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Abstract

In this paper, we deal with and prove some uniqueness theorems on the Cauchy problem

for the first-order initial value problem.

1. Introduction

Chang and Zadeh [3] introduced the concept of fuzzy differentiable
equations in 1972, Dubois and Prade [4], who apply the extension principle of
Chang and Zadeh [3] concept in their work. The derivatives of fuzzy
differential equations with the initial condition are presented by S. Seikkala
[12] and also S. Seikkala [12] used the Hukuhara derivative and the fuzzy
integral in the study. Most of the researchers have studied fuzzy differential
and integral equations for getting unique solutions to fuzzy initial value
problems. This paper deals with and proves some uniqueness theorems on the

Cauchy problem for the first-order fuzzy initial value problem.

2. Preliminaries

A nonempty set D € R" is said to be a convex set if and only if
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(I1—y)x+vyy e D forevery x, ye D and 0 <y <1.

Let CoV(R™) be the family of all nonempty compact convex subsets of

R", and let C = [a, b] ¢ R be a compact interval, T = [ty, ty+ €}, €> 0, P,
S c C.

Let A, B € CoV(R"), the Hausdorff metric is defined by

d(A, B) = max {subyc 4 infyc gl @ — b, subpcp infycal @ — b}
The fuzzy set in R" is F" = {v: R" — [0, 1]/v satisfies (i)-(iv) below},
(i) v is normal, i.e., there exists an xy € R" such that v(xy) =1

(i1) v is fuzzy convex, i.e., v((1 - y)x + yy) = min{v(x), v(y)}

(ii1) v is upper semi continuous

iv) [v]° = {x € R"/v(x) > 0} is compact

For 0 < a <1, represent [v]* = {x € R"/v(x) > a}. Then from (i)-(iv), the

a-level set [v]* € CoV(R"), V 0 < a < 1.
Let D: F" x F* — [0, ) defined by
D(u, v) = sup min {u(x), v(y)}
and [D(u, v)|* = D([u]*, [v]*), u, v € F™.
For all u, v € F"*, 0 < o <1 and D is continuous.
@ [w+o]* = [u]” + o],
Gi) [eu]® = k[u]®, & < R.
Definition 1. Let D : F" x F* — R, U {0} defined by

D(u, v) = supg<q<i{d(ul”, [v]*)}
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where d is the Hausdorff metric for CoV(R").
Clearly (F", D) is a complete metric space, and D satisfies the following
(1) D(u +w, v+w) = D(u, v), Vu, v, w e F"
(i) D(cu, cv) =|c|D(u, v), Vu,v e F", c € R.

Definition 2. A function E : C — F" is differentiable at ¢, € C if there
E(to+ €) - Elt)

€

exists E'(fy) € F" such that the limits, lim and

e—>0"

lim E(tO) — E(tO_ E)

exists and equal to E'(ty).
g—0"

If a function E:C — F" is differentiable at #, € C then for any
a € [0, 1], the set valued function E,(¢) = [E(¢)]* is Hukuhara differentiable
at point ¢, with DE(t) = [E'(¢)]*.

If E:C— F" is differentiable at ¢y € C then E'({y) is the fuzzy
derivative of E at the point #,.

Theorem 3. If E : C — F" is differentiable then E is continuous.

Proof. Let ¢, t+ € in C and > 0.

D(E(t+ €), Et)) = D(E{ + <) - E(t), 0)

<e D((E(t+ ee) - E(t)), E’(t))+ e D(E'(t),0) > 0 as € > 0"

where € is very small and E(¢ + €) — E(t) exists.

Hence E is right continuous, and also we can prove the E is left
continuity.

3. Initial Value Problem

Let f:R™ — R", n>0 be a function and the ordinary differential
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equation

y'() = £t y@)), ¥(to) = ¥o, (1)

where #; is a given constant, y, € R", is said to be an initial value problem.
Then the function y(¢), which satisfies the equation (1) is the solution of the

differential equation (1).

Theorem 4. A mapping v : S — F" is a solution of the initial value
problem y'(¢) = f(¢, ¥(t)), satisfying the initial condition y(ty) = yo if and

only if it is continuous and satisfies the following integral equation
¢
o) = yo + L f(s, ¥(s))ds, V't < P.
0

Proof. Let v : S — F" be the solution of (1)
= y satisfying the initial condition y(¢y) = ¥p.

By integrating on both sides of the equation y'(t) = f(¢, ¥(t)) from ¢, to ¢,

[ v0ds = [ 16, (s s
(0~ t0) = [ 6, (e

t
¥(t) = yo + L f(s, y(s))ds, Vt € P 2
0

Conversely, let ¥ : S — F" be a function and satisfies (2), and by setting
t =ty yields »y(ty) = yp, i.e., y satisfies the initial condition. Thus, the
integral, y(t) are continuous. it follows that the integrand f(s, ¥(s)) is

continuous. Hence, by fundamental theorem of calculus y is differentiable and

y() = f(t, y(@)).
By the method of successive approximation, let us consider the sequence

t
{y,(t)} such that y,(t) = yo + L f(s, yp1(s))ds, n =1, 2, ..., ¥(ty) = ¥o-
0
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4. Fuzzy Cauchy Problem

Let f:Cx F" - F" be a continuous function and the fuzzy Cauchy

problem is defined by
y() = f(t, ¥@2)), ¥(0) = ¥ 3)

Let y : [0, C] - F™ be a solution of (3), if y is a primitive of f(y) starting

at Yo-

Define the function Ey : [0, C] - F™ by [Ey](t) = f(y(t)) and denote by

Gy the unique continuous primitive of Ey starting at y,.

A function y € C([0, T'), F™*) is a solution of the initial value problem (3)
if and only if y coincides with Gy.

Lemma 5. Let y;, yo : S — F" with primitives x;, xo.

Suppose the function S — d(y,(s), yo(s)) is integrable on S. Then

s 0) 3(0) < 210}, %50) + [ dln(s). o)

Proof. Assume y(¢) = d(x;(2), x5(2)), t € T,
¥t +e)— ¥(t) < d(oeg (¢ + ), 21 () + ey1(2))

+ d(x1 (2) + ey @), x2(t) + &y1(2))

+ d(xa(t) + &y1 (), x(t) + eya(2))

+ d(xo(2) + gy9(t), x9(t + €)) — d(o1(2), x2(2))
= d(ox1 (¢ + &), 21(2) + £y1(2)) + d(x1 (), x2(2))
+ ed(y1(2), yo(t)) + d(xa(?), £y2(t), y2(t + 2))

— d(x; (2), x2(0)).

Hence,
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M < %d(xl(t +¢), x1(¢) + ex;(2))
+ %d(ﬂﬁ(t) +ey1(2), x9(t) + e (2) + d(31(2), y2(2))

+ Lany(0)+ enle), (e + o)

Therefore, D*y(t) < d(v(t), yo(t); t € T, and
() < ¥(0) + j ; d(y1(s), yo(s))ds.

Theorem 6. Suppose that f : F" — F™ is such that there exists p > 0
with

d(f(x), f(¥))

<p;x,yeF™
dx,y) %7

Then the fuzzy initial value problem (2) has a unique solution.
Proof. C([0, T'], F"), is a complete metric space with
D(x, y) = supefo, )¢ Pd(x(t), ¥(t))

By lemma 5, for any ¢ € T

A(Gx1(0) [G)(0) = [ dllF=1(6), 73] (s)ds
t t
= [ (o). foNds < p[ dlxls). sl ds
0 0

t t
“p j eP*ePSd(x(s), y(s))ds < p j ePd(x, y)ds
0 0

= (" - 1)D(x, )
D(Gx, Gy) < [1 - e PT]D(x, ),

By the Banach contraction principle, G has a unique solution for the
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initial value problem (2).

Theorem 7. Suppose that f : F"* — F™ is such that there exists p, & > 0,
with

d(f(x), f(v)) < pd(fx, y) +dd(x, fy), x, ye F*',p+d < 1.

Then the initial value problem (2) has a unique solution.

Proof. Let C([0, T'], F"*) be a complete metric space with

D(x, y) = supyefo, 77 ¢ Pd(x(2), ¥())

By lemma 5, for any ¢ € T
a(Gx1(0) [)(0) = [ dllF=]6) 3] (s)ds
S RCONEOES
< [ lod(7(w(s)) 366 + 8o, £} s
< o[ dlfa), steds + 5 dats), £(5(6))ds
< pJ. t d(x(s), y(s))ds + SJ. t d(x(s), y(s))ds
0 0
< (o +9)| dix(s) o) ds
0
=(p+ S)I : e(k+l)se_(k+l)sd(x(s), ¥(s))ds
0
<(p+ S)Ié B D(x, y)ds
< (* D —1)D(x, y)
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D(Gx, Gy) < [1 - e P D(x, ),

By the Banach contraction principle, G has a unique solution for the
initial value problem (2).

Theorem 8. Let f : Cx F* — F™ be a continuous function and assume
that there exists . > 0, B € [0, 2] such that

a7t YO, [t x0)8) < (O, [xO)E) for all 0< B < 2.

Then the initial value problem y'(t) = f(t, y(t)), ¥(to) = yo has a unique

solution.

Proof. Let f : C x F* — F™ be a continuous function,
DIFE, 5(0)) 76, x(0) = Subld([f(&, 3Oz, [F @)]2)

< SubPd(yO2, [0}

= AD(y(t), x(¢)), Vt € T and x, y € F".

Thus, the initial value problem y'(t) = f(¢, ¥(t)), ¥(ty) = ¥o has a unique

solution.

Corollary 9. Let f : Cx F" — F" be a continuous function and assume

that there exists A > 0 such that

dWJF(t, y@t), Nf(t x(1)) < Ad(y(t), Jx(2)).

Then the initial value problem y'(t) = f(t, y(t)), ¥(ty) = yo has a unique

solution on C.
Proof. The corollary is follows from the above theorem by taking by
taking B = 1.

Example 10. Let y, (u—2A): 7T — F" be continuous maps and % > 0.
Then the initial value problem y'(¢) = ky(t) + (u—2) (), ¥(ty) = 61, tg € T has

a unique solution.
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Let f:TxF" — F" be such that f(t, y(¢)) = ky(t)+ (u—21)(¢), ¥()

=01, ty € T and y(t) € F". Clearly, the map fis continuous and
df (e, YN, [fe. xO)]2)
< d(lky() + (u - DO, [ex(0) + (1 - L) (O]E)

< Ay + [(1— MO, [ex(@)]2 + [ - 1) O)]2)

N

< dlly O, e (0]2) < kA2, <)
forallt e T, x, y € F"*, and B €0, 2]
Hence y'(¢) = ky(t) + (u — 1) (¢), ¥(tg) = 61, tg € T has a unique solution.

Theorem 11. Let f : Cx F* — F" be a continuous function and assume

that there exists p, 8 > 0 and p + 6 <1 such that

D(f(y@)), f(x(2))) < pD(F((2)), x(2)) + 8D(x(2), f(x(2))), vt € T,

x,y:C — F". Then the initial value problem y'(t) = f(t, ¥(¢)), ¥(¢) = Yo,

has a unique solution.

Proof. Let S(C, F") be set of all continuous mappings from C to
F", CeR

S(C, F") is a metric space by setting
H(x, y) = sup {D(x(t), )} : t € C}, Vx, y € S(C, F™).
Clearly (S(C, F"), H) is a complete metric space.

Let (x1(¢), x9(¢)) € Cx F™ be arbitrary, and let n >0 be such that
(p+d)m? <1.

Now, our claim is to show following initial value problem
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¥'(t) = (&, ¥@)), y(¢;) = ¥, & € T has a unique solution on 7.

For y € S(C, F™), define Gy on by
t
Gy = n(®)+ | fls. 56 ds + 0.
1

Then Gy € S(C, F™). Furthermore, by Lipchitz condition on f,

H(Gy, Gx) = sup{D(Gy(t), Gx(1)) : t T}

_ sup {D( j :1 £(s, y(s))ds, j ; £(s, x(s)) dsJ e T}

_ L“”D(f(s, y(s)) f(s, x(s)) ds

J:Hn [PD(F((®), (2)) + 8D(¥(2), f(x(2))]ds

_ J'z1+n (p + S)D(y(t)’ x(t))ds

< (p + 8)n’H(x, y), for all x, y € S(C, F™).
Thus, by Banach’s contraction principle,

= G has a unique solution for the initial value problem.

Corollary 12. Let f:CxF"™ — F" be a continuous function and

assume that there exists k > 0 such that
D(f(5(2)), f(x(@)) < R[D(f(5(2)), () + D(y(t), f(x@)]} Vit € T,

x,y:C — F". Then the initial value problem y'(t)= f(¢, ¥t)), ¥(ty) = ¥o,

has a unique solution.

Proof. The corollary is follows from the above theorem by taking
k=p=2a.

Theorem 13. Let f : Cx F" — F" be a continuous function and assume
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that there exists & > 0 such that

D(f(y@), f(x(y)) < 8D(y(t), x(t)) forall t € C, x, y : C — F".

Then ¥'(t) = f(t, ¥(t)), ¥(to) = Yo, has a unique solution on C.

Proof. Let S(C, F") be set of all continuous mappings from C to

F* CeR
S(C, F") is a metric space by setting
H(y, x) = sup{D(x(t), y(¢t)) : t € C} for all x, y € S(C, F™).
= (S(C, F), H) is a complete metric space.

Now, let (x;(¢), x9(¢)) € C x F™* be arbitrary and let n > 0 be such that

8n? < 1. For y € S(C, F"), define Gy on T by the equation
t
Gy = n(®)+ [ fs. 3(s)ds + 3o
1

Then Gy € S(C, F™). Furthermore, by Lipschitz condition on f,

H(Gy, Gx) = sup{D(Gy(t), Gx(1)) : t T}
= sup {DU.; f(s, y(s))ds, J.; f(s, x(s)) dsj ‘te T}
= [ Dt o 76 sty as

_ j :m SD(y(t), x(t))ds

< n?H(x, y) < H(x, y) for all x, y € S(C, F™).

Hence, by Banach’s contraction mapping theorem, G has a unique

solution of the initial value problem.
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Corollary 14. Let f:Cx F"* — F" be a continuous function and

assume that there exists k > 0, B < 2 such that

D(f(y@)), f(x(®))) < (V2 = B)D(¥(2), x(t)) forall t € C, x,y : C > F".
Then y'(t) = f(t, y(t)), ¥(to) = yo, has a unique solution on C.

Proof. The corollary follows from above theorem by taking k =38 and

B=1.
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