

SECURE DOMINATION IN BIPOLAR FUZZY GRAPHS

R. JAHIR HUSSAIN, T. C. MUJEEBURAHMAN and D. DHAMODHARAN

PG and Research Department of Mathematics Jamal Mohamed College (Autonomous) (Affiliated to Bharathidasan University) Tiruchirapplli-620020, India E-mail: hssnjhr@yahoo.com mohdmujeebtc@gmail.com dharanraj28@yahoo.co.in

Abstract

In this paper, we established and investigated the concept of secure domination in bipolar fuzzy graphs and denoted it as $\gamma_{bs}(G)$. The definitions of 2-secure dominating set and its domination number in bipolar fuzzy graphs are defined and some results are derived with suitable examples.

1. Introduction

Zhang [15] established the concept of bipolar fuzzy set in 1994. It was initiated as a generalisation of fuzzy sets which is an expansion of fuzzy sets with membership range [-1, 1]. Later, M. Akram [1] introduced Bipolar fuzzy graphs and various related notions. A. Somasundaram and S. Somasundaram [12] discussed about domination in fuzzy graph. The idea of domination in bipolar fuzzy graphs was introduced by M. G. Karunambigai [5]. The notion of secure dominating set and 2-dominating set in graphs was introduced by Merouane and Chellali [7]. The secure and 2-secure domination in fuzzy and intuitionistic fuzzy graphs was discussed by M. G.

Received May 3, 2021; Accepted March 25, 2022

²⁰²⁰ Mathematics Subject Classification: Primary 47H10; Secondary 54H25.

Keywords: Bipolar domination, secure domination number, 2-domination, 2-secure domination number.

2 R. J. HUSSAIN, T. C. MUJEEBURAHMAN and D. DHAMODHARAN

Karunambigai, et al., [6]. Motivated by these domination concepts, we aim to establish the concept of secure domination in bipolar fuzzy graph (BFG), also discuss some definitions and properties related to 2-secure domination in BFG with examples.

2. Preliminaries

Definition 2.1 [5]. Let \mathcal{X} be a non empty set. A bipolar fuzzy set \mathcal{M} in \mathcal{X} is an object having the form $B = \{(x, \mu_B^+(x), \mu_B^-(x)) \mid x \in \mathcal{X}\}$ where, $\mu_B^+ : \mathcal{X} \to [0, 1]$ and $\mu_B^- : \mathcal{X} \to [-1, 0]$ are mappings.

Definition 2.2 [5]. A Bipolar fuzzy graph (BFG) is of the form $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where

(1)
$$\mathcal{V} = v_1, v_2, \dots, v_n$$
 such that $\mu_1^+ : X \to [0, 1]$ and $\mu_1^- : X \to [-1, 0]$

(2) $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$ where $\mu_2^+ : \mathcal{V} \times \mathcal{V} \to [0, 1]$ and $\mu_2^- : \mathcal{V} \times \mathcal{V} \to [-1, 0]$ such that

$$\mu_{2ij}^+ = \mu_2^+(v_i, v_j) \le \min(\mu_1^+(v_i), \mu_1^+(v_j))$$

and

$$\mu_{2ij}^- = \mu_2^-(v_i, v_j) \ge \max(\mu_1^-(v_i), \mu_1^-(v_j))$$

for all $(v_i, v_j) \in \mathcal{E}$.

Definition 2.3 [5]. A BFG
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 is called strong if $\mu_2^+ = \min(\mu_1^+(v_i), \mu_1^+(v_j))$ and $\mu_2^- = \max(\mu_1^-(v_i), \mu_1^-(v_j)) \forall v_i, v_j \in \mathcal{V}.$

Definition 2.4 [5]. A BFG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is called complete if

$$\mu_{2}^{+}(v_{i}, v_{j}) \leq \min(\mu_{1}^{+}(v_{i}), \mu_{1}^{+}(v_{j}))$$
$$\mu_{2}^{-}(v_{i}, v_{j}) \geq \max(\mu_{1}^{-}(v_{i}), \mu_{1}^{-}(v_{j}))$$

for all $v_i, v_j \in \mathcal{V}$.

Definition 2.5 [5]. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a BFG, then cardinality of \mathcal{G} is defined as

$$|\mathcal{G}| = \sum_{v_i \in \mathcal{V}} \frac{(1 + \mu_1^+(v_i) + \mu_1^-(v_i))}{2} + \sum_{(v_i, v_j) \in \mathcal{E}} \frac{(1 + \mu_2^+(v_i, v_j) + \mu_2^-(v_i, v_j))}{2}.$$

Definition 2.6 [5]. The cardinality of \mathcal{V} , i.e., amount of nodes is termed as the order of a BFG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and is signified by $|\mathcal{V}|$ (or $O(\mathcal{G})$) and determined by

$$O(\mathcal{G}) = |\mathcal{V}| = \sum_{v_i \in \mathcal{V}} \frac{(1 + \mu_1^+(v_i) + \mu_1^-(v_i))}{2}$$

The no. of elements in a set of S, i.e., amount of edges is termed as size of BFG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and signified as |S| (or $S(\mathcal{G})$) and determined by

$$O(\mathcal{G}) = |S| = \sum_{v_i \in \mathcal{V}} \frac{(1 + \mu_2^+(v_i) + \mu_2^-(v_i, v_j))}{2}$$

for all $(v_i, v_j) \in \mathcal{E}$.

Definition 2.7 [5]. The degree of a vertex v in a BFG, $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is defined to be the sum of the weights of the strong edges incident at v. It is denoted by $d_{\mathcal{G}}(v)$. The minimum degree of \mathcal{G} is $\Delta(\mathcal{G}) = \min(d_{\mathcal{G}}(v) | v \in V)$. The maximum degree of \mathcal{G} is $\Delta(\mathcal{G}) = \max(d_{\mathcal{G}}(v) | v \in V)$.

Definition 2.8 [5]. Two vertices v_i and v_j are said to be neighbors in BFG, if either one of the following conditions hold

- (1) $\mu_2^+(v_i, v_i) > 0$ and $\mu_2^-(v_i, v_i) = 0$
- (2) $\mu_2^+(v_i, v_j) = 0$ and $\mu_2^+(v_i, v_j) < 0$
- (3) $\mu_2^+(v_i, v_j) > 0$ and $\mu_2^+(v_i, v_j) < 0, v_i, v_j \in \mathcal{V}$.

Definition 2.9 [10]. The strength of connectedness between two nodes a

$$\mu^{\infty}(a, b) = \sup \left(\mu^{k}(a, b) \mid k = 1, 2, \ldots \right)$$

whereas $\mu^k(a, b) = \sup (\mu(aa_1) \wedge \mu(a_1a_2) \dots \wedge \mu(a_{k-1}b) \mid a_1, \dots, a_{k-1} \in \mathcal{V}.$

Definition 2.10 [5]. An arc (a, b) is said to be strong edge in a BFG, if

$$\mu_2^+(a, b) \ge (\mu_2^+)^{\infty}(a, b) \text{ and } \mu_2^-(a, b) \ge (\mu_2^-)^{\infty}(a, b)$$

whereas $(\mu_2^+)^{\infty}(a, b) = \max\{(\mu_2^+)^k(a, b) \mid k = 1, 2, ..., n\}$

and $(\mu_2^-)^{\infty}(a, b) = \max \{(\mu_2^-)^k(a, b) \mid k = 1, 2, ..., n\}.$

Definition 2.11 [5]. Let u be a vertex in a BFG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ then $N(u) = \{v : v \in \mathcal{V}\}$ and (u, v) is a strong edge in \mathcal{G} is called neighbourhood of u in \mathcal{G} .

Theorem 2.12. Every arc in a complete BFG is a strong arc.

Definition 2.13 [5]. A vertex $u \in \mathcal{V}$ of a BFG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is said to be an isolated vertex if $\mu_2^+(u, v) = 0$ and $\mu_2^-(u, v) = 0 \quad \forall v \in \mathcal{V}, u \neq v$. That is, $N(u) = \phi$. Thus an isolated vertex does not dominate any other vertex of \mathcal{G} .

Definition 2.14 [5]. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a BFG on \mathcal{V} , Let $u, v \in \mathcal{V}$, we say that u dominates v in \mathcal{G} if there exists a strong edge between them.

Remark 2.15 [5]. (1) For any $u, v \in \mathcal{V}$, if u dominates v then v dominates u and hence domination is a symmetric relation on \mathcal{V} .

(2) For any $v \in \mathcal{V}$, N(v) is precisely the set of all vertices in \mathcal{V} which are dominated by v.

(3) If $(\mu_2^+)(u, v) < (\mu_2^+)^{\infty}(u, v)$ and $(\mu_2^-)(u, v) < (\mu_2^-)^{\infty}(u, v)$ for all $u, v \in \mathcal{V}$, then the dominating set of \mathcal{G} is \mathcal{V} .

3. Secure Domination in Bipolar Fuzzy Graphs

Definition 3.1. Let \mathcal{G} be a BFG and $u, v \in \mathcal{V}$. A subset \mathcal{D} of \mathcal{V} is called dominating set in \mathcal{G} if for every $u \in \mathcal{V} - \mathcal{D}$, there exists $u \in \mathcal{D}$ such that udominates v. The minimum cardinality taken over all dominating sets of \mathcal{G} is called the domination number of \mathcal{G} and denoted by $\gamma_b(\mathcal{G})$.

Definition 3.2. Let \mathcal{G} be a BFG without isolated vertices. A Total dominating set \mathcal{D} of a BFG \mathcal{G} is a dominating set in which the subgraph $\langle \mathcal{D} \rangle$ induced by \mathcal{D} has no isolated vertices. The minimum cardinality taken over all total dominating sets is called the total domination number of G and is denoted as $\gamma_{bt}(\mathcal{G})$.

Definition 3.3. In a BFG \mathcal{G} . A Secure dominating set $\mathcal{S} \subseteq \mathcal{V}$ is a dominating set, if for every vertex $u \in \mathcal{V} - \mathcal{S}$ is adjacent to a vertex $v \in \mathcal{S}$ such that $(\mathcal{S} - \{v\}) \cup \{u\}$ is also a dominating set. The minimum cardinality taken over all secure dominating sets of \mathcal{G} is called the secure domination number of \mathcal{G} and is expressed as $\gamma_{bs}(\mathcal{G})$.

From the above graph (Figure 1), $\{v_1, v_2, v_7, v_8\}$, $\{v_2, v_3, v_7, v_9\}$, $\{v_2, v_4, v_7, v_{10}\}$ are the secure dominating sets and the secure domination number, $\gamma_{bs}(\mathcal{G}) = 1.8$.

Definition 3.4. Consider a BFG \mathcal{G} without isolated vertices. A total secure dominating set is a secure dominating set S in which the subgraph $\langle S \rangle$ induced by S has no isolated vertices. The minimum fuzzy cardinality taken over all secure total dominating sets of \mathcal{G} is called the total secure domination number of \mathcal{G} and is denoted by $\gamma_{bst}(\mathcal{G})$.

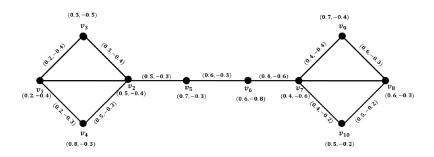


Figure 1. Secure domination in BFG.

Definition 3.5. A subset \mathcal{D}^* of \mathcal{V} is called a 2-dominating set in \mathcal{G} if every vertex of $\mathcal{V} - \mathcal{D}^*$ has at least two neighbour in \mathcal{D}^* .

The minimum cardinality taken over all 2-dominating sets of \mathcal{G} is called the 2-domination number of \mathcal{G} and is denoted by $\gamma_2(\mathcal{G})$.

Definition 3.6. A subset \mathcal{D}^* of \mathcal{V} is called a 2-total dominating set in \mathcal{G} , if \mathcal{D}^* is a 2-dominating set and the subgraph induced by \mathcal{D}^* has no isolated vertices. The minimum cardinality taken over all 2-total dominating sets of \mathcal{G} is called the 2-total domination number of \mathcal{G} and is denoted by $\gamma_{2t}(\mathcal{G})$.

Definition 3.7. In a BFG \mathcal{G} . A secure 2-dominating set is a 2-dominating set $S^* \subseteq \mathcal{V}$, if for every vertex $u \in \mathcal{V} - \mathcal{S}^*$ is adjacent to a vertex $v \in S^*$ such that $(\mathcal{S}^* - \{v\}) \cup \{u\}$ is 2-dominating set. The minimum cardinality taken over all 2-secure dominating sets of \mathcal{G} is called the 2-secure domination number of \mathcal{G} and is expressed as $\gamma_{2bs}(\mathcal{G})$.

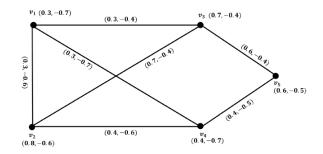


Figure 2. 2-secure domination in BFG.

From the above graph (Figure 2), $\{v_1, v_4, v_5\}$, $\{v_2, v_3, v_5\}$, $\{v_1, v_3, v_5\}$ are secure 2-dominating sets and 2-secure domination number is $\gamma_{2bs}(\mathcal{G}) = 1.2$.

Definition 3.8. Consider a BFG \mathcal{G} without isolated vertices. A 2-secure total dominating set is a 2-secure dominating set in which the subgraph $\langle \mathcal{S}^* \rangle$ induced by \mathcal{S}^* has no isolated vertices. The minimum fuzzy cardinality taken over all 2-secure total dominating sets of \mathcal{G} is called the 2-secure total domination number of \mathcal{G} and is denoted by $\gamma_{2bst}(\mathcal{G})$.

Theorem 3.9. Let \mathcal{G} be a complete BFG. If \mathcal{S} is a minimal dominating set in \mathcal{S} then

- (1) S is a secure dominating set.
- (2) S is not a secure total dominating set.

Proof. Given S is a minimal dominating set of a complete BFG G. By Theorem (2.12), every arc in a complete bipolar fuzzy graph is a strong arc, then minimal dominating set S contains only one vertex v, i.e., $S = \{v\}$. Now for any vertex $v_i \in V - S$ and v_i is adjacent to v. Then $(S - \{v\}) \cup \{v_i\} = \{v_i\}$ is a dominating set. Thus, S is secure dominating set.

Since any secure dominating set of a complete BFG contains a vertex v_i , by the definition of total dominating, S is not a secure total dominating set. \Box

Theorem 3.10. Let \mathcal{G} be a complete BFG. If \mathcal{D} is a minimal dominating set in \mathcal{G} then

(1) \mathcal{D} is not a 2-dominating set,

(2) \mathcal{D} is not a 2-total dominating set.

Proof. Consider a complete BFG \mathcal{G} , If \mathcal{D} is a minimal dominating set in \mathcal{G} , then \mathcal{D} contains a vertex of minimum cardinality but 2-dominating set should contain at least two vertices. Therefore, \mathcal{D} is not a 2-dominating set.

Theorem 3.11. For a complete BFG G,

$$\gamma_{bs}(\mathcal{G}) = \gamma_b(\mathcal{G}).$$

Proof. Let us consider a complete BFG \mathcal{G} . Let \mathcal{S} be a minimal dominating set of \mathcal{G} . Then \mathcal{S} contains a vertex $\{v\}$, i.e., $\mathcal{S} = \{v\}$. The minimum cardinality of \mathcal{S} is denoted by $\gamma_b(\mathcal{G})$. By Theorem (3.9), \mathcal{S} is also secure dominating set and the minimum cardinality of secure dominating set is denoted by $\gamma_{bs}(\mathcal{G})$. Hence, $\gamma_{bs}(\mathcal{G}) = \gamma_b(\mathcal{G})$.

Theorem 3.12. Every 2-secure dominating set of a BFG \mathcal{G} is a secure dominating set of \mathcal{G} .

Proof. Let \mathcal{G} be a BFG and \mathcal{S} be a 2-secure dominating set of \mathcal{G} . Then every vertex $u \in \mathcal{V} - \mathcal{S}$ is adjacent to a vertex $v \in \mathcal{S}$ such that $(\mathcal{S} - \{v\}) \cup \{u\}$ is 2-dominating set. Since \mathcal{S} is a 2-secure dominating set then by definition, \mathcal{S} is a 2-dominating set and every 2-dominating set is a dominating set. Thus every vertex $u \in \mathcal{V} - \mathcal{S}$ is adjacent to a vertex $v \in \mathcal{S}$ such that $(\mathcal{S} - \{v\}) \cup \{u\}$ is a dominating set. Thus \mathcal{S} is a secure dominating set of \mathcal{G} .

Theorem 3.13. For a bipolar fuzzy graph \mathcal{G} ,

$$\gamma_{2bs}(\mathcal{G}) \geq \gamma_{bs}(\mathcal{G}).$$

Proof. By Theorem (3.12), every 2-secure dominating set of a BFG \mathcal{G} is a secure dominating set of \mathcal{G} . Thus every minimum 2-secure dominating set of \mathcal{G} is also a secure dominating set of \mathcal{G} . Thus, $\gamma_{2bs}(\mathcal{G}) \geq \gamma_{bs}(\mathcal{G})$.

Theorem 3.14. Let \mathcal{G} be a BFG. If \mathcal{S} is a 2-dominating set of a path of \mathcal{G} , then \mathcal{S} is not 2-secure dominating set.

Proof. Consider a BFG \mathcal{G} . Let P_n be a path of \mathcal{G} and \mathcal{S} is a 2-dominating set of a path P_n . Then \mathcal{S} contain two pendent vertices v_i and v_j . Now for some $u \in \mathcal{V} - \mathcal{S}$ and u is adjacent to v_i . Thus $(\mathcal{S} - \{v_i\}) \cup u$ is not 2-dominating set. Thus \mathcal{S} is not 2-secure dominating set.

Theorem 3.15. Let $\mathcal{G}_{m,n}$ be a complete bipartite BFG. If \mathcal{S} is a dominating set of \mathcal{G} , then \mathcal{S} is not a secure dominating set.

Proof. Given that S is a dominating set of a complete bipartite BFG $\mathcal{G}_{m,n}$. Then S should contain a vertex in \mathcal{V}_1 say u and a vertex in V_2 say v. Now for some $v_i \in \mathcal{V} - S$ and v_i is adjacent to $u \in \mathcal{V}_1$. Thus $\{S - \{v_i\}\} \cup \{v_i\}$ is not dominating set. So S is not a secure dominating set.

Theorem 3.16. Let \mathcal{G} be a BFG with only strong edges and without isolated vertices and \mathcal{S} is a minimal secure dominating set. Then $\mathcal{V} - \mathcal{S}$ is a secure dominating set of \mathcal{G} .

Proof. Consider a BFG \mathcal{G} with only strong edges and without isolated vertices. Given that \mathcal{S} is a minimal secure dominating set of \mathcal{G} . Then by definition, every vertex $u \in \mathcal{V} - \mathcal{S}$ is adjacent to a vertex $v \in \mathcal{S}$ such that $(\mathcal{S} - \{v\}) \cup \{u\}$ is dominating set.

10 R. J. HUSSAIN, T. C. MUJEEBURAHMAN and D. DHAMODHARAN

Claim: prove that $\mathcal{V} - \mathcal{S}$ is a secure dominating set of \mathcal{G} .

Assume that $\mathcal{V} - \mathcal{S}$ is not secure dominating set. Then there exist vertex $w \in \mathcal{S}$ is adjacent to a vertex $x \in \mathcal{V} - \mathcal{S}$ such that $(\mathcal{S} - \{x\}) \cup \{w\}$ is not dominating set. Thus x is not dominated by any vertex in \mathcal{S} which is contradiction to our assumption that \mathcal{S} is minimal secure dominating set and \mathcal{G} has no isolated vertices and has only strong edges. So $\mathcal{V} - \mathcal{S}$ is a secure dominating set of \mathcal{G} .

4. Conclusion

In this paper, we have discussed about secure domination in bipolar fuzzy graphs and obtained definitions as well as some results related to 2-secure domination in BFG.

References

- [1] M. Akram, Bipolar fuzzy graphs, Inform. Sci. 181 (2002), 5548-5564.
- M. Akram, Bipolar fuzzy graphs with applications, Knowledge Based Systems 39 (2013), 1-8.
- [3] M. Akram and A. Wieslaw, Regular Bipolar fuzzy graphs, Neural Comput. and Applications 21 (2012), S197-S205.
- [4] E. J. Cockayne, O. Favaron and C. M. Mynhardt, Secure domination, weak roman domination and forbidden subgraphs, Bulletin of the Institute of Combinatorics and its Applications 39 (2003), 87-100.
- [5] M. G. Karunambigai, M. Akram and K. Palanivel, Domination in bipolar fuzzy graphs, International Conference on Fuzzy Systems (2013), 7-10.
- [6] M. G. Karunambigai, S. Sivasankar and K. Palanivel, Secure domination in fuzzy graphs and intuitionistic fuzzy graphs, Annals of Fuzzy Mathematics and Informatics 14 (2017), 419-431.
- [7] H. B. Merouane and M. Chellali, On secure domination in graphs, Information Processing Letters 115 (2015), 786-790.
- [8] A. Mohamed Ali and S. Rajkumar, Some results on secure domination in zero-divisor graphs, J. Math. Comput. Sci. 11(4) (2021), 4799-4809.
- [9] A. Mohamed Ismayil and A. Mohamed Ali, An algorithm for finding complementary nil dominating set in a fuzzy graph, New Trends in Mathematical Sciences, NTMSCI 5(3) (2017), 1-6.

- [10] Muneera Abdul, T. Nageshwara Rao, J. Venkateswara Rao and R. V. N. Srinivasa Rao, Domination in Regular and Irregular Bipolar Fuzzy Graphs, Journal of Critical Reviews 7(11) (2020).
- [11] H. Rashmanloua, Sovan Samanta, Madhumangal Pal and Rajab Ali Borzoeid, A study on bipolar fuzzy graphs, Journal of Intelligent Fuzzy Systems 28(16) (2015), 571-580.
- [12] A. Somasundaram, Domination in fuzzy graphs-II, Journal of Fuzzy Mathematics 20 (2000), 281-289.
- [13] H. Yang, S. Li, W. Yang and Y. Lu, Notes on bipolar fuzzy graphs, Information Sciences 242 (2013), 113-121.
- [14] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 195-204.
- [15] W. R. Zhang, Bipolar fuzzy sets and relations, A computational framework for cognitive modeling and multi agent decision analysis, Proc. of IEEE. Conf. (1994), 305-309.
- [16] W. R. Zhang, Bipolar fuzzy sets, Proc. of FUZZ-IEEE, (1998).