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Abstract 

In this paper, we established and investigated the concept of secure domination in bipolar 

fuzzy graphs and denoted it as ( ).Gbs  The definitions of 2-secure dominating set and its 

domination number in bipolar fuzzy graphs are defined and some results are derived with 

suitable examples. 

1. Introduction 

Zhang [15] established the concept of bipolar fuzzy set in 1994. It was 

initiated as a generalisation of fuzzy sets which is an expansion of fuzzy sets 

with membership range  .1,1−  Later, M. Akram [1] introduced Bipolar fuzzy 

graphs and various related notions. A. Somasundaram and S. 

Somasundaram [12] discussed about domination in fuzzy graph. The idea of 

domination in bipolar fuzzy graphs was introduced by M. G. Karunambigai 

[5]. The notion of secure dominating set and 2-dominating set in graphs was 

introduced by Merouane and Chellali [7]. The secure and 2-secure domination 

in fuzzy and intuitionistic fuzzy graphs was discussed by M. G. 
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Karunambigai, et al., [6]. Motivated by these domination concepts, we aim to 

establish the concept of secure domination in bipolar fuzzy graph (BFG), also 

discuss some definitions and properties related to 2-secure domination in 

BFG with examples. 

2. Preliminaries 

Definition 2.1 [5]. Let  be a non empty set. A bipolar fuzzy set  in  

is an object having the form ( ( ) ( )) = −+ xxxxB BB |,,  where, 

 1,0: →+ B  and  0,1: −→− B  are mappings. 

Definition 2.2 [5]. A Bipolar fuzzy graph (BFG) is of the form ( ) ,=  

where 

(1) nvvv ,,, 21 =  such that  1,0:1 →+ X  and  0,1:1 −→− X  

(2)    where  1,0:2 →+   and  0,1:2 −→−   such 

that 

( ) ( ( ) ( ))jijiij vvvv ++++ = 1122 ,min,  

and 

( ) ( ( ) ( ))jijiij vvvv −−−− = 1122 ,max,  

for all ( ) ., ji vv  

Definition 2.3 [5]. A BFG ( ) ,=  is called strong if 

( ( ) ( ))ji vv +++ = 112 ,min  and ( ( ) ( )) .,,max 112 = −−−
jiji vvvv  

Definition 2.4 [5]. A BFG ( ) ,=  is called complete if 

( ) ( ( ) ( ))jiji vvvv +++  112 ,min,  

( ) ( ( ) ( ))jiji vvvv −−−  112 ,max,  

for all ., ji vv  
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Definition 2.5 [5]. Let ( ) ,=  be a BFG, then cardinality of  is 

defined as 

( ( ) ( )) ( ( ) ( ))

( )
 
 

−+−+ ++
+

++
=

 



i jiv vv

jijiii
vvvvvv

.
2

,,1

2

1

,

2211  

Definition 2.6 [5]. The cardinality of , i.e., amount of nodes is termed 

as the order of a BFG ( ) ,=  and is signified by   (or ( ))O  and 

determined by 

( )
( ( ) ( ))




−+ ++
==





iv

ii vv
O

2

1 11  

The no. of elements in a set of S, i.e., amount of edges is termed as size of 

BFG ( ) ,=  and signified as S  (or ( )S ) and determined by 

( )
( ( ) ( ))




−+ ++
==





iv

jii vvv
SO

2

,1 22
 

for all ( ) ., ji vv  

Definition 2.7 [5]. The degree of a vertex v in a BFG, ( ) ,=  is 

defined to be the sum of the weights of the strong edges incident at v. It is 

denoted by ( ).vd  The minimum degree of  is ( ) ( ( ) ).|min Vvvd =   

The maximum degree of  is ( ) ( ( ) ).|max Vvvd =   

Definition 2.8 [5]. Two vertices iv  and jv  are said to be neighbors in 

BFG, if either one of the following conditions hold 

(1) ( ) 0,2 + ji vv  and ( ) 0,2 =− ji vv  

(2) ( ) 0,2 =+ ji vv  and ( ) 0,2 + ji vv  

(3) ( ) 0,2 + ji vv  and ( ) .,,0,2 + jiji vvvv  

Definition 2.9 [10]. The strength of connectedness between two nodes a 
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and b is 

( ) ( ( ) ),2,1|,sup, == kbaba k  

whereas ( ) ( ( ) ( ) ( ) .,,|sup, 111211 = −− kk
k aabaaaaaba    

Definition 2.10 [5]. An arc ( )ba,  is said to be strong edge in a BFG, if 

( ) ( ) ( )baba ,, 22
++   and ( ) ( ) ( )baba ,, 22

−−   

whereas ( ) ( ) ( ) ( ) nkbaba k ,,2,1|,max, 22 == ++  

and ( ) ( ) ( ) ( ) .,,2,1|,max, 22 nkbaba k == −−  

Definition 2.11 [5]. Let u be a vertex in a BFG ( ) ,=  then 

( )  = vvuN :  and ( )vu,  is a strong edge in  is called neighbourhood of 

u in . 

Theorem 2.12. Every arc in a complete BFG is a strong arc. 

Definition 2.13 [5]. A vertex u  of a BFG ( ) ,=  is said to be an 

isolated vertex if ( ) 0,2 =+ vu  and ( ) .,0,2 vuvvu =−   That is, 

( ) .=uN  Thus an isolated vertex does not dominate any other vertex of . 

Definition 2.14 [5]. Let ( ) ,=  be a BFG on , Let ,, vu  we say 

that u dominates v in  if there exists a strong edge between them. 

Remark 2.15 [5]. (1) For any ,, vu  if u dominates v then v dominates 

u and hence domination is a symmetric relation on . 

(2) For any ( )vNv ,  is precisely the set of all vertices in  which are 

dominated by v. 

(3) If ( ) ( ) ( ) ( )vuvu ,, 22
++   and ( ) ( ) ( ) ( )vuvu ,, 22

−−   for all ,, vu  

then the dominating set of  is . 
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3. Secure Domination in Bipolar Fuzzy Graphs 

Definition 3.1. Let  be a BFG and ., vu  A subset  of  is called 

dominating set in  if for every , −u  there exists u  such that u 

dominates v. The minimum cardinality taken over all dominating sets of  is 

called the domination number of  and denoted by ( ).b  

Definition 3.2. Let  be a BFG without isolated vertices. A Total 

dominating set  of a BFG  is a dominating set in which the subgraph   

induced by  has no isolated vertices. The minimum cardinality taken over 

all total dominating sets is called the total domination number of G and is 

denoted as ( ).bt  

Definition 3.3. In a BFG . A Secure dominating set    is a 

dominating set, if for every vertex  −u  is adjacent to a vertex v  

such that  ( )  uv −  is also a dominating set. The minimum cardinality 

taken over all secure dominating sets of  is called the secure domination 

number of  and is expressed as ( ).bs  

From the above graph (Figure 1),    ,,,,,,,, 97328721 vvvvvvvv  

 10742 ,,, vvvv  are the secure dominating sets and the secure domination 

number, ( ) .8.1= bs  

Definition 3.4. Consider a BFG  without isolated vertices. A total 

secure dominating set is a secure dominating set  in which the subgraph 

  induced by  has no isolated vertices. The minimum fuzzy cardinality 

taken over all secure total dominating sets of  is called the total secure 

domination number of  and is denoted by ( ).bst  
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Figure 1. Secure domination in BFG. 

Definition 3.5. A subset   of  is called a 2-dominating set in  if 

every vertex of −   has at least two neighbour in .  

The minimum cardinality taken over all 2-dominating sets of  is called 

the 2-domination number of  and is denoted by ( ).2   

Definition 3.6. A subset   of  is called a 2-total dominating set in , if 

  is a 2-dominating set and the subgraph induced by   has no isolated 

vertices. The minimum cardinality taken over all 2-total dominating sets of  

is called the 2-total domination number of  and is denoted by ( ).2 t  

Definition 3.7. In a BFG . A secure 2-dominating set is a 2-dominating 

set ,S  if for every vertex − u  is adjacent to a vertex  Sv  

such that (  )  uv −  is 2-dominating set. The minimum cardinality 

taken over all 2-secure dominating sets of  is called the 2-secure domination 

number of  and is expressed as ( ).2 bs  
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Figure 2. 2-secure domination in BFG. 

From the above graph (Figure 2),      531532541 ,,,,,,,, vvvvvvvvv  are 

secure 2-dominating sets and 2-secure domination number is ( ) .2.12 = bs  

Definition 3.8. Consider a BFG  without isolated vertices. A 2-secure 

total dominating set is a 2-secure dominating set in which the subgraph   

induced by   has no isolated vertices. The minimum fuzzy cardinality taken 

over all 2-secure total dominating sets of  is called the 2-secure total 

domination number of  and is denoted by ( ).2 bst  

Theorem 3.9. Let  be a complete BFG. If  is a minimal dominating set 

in  then 

(1)  is a secure dominating set. 

(2)  is not a secure total dominating set. 

Proof. Given  is a minimal dominating set of a complete BFG . By 

Theorem (2.12), every arc in a complete bipolar fuzzy graph is a strong arc, 

then minimal dominating set  contains only one vertex v, i.e.,  .v=  Now 

for any vertex  −iv  and iv  is adjacent to v. Then  ( )    ii vvv =−   

is a dominating set. Thus,  is secure dominating set. 

Since any secure dominating set of a complete BFG contains a vertex ,iv  

by the definition of total dominating,  is not a secure total dominating set.  □ 



R. J. HUSSAIN, T. C. MUJEEBURAHMAN and D. DHAMODHARAN 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 1, November 2022 

8 

Theorem 3.10. Let  be a complete BFG. If  is a minimal dominating 

set in  then 

(1)  is not a 2-dominating set, 

(2)  is not a 2-total dominating set. 

Proof. Consider a complete BFG , If  is a minimal dominating set in , 

then  contains a vertex of minimum cardinality but 2-dominating set should 

contain at least two vertices. Therefore,  is not a 2-dominating set. 

Similarly,  is not a 2-total dominating set. □ 

Theorem 3.11. For a complete BFG , 

( ) ( ). bbs =  

Proof. Let us consider a complete BFG . Let  be a minimal dominating 

set of . Then  contains a vertex  ,v  i.e.,  .v=  The minimum cardinality 

of  is denoted by ( ).b  By Theorem (3.9),  is also secure dominating set 

and the minimum cardinality of secure dominating set is denoted by ( ).bs  

Hence, ( ) ( ). bbs =  

Theorem 3.12. Every 2-secure dominating set of a BFG  is a secure 

dominating set of . 

Proof. Let  be a BFG and  be a 2-secure dominating set of . Then 

every vertex  −u  is adjacent to a vertex v  such that 

 ( )  uv −  is 2-dominating set. Since  is a 2-secure dominating set then 

by definition,  is a 2-dominating set and every 2-dominating set is a 

dominating set. Thus every vertex  −u  is adjacent to a vertex v  

such that  ( )  uv −  is a dominating set. Thus  is a secure dominating 

set of . □ 
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Theorem 3.13. For a bipolar fuzzy graph , 

( ) ( ).2  bsbs   

Proof. By Theorem (3.12), every 2-secure dominating set of a BFG  is a 

secure dominating set of . Thus every minimum 2-secure dominating set of  

is also a secure dominating set of . Thus, ( ) ( ).2  bsbs   □ 

Theorem 3.14. Let  be a BFG. If  is a 2-dominating set of a path of , 

then  is not 2-secure dominating set. 

Proof. Consider a BFG . Let nP  be a path of  and  is a 2-dominating 

set of a path .nP  Then  contain two pendent vertices iv  and .jv  Now for 

some  −u  and u is adjacent to .iv  Thus (  ) uvi −  is not 2-

dominating set. Thus  is not 2-secure dominating set. □ 

Theorem 3.15. Let nm,  be a complete bipartite BFG. If  is a 

dominating set of , then  is not a secure dominating set. 

Proof. Given that  is a dominating set of a complete bipartite BFG 

.,nm  Then  should contain a vertex in 1  say u and a vertex in 2V  say v. 

Now for some  −iv  and iv  is adjacent to .1u  Thus     ii vv −  

is not dominating set. So  is not a secure dominating set. 

Theorem 3.16. Let  be a BFG with only strong edges and without 

isolated vertices and  is a minimal secure dominating set. Then  −  is a 

secure dominating set of . 

Proof. Consider a BFG  with only strong edges and without isolated 

vertices. Given that  is a minimal secure dominating set of . Then by 

definition, every vertex  −u  is adjacent to a vertex v  such that 

 ( )  uv −  is dominating set. 
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Claim: prove that  −  is a secure dominating set of . 

Assume that  −  is not secure dominating set. Then there exist vertex 

w  is adjacent to a vertex  −x  such that  ( )  wx −  is not 

dominating set. Thus x is not dominated by any vertex in  which is 

contradiction to our assumption that  is minimal secure dominating set and 

 has no isolated vertices and has only strong edges. So  −  is a secure 

dominating set of . □ 

4. Conclusion 

In this paper, we have discussed about secure domination in bipolar fuzzy 

graphs and obtained definitions as well as some results related to 2-secure 

domination in BFG. 
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