Q) \subseteq Nscl\theta(P)$  and  $Nscl\theta(P) \subseteq D$ , we have  $Nscl\theta(Q) \subseteq D$  whenever  $Q \subseteq D$  and D is Ng-open. Hence Q is also a  $N\theta g^*s$ - cld subset of  $\tau R(X)$ .

**Theorem 3.22.** A subset P is  $N \theta g^*s$ -cld if and only if  $Nscl \theta(P) - P$  contains no non-empty Ng-cld.

**Proof.** Necessity: Let F be a Ng-cld subset of  $Nscl\theta(P) - P$ . Then  $P \subseteq U - F$  where P is  $N\theta g^*s$ -cld and U - F is Ng-open. Since P is  $Nscl\theta(P)$ , then  $Nscl\theta(P) \subseteq U - F$  that is  $F \subseteq U - Nscl\theta(P)$ . Since by assumption  $F \subseteq Nscl\theta(P)$  then  $F \subseteq (U - Nscl\theta(P)) \cap (Nscl\theta(P)) = \varphi$ . This proves that F is empty.

Sufficiency: Suppose that  $P \subseteq D$  and D is Ng-open. If  $Nscl\theta(P) \subseteq D$ , then  $Nscl\theta(P) \cap U - D \subset Ncl\theta(P) \cap (U - D)$  is non-empty Ng-cld subset of  $Nscl\theta(P) - P$ .

**Remark 3.23.** For a subset *G* of a nano topological space  $(U, \tau R(X))$ 

- (1)  $SN \sin t_{\theta}(G) = Nscl_{\theta}(U-G)$
- (2)  $SNscl_{\theta}(G) = N \sin t_{\theta}(U G).$

**Theorem 3.24.** A subset  $G \subseteq U$  is  $N \theta g^*s$ -open iff  $F \subseteq N \sin t_{\theta}(G)$ whenever F is a Ng-cld and  $F \subseteq G$ .

**Proof.** Necessity: Let G be a  $N \theta g^*s$ - open and suppose  $F \subseteq G$ , where F is Ng-cld. Then U - G is  $N \theta g^*s$ - cld contained in Ng-opn of U - F. Hence  $Nscl\theta(U - G) \subseteq (U - F)$  and  $U - N \sin t_{\theta}(G) \subseteq U - F$ . Thus  $F \subseteq N \sin t_{\theta}(G)$ . Sufficiency: If F is Ng-cld with  $F \subseteq N \sin t_{\theta}(G)$  and  $F \subseteq G$ . Then  $U - N \sin t_{\theta}(G) \subseteq U - F$ . Thus  $Nscl\theta(U - G) \subseteq I - F$ . Hence U - G is a  $N \theta g^*s$ - cld and G is  $N \theta g^*s$ - open.

**Theorem 3.25.** If  $N \sin t_{\theta}(P) \subseteq Q \subseteq P$  and if P is  $N \theta g^*s$ -open, then Q is  $N \theta g^*s$ -open.

**Proof.** Let  $N \sin t_{\theta}(P) \subseteq Q \subseteq P$ , then  $P^{c} \subseteq Q^{c} \subseteq Nscl_{\theta}(P^{c})$ , where  $P^{c}$  is  $N\theta g^{*}s$ -cld and hence  $Q^{c}$  is  $N\theta g^{*}s$ -cld by Remark 3.20. Therefore Q is  $N\theta g^{*}s$ - open.

# 4. Nog\*s- Continuous Functions and Nog\*s- Irresolute Functions

In this segment, we establish the idea of  $N\theta g^*s$ - continuous functions and  $N\theta g^*s$ - irresolute functions in nano topological spaces and also its revised properties are given.

**Definition 4.1.** Let  $(U, \tau R(X))$  and  $(V, \tau_R 0(Y))$  be a nano topological spaces. Then the function  $k: (U, \tau R(X)) \to (V, \tau_R 0(Y))$  is said to be  $N\theta g^*s$ - continuous function (denoted by  $N\theta g^*s$ - cnts) on U, if the inverse image of every nano cld in V is  $N\theta g^*s$ - cld in U.

**Example 4.2.** Let  $U = V = \{m, n, o, p\}$  with  $U/R = \{\{m, n\}, \{o\}, \{p\}\}\)$  and  $X = \{m, p\}$ . Then  $\tau_R(X) = \{U, \varphi, \{p\}, \{m, n, p\}, \{m, n\}\}$ . Let  $V/R^0 = \{\{m, o\}, \{n\}, \{p\}\}\}$  and  $Y = \{m, p\}$ . Then  $\tau_{R^0}(Y) = \{U, \varphi, \{p\}, \{m, o, p\}, \{m, o\}\}$ . Define  $k : (U, \tau_R(X)) \rightarrow (\tau_R 0(Y))$  as  $k(m) = m, k(n) = o, k(o) = n, k(p) = p \Rightarrow k$  is  $N \theta g^* s$ - cnts.

**Theorem 4.3.** A function  $k : (U, \tau_R(X)) \to (\tau_R 0(Y))$ , then the following holds

- (1) If k is nano cnts then it is  $N\theta g^*s$  cnts.
- (2) If k is Ng-cnts then it is  $N\theta g^*s$  cnts.
- (3) If k is Nr-cnts then it is  $N\theta g^*s$  cnts.
- (4) If k is Nga-cnts then it is  $N\theta g^*s$ -cnts.
- (5) If k is Nag-cnts then it is  $N\theta g^*s$ -cnts.
- (6) If k is  $Ng^*$ -cnts then it is  $N\theta g^*s$ -cnts.

**Proof.** (1) Let  $k : (U, \tau_R(X)) \to (\tau_R 0(Y))$  be nano cnts and B be a nano cld in V. Then  $k^{-1}(B)$  is nano cld in U. Since every nano cld is  $N\theta g^*s$ - cld.

Therefore  $k^{-1}(B)$  is  $N\theta g^*s$ -cld.

The proof of (2) to (6) is as follows from (1).

Examples given below shows that the converse part for the above theorem need not be true in general.

**Example 4.4.** Let  $U = V = \{m, n, o, p\}$  with  $U/R = \{\{m, p\}, \{n\}, \{o\}\}\}$ and  $X = \{m, o\}$ . Then  $\tau_R(X) = \{U, \varphi, \{o\}, \{m, o, p\}, \{m, p\}\}$ . Let  $V/R^0 = \{\{n, o\}, \{m\}, \{p\}\}\}$  and  $Y = \{n, p\}$ . Then  $\tau_{R^0}(Y) = \{U, \varphi, \{p\}, \{n, o, p\}, \{n, o\}\}$ . Define  $k : (U, \tau_R(X)) \to (\tau_R 0(Y))$  as k(m) = n, k(n) = m,k(o) = o, k(p) = p. Then k is  $N \theta g^* s$ - cnts. But  $k^{-1}\{m, p\} = \{n, p\}$  is not nano cld. So k is not nano-cnts.

**Example 4.5.** Let  $U = V = \{m, n, o, p\}$  with  $U/R = \{\{m, p\}, \{o\}, \{p\}\}\}$ and  $X = \{m, p\}$ . Then  $\tau_R(X) = \{U, \varphi, \{p\}, \{m, n, p\}, \{m, n\}\}$ . Let  $V/R^0 = \{\{m, o\}, \{n\}, \{p\}\}\}$  and  $Y = \{m, p\}$ . Then  $\tau_{R^0}(Y) = \{U, \varphi, \{p\}, \{m, o, p\}, \{m, o\}\}$ . Define  $k : (U, \tau_R(X)) \rightarrow (\tau_R 0(Y))$  as k(m) = m, k(n) = 0,

Advances and Applications in Mathematical Sciences, Volume 18, Issue 11, September 2019

k(0) = n, k(p) = p. Then k is  $N \theta g^*s$ - cnts. But  $k^{-1}\{m, o\} = \{m, n\}$  is not Ng-cld. So k is not Ng-cnts.

**Example 4.6.** Let  $U = V = \{m, n, o, p\}$  with  $U/R = \{\{o, p\}, \{m\}, \{n\}\}\}$ and  $X = \{m, p\}$ . Then  $\tau_R(X) = \{U, \varphi, \{m\}, \{m, o, p\}, \{o, p\}\}$ . Let  $V/R^0 = \{\{n, p\}, \{m\}, \{o\}\}\}$  and  $Y = \{m, p\}$ . Then  $\{m, n, p\}, \{n, p\}\}$ .  $\tau_{R^0}(Y) = \{U, \varphi, \{m\}, \text{ Define } k : (U, \tau_R(X)) \rightarrow (\tau_R 0(Y)) \text{ as } k(m) = n, k(n) = o, k(o) = m, k(p) = p$ . Then k is  $N \theta g^* s$ - cnts. But  $k^{-1}\{m, o\} = \{n, o\}$  is not Nr-cld. So k is not Nr-cnts.

**Theorem 4.7.** A function  $k : (U, \tau_R(X)) \to (\tau_R 0(Y))$ , then the following holds

- (1) Every  $N\theta g^*s$  cnts function is Ngs-cnts.
- (2) Every  $N\theta g^*s$  cnts function is  $N\beta$ -cnts.
- (3) Every  $N\theta g^*s$  cnts function is Nsg-cnts.
- (4) Every  $N\theta g^*s$  cnts function is  $Ng^*s$  cnts.

**Example 4.8.** Let  $U = V = \{m, n, o, p\}$  with  $U/R = \{\{n, o\}, \{m\}, \{p\}\}\}$ and  $X = \{n, p\}$ . Then  $\tau_R(X) = \{U, \varphi, \{p\}, \{n, o, p\}, \{n, o\}\}$ . Let  $V/R^0 = \{\{m, n\}, \{o\}, \{p\}\}\}$  and  $Y = \{m, p\}$ . Then  $\tau_{R^0}(Y) = \{U, \varphi, \{p\}, \{m, n, p\}, \{m, n\}\}$ . Define  $k : (U, \tau_R(X)) \to (\tau_R 0(Y))$  as k(m) = m, k(n) = p, k(o) = o, k(p) = n. Then k is Ngs-cnts N $\beta$ -cnts, Nsg-cnts and  $Ng^*p$ - cnts. But  $k^{-1}\{o\} = \{o\} \ k-1\{o\} = \{o\}$  is not  $N \theta g^*s$ - cld. So k is not  $N \theta g^*s$ - cnts.

**Remark 4.9.** The composition of two  $N\theta g^*s$ - cnts functions is again a  $N\theta g^*s$ - cnts as shown in the below illustration.

**Example 4.10.** Let  $U = V = W = \{m, n, o, p\}, U/R = \{\{o, p\}, \{m\}, \{n\}\}\}$ and  $X = \{n, o\}.$  Then  $\tau_R(X) = \{U, \phi, \{n\}, \{n, o, p\}, \{o, p\}\}.$  Let  $V/R^0 = \{\{m, o\}, \{n\}, \{p\}\}\}$  and  $Y = \{m, o\}.$  Then  $\tau_{R^0}(Y) = \{U, \phi, \{n\}, \{n\}, \{n\}\}\}$ 

Advances and Applications in Mathematical Sciences, Volume 18, Issue 11, September 2019

 $\{m, n, o\}, \{m, o\}\}. \quad \text{Let} \quad W/R^{00} = \{\{n, p\}, \{m\}, \{o\}\} \text{ and } Z = \{o, p\}. \text{ Then} \\ \tau_{R^{00}}(Z) = \{U, \varphi, \{o\}, \{n, o, p\}, \{n, p\}\}. \text{ Define } k : (U, \tau_{R}(X)) \to (\tau_{R}0(Y)) \text{ as} \\ k(m) = p, k(n) = n, k(o) = o, k(p) = m. \text{ Defin} q : (V, \tau_{R}0(Y)) \to (W, \tau_{R}00(Z)) \\ \text{as} \quad q(m) = p, q(n) = n, q(o) = o, q(p) = m. \text{ Since } \{m, n, p\} \text{ is cld in} \\ (W, \tau_{R}00(Z)). \quad \text{Since} \quad (q^{0}k)^{-1}(\{m, n, p\}) = k^{-1}(q^{-1}\{m, n, p\}) = k^{-1}(\{m, n, p\}) \\ = \{m, n, p\} \text{ which is } N \theta g^* s \text{- cld in } U. \text{ Hence } k \circ q \text{ is } N \theta g^* s \text{- cnts.}$ 

**Theorem 4.11.** A function  $k : (U, \tau_R(X)) \to (\tau_R 0(Y))$  is  $N \theta g^* s$ - cnts if and only if the inverse image of every nano cld in V in  $N \theta g^* s$ - cld in U.

**Proof.** Let k be  $N \theta g^*s$ - cnts and H be nano cld in V. That is V - G is nano opn in V. Since k is  $N \theta g^*s$ - cnts,  $k^{-1}(V - H)$  is  $N \theta g^*s$ - open in U. That is  $k^{-1}(V) - k^{-1}(H) = U - k^{-1}(V - H)$  is  $N \theta g^*s$ - opn in U. Hence  $k^{-1}(H)$  is  $N \theta g^*s$ - cld in U, if k is  $N \theta g^*s$ - cnts on U.

Conversely, Let the inverse image of every nano cld in V is  $N\theta g^*s$ - cld in U. Let G be a nano opn in V. Then V - G is nano cld is V. Then  $k^{-1}(V - G)$  is  $N\theta g^*s$ - cld in U. Therefore,  $k^{-1}(G)$  is  $N\theta g^*s$ - opn in U. Thus the inverse image of every nano opn in V in  $N\theta g^*s$ - opn in U. That is, k is  $N\theta g^*s$ - cnts in U.

**Theorem 4.12.** A function  $k : (U, \tau_R(X)) \to (\tau_R 0(Y))$  is  $N \theta g^*s$ - cnts if and only if  $k(N \theta g^*scl(G) \subseteq Ncl\theta(k(G))$  for every subset G of U.

**Proof.** Let k be  $N \theta g^*s$ - cnts and  $G \subseteq U$ . Then  $k(A) \subseteq V$ . Since k is  $N \theta g^*s$ - cnts and  $Ncl\theta(k(G))$  is nano cld in V,  $k^{-1}(Ncl\theta(k(G)))$  is  $N \theta g^*s$ - cld in U. Since  $k(G) \subseteq Ncl\theta(k(G)), k^{-1}(k(G)) \subseteq k^{-1}(Ncl\theta(k(G)))$ . Thus  $N \theta g^*scl(G) \subseteq k^{-1}(Ncl(k(G)))$ . Therefore,  $(N \theta g^*scl(G)) \subseteq Ncl\theta(k(G))$  for every subset G of U.

Conversely, Let  $f(N \theta g^* scl(G)) \subseteq Ncl\theta(k(G))$  for every subset G of U. If H  $k^{-1}(H) \subset U, k(N \theta g^* scl(k^{-1}(H))) \subset$ V, since cld is nano in  $N \theta g^* scl(k^{-1}(H)) \subset k^{-1}(H).$ is,  $Ncl\theta(k^{-1}(H)) = Ncl\theta(H).$ That But  $k^{-1}(H) \subseteq N \theta g^* scl(k^{-1}(H))$ . Thus  $N \theta g^* scl(k^{-1}(H)) = k^{-1}(H)$ . Therefore  $k^{-1}(H)$  is  $N \theta g^* s$ -cld in U for every nano cld H in V. That is, k in  $N\theta g^*s$ - cnts.

**Definition 4.13.** Let  $(U, \tau_R(X))$  and  $(V, \tau_R 0(Y))$  be a nano topological spaces. Then the function  $k : (U, \tau_R(X)) \to (\tau_R 0(Y))$  is said to be  $N\theta g^*s$ - ires on U, if the inverse image of every  $N\theta g^*s$ - cld in V is  $N\theta g^*s$ - cld in U.

**Theorem 4.14.** If a function  $(V, \tau_R 0(Y))$  is  $N \theta g^* s$ -ires, then it is  $N \theta g^* s$ -nts but not conversely.

**Proof.** Let  $k : (U, \tau_R(X)) \to (\tau_R 0(Y))$  is  $N \theta g^* s$ - ires function. Then the inverse image  $k^{-1}(G)$  of every  $N \theta g^* s$ - cld G in V is  $N \theta g^* s$ - cld in U. Since every nano cld is  $N \theta g^* s$ - cld, the inverse image of every nano cld in V is  $N \theta g^* s$ - cld in U whenever the inverse image of every  $N \theta g^* s$ - cld is  $N \theta g^* s$ - cld. Hence  $N \theta g^* s$ - ires function is  $N \theta g^* s$ - cnts.

The inverse part need not be true from the below illustration.

**Example 4.15.** Let  $U = V = \{m, n, o, p\}$  with  $U/R = \{\{m, p\}, \{n\}, \{o\}\}\}$ and  $X = \{m, o\}$ . Then  $\tau_R(X) = \{U, \varphi, \{o\}, \{m, o, p\}, \{m, p\}\}$ . Let  $V/R^0 = \{\{n, o\}, \{m\}, \{p\}\}\}$  and  $Y = \{n, p\}$ . Then  $\tau_R 0(Y) = \{U, \varphi, \{p\}, \{n, o, p\}, \{n, p\}\}$ . Define  $k : (U, \tau_R(X)) \rightarrow (\tau_R 0(Y))$  as k(m) = n, k(n) = m, k(o) = o, k(p) = p. Then k is  $N\theta g^*s$ - cnts since the inverse image of every nano cld in V is  $N\theta g^*s$ - cld in U. But k is not  $N\theta g^*s$ - ires since  $k^{-1}\{n, o\} = \{m, o\}$ is not  $N\theta g^*s$ - cld in U even though  $\{n, o\}$  is  $N\theta g^*s$ - cld in V. Hence a  $N\theta g^*s$ - cnts function in not  $N\theta g^*s$ - ires.

**Theorem 4.16.** Let  $(U, \tau_R(X)) \to (\tau_R 0(Y))$  and  $(W, \tau_R 00(Z))$  be nano topological spaces. If the functions  $k : (U, \tau_R(X)) \to (\tau_R 0(Y))$  and  $q : (V, \tau_R(Y)) \to (W, \tau_R 00(Z))$  are both  $N \theta g^*s$ - ires.

**Proof.** As the function  $q: (V, \tau_R(Y)) \to (W, \tau_R 00(Z))$  is  $N\theta g^*s$ - ires, the inverse image  $q^{-1}(G)$  of every  $N\theta g^*s$ - open G in W is  $N\theta g^*s$ - open in V. Hence  $q^{-1}(G)$  is a  $N\theta g^*s$ - open in V and  $k: (U, \tau_R(X)) \to (\tau_R 0(Y))$  being  $N\theta g^*s$ - sires implies that  $k^{-1}[q^{-1}(G)]$  is  $N\theta g^*s$ - open in U. Thus  $(q \circ k)^{-1}(G) = k^{-1}[q^{-1}(G)]$  is  $N\theta g^*s$ - open in U for every  $N\theta g^*s$ - open  $q^{-1}(G)$ in V. Hence  $q \circ k: (U, \tau_R(X)) \to (W, \tau_R 00(Z))$  is  $N\theta g^*s$ - ires.

**Theorem 4.17.** Let  $(U, \tau_R(X))$ ,  $(V, \tau_R 0(Y))$  and  $(W, \tau_R 00(Z))$  be nano topological spaces. For any  $N\theta g^*s$ - ires function  $k : (U, \tau_R(X))$ ,  $(V, \tau_R 0(Y))$ and any  $N\theta g^*s$ - ents function  $q : (V, \tau_R(Y))$ ,  $(W, \tau_R 00(Z))$ , the composition  $q \circ k : (U, \tau_R(X))$ ,  $(W, \tau_R 00(Z))$  is  $N\theta g^*s$ - ents.

**Proof.** Let G be a nano cld in W. Since the function  $q:(V, \tau_R(X)) \to (W, \tau_R 00(Z))$  is  $N \theta g^* s$ - cnts, the inverse image  $q^{-1}(G)$  is  $N \theta g^* s$ - cld in V. Since the function  $k:(U, \tau_R(X)), (V, \tau_R 0(Y))$  is  $N \theta g^* s$ - ires, the inverse image  $k^{-1}[q^{-1}(G)]$  of  $N \theta g^* s$ - cld  $q^{-1}(G)$  in V is  $N \theta g^* s$ - cld in U. Thus the inverse image  $(q \circ k)^{-1}(G)$  is  $N \theta g^* s$ - cld in U for every  $N \theta g^* s$ - cld G in W. Hence the composition  $q \circ k:(U, \tau_R(X)) \to (W, \tau_R 00(Z))$  is  $N \theta g^* s$ - cnts.

#### References

- K. Bhuvaneshwari and Mythili Gnanapriya, Nano generalized closed sets, International Journal of Scientific and Research Publications 4(5), (2014), 1-3.
- [2] K. Bhuvaneshwari and A. Ezhilarasi, Nano generalzied semi continuity in nano topological spaces, International Research Journal of Pure Algebra 6(8) (2016), 361-367.
- [3] K. Bhuvaneshwari and Mythili Gnanapriya, On Nano generalized continuous functions in nano topological spaces, International Journal of Mathematical Archive 6(6) (2015), 182-186.

- [4] K. Bhuvaneshwari and A. Ezhilarasi, On Nano semi-generalized and Nano generalized semi closed sets in Nano topological spaces, International Journal of Mathematics and Computer Applications Research (2014), 117-124.
- [5] Lellis Thivagar and C. Richard, On nano forms of weekly open sets, International Journal of Mathematics and Statistics Inventionl 1 (2013), 31-37.
- [6] M. Lellis Thivagar and Carmel Richard, On Nano continuity, Mathematical Theory and Modeling 3(7) (2013), 32-37.
- [7] N. Levine, Generalized closed sets in topology, Rendi. Circolo Mathematico di Palermo l(2) (1970), 89-96.
- [8] R. T. Nachiyar and K. Bhuvaneswari, On nano generalized α-closed sets and nano αgeneralized closed sets in nano topological spaces, International Journal of Engineering Trends and Technology 13(6) (2014), 257-260.
- [9] R. T. Nachiyar and K. Bhuvaneswari, Nano generalized α-continuous and nano ageneralized continuous functions in nano topological spaces, International Journal of Engineering Trends and Technology 14(2) (2014), 79-83.
- [10] A. A. Nasef, A. I. Aggour and S. M. Darwesh, On some classes of nearly open sets in nano topological spaces, Journal of the Egyptian Mathematical Society 24 (2016), 585-589.
- [11] Z. Pawlak, Rough sets, International Journal of Information and Computer Sciences 11 (1982), 341-356.
- [12] V. Rajendran, P. Sathishmohan and R. Nithyakal, On new class of continuous functions in nano topological spaces, Malaya Journal of Matematik 6(2) (2018), 385-389.
- [13] V. Rajendran, P. Sathishmohan and K. Indirani, On Nano generalized star closed sets in nano topological spaces, International Journal of Applied Research 1(9) (2015), 4-7.
- [14] V. Rajendran, P. Sathishmohan and N. Suresh, On Nano generalized star pre-closed sets in nano topological spaces, International Journal of Recent Scientific Research 7(1) (2016), 8066-8070.
- [15] A. Ravathy and Ganambal Ilango, On Nano β-open sets, International Journal of Engineering Contemporary Mathematics and Sciences 1(2) (2015), 1-6.
- [16] P. Sathishmohan, V. Rajendran and L. Chinnapparaj, On new class of generalization of closed sets in topological spaces, International Journal of Scientific Research and Review 7(8) (2018), 69-79.
- [17] P. Sathishmohan, V. Rajendran and C. Vignesh Kumar, Properties of nano semi pre θclosed set in nano topological spaces, Journal of Applied Science and Computations 5(11) (2018), 1588-1599.
- [18] P. Sulochana Devi and K. Bhuvaneswari, On nano regular generalized and nano generalized regular closed sets, International Journal of Engineering Trends and Technology 13(8) (2014), 386-390.
- [19] N. V. Velicko, On H-closed topological spaces, American Mathematical Society Translations 78 (1968), 103-118.