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Abstract 

In this paper we intend to aim at calculating fractional derivative of sine and cosine 

hyperbolic functions with Caputo approach. Hyperbolic functions have many applications in 

various sciences and in the field of engineering they are used to express the form of the loop 

established between two towers by high power lines. They may also be used to find distance in 

non-Euclidean geometry. 

1. Introduction 

Fractional calculus is generalized idea of derivative and integral of 

integer order [2]. Fractional order derivates discussed preliminarily in 1695 

in a correspondence of Leibniz to L’Hospital explaining about the derivative 

of arbitrary order. After that many mathematicians laid base for fractional 

derivatives. Abel, Liouville, Riemann, Euler, and Caputo are supposed to be 

pioneer in the theory of fractional calculus [3, 4]. Consequently, the fractional 

calculus finds immense applications various sciences mathematics, and 

engineering. See [5] for deterministic fractional order models which occur in 

the field bioengineering and branch of nanotechnology. 
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Further, the derivatives of fractional order have significantly found 

applications in defining the physical and chemical behavior of plenty of real 

materials such as polymer, rocks, and other different form of matter [6]. The 

fractional-order models were found more robust tool in divulging the 

properties lying between the given two integers there are several definitions 

of fractional derivative and fractional integrals, see. [7, 8]. Some of the 

definitions of fractional derivatives are enlisted below. 

1.1. Some Special Functions and definition of Fractional 

derivatives. 

In this section, we discuss some elementary definitions of some special 

functions and fractional derivates [8, 5]. 

1.1.1 Gamma Function. 

Gamma function is one of the basic functions which is frequently used in 

fractional calculus. It is basically generalization of factorial!m.it allows m to 

take real and even complex values. The formula for gamma function is given 

below: 
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The gamma function can also be defined by the limit representation as: 
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some basic properties of gamma function are defined as: 

      !!11 mmmmmm   

Gamma function has simple pole at the points ,,2,1,0,  mmy  

1.1.2 Beta Function. 

Beta function is expressed in terms of a definite integral and given by  
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Relation between Beta function and Gamma function is defined as: 
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1.1.3 Mitta Leffler Function. 

Mittag-Leffler function has found a significant place in the field of 

fractional order differential equations. one-parameter Mittag-Leffler 

Function is generalization of exponential function, which is given as: 
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Mittag-Leffler function (MLF) for two parameters is defined as: 
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One of the most important form of the MLF which is used widely in the 

theory of fractional order systems is given as: 

 
 

 
 









0
1,11

,
n

v
v

n
v

x axEt
nv

ax
tavE    

Where v is representing a fraction and a be any constant. 

Let  tf  be a given real valued function. Then for a given rational number 

p, the Grunwald-Letnikov approach of the p-th order fractional derivative of 

 tf  is defined as: 

1.1.4 Grunwald-Letnikov Fractional Derivative. 

For a real valued function  .sg  Then for a given rational number q, the 

Grunwald-Letnikov approach of the q-th order fractional derivative of  sg  is 

defined as: 
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where k is size of the step and a be any fixed number belongs to the set of real 

number. 
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1.1.5 Riemann-Liouville approach of Fractional Derivative. 

The Riemann-Liouville order fractional derivative of the q-th with respect 

to the variable ‘t’ for a real valued function  tf  is described by formula given 

below: 

      
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1.1.6 Euler’s Fractional Derivative. 

The Euler’s fractional derivative of    ttf  is be expressed in the 

following formula: 
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Where  r  is standard Gamma function for a given r  and  is the order 

of the derivative. 

In this sub-section, we discuss on Euler’s definition of fractional order 

derivatives. It is found that that arbitrary order derivatives satisfy nearly all 

the properties that are carried by the derivatives with integral orders. Some 

of the general properties [5] of the fractional-order derivatives are given as 

under below. If gf ,  be the pair of real-valued functions, then: 
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      yhDbbshD ys
   under the scaling .bsy    
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ssDs  where   corresponding to a 

negative order derivative. 

2.1.7 Caputo Fractional-Order Derivative Operator. 

Another approach for evaluating fractional derivative is given by Caputo 

in one of his articles which was introduced in 1967. Contrary to the R-L 

approach of fractional derivative, while solving fractional differential 

equation using Caputo approach, fractional order initial condition are not 

necessary required. Caputo’s definition is given as follows: 

Suppose that ,,,;,0 Rtaat   and then the fractional derivative 

operator is 
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where  tfcD  is called the Caputo fractional derivative of order . 

2. Caputo Fractional Derivative of Hyperbolic Functions 

The hyperbolic function appears in several problems of mathematics and 

mathematical physics. For example, series of hyperbolic sine occurs in the 

gravitational potential of a cylinder, and they are used in the calculation of 

the Roche limit [1]. The hyperbolic cosine function describes the shape of 

suspended cable. Hyperbolic functions also occur in hyperbolic spaces to study 

the theory of triangles. The process of decay of physical entity such as light, 

velocity, and electricity is expressed in terms of hyperbolic functions. 

Hyperbolic functions are also used to study the ocean waves. 
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In this part of the paper, we have calculated Caputo Fractional 

Derivatives of Sine and cosine hyperbolic functions. 

2.1 Caputo Fractional Derivative of sine hyperbolic function. 

We know that Caputo fractional derivative is given by 
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We define here Sine hyperbolic function in terms of exponential function 

as Caputo Fractional derivative of Sinhx is given by: 
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2.2 The Caputo fractional derivative of cosine hyperbolic 

function. 
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3. Conclusions 

In this paper, we have calculated fractional derivative of Cosine and Sine 

hyperbolic functions with Caputo approach. As a future scope, one may also 

calculate the fractional derivative of Cosine and Sine hyperbolic functions 

with other approaches such as extended Caputo fractional derivative, RL 

approach of fractional derivatives and extended RL fractional derivative etc. 

We leave to readers to calculate Caputo fractional derivative of Tanh, Sech 

and cosech hyperbolic functions.  
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