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Abstract 

This paper explicates the Riemann hypothesis and proves its validity; it explains why the 

non-trivial zeros of the Riemann zeta function  will always be on the critical line   21Re s  

and not anywhere else on the critical strip bounded by   0Re s  and   .1Re s  Much exact 

calculations are presented, instead of approximations, for the sake of accuracy or precision, 

clarity and rigor. 
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1. Introduction to the mysterious Non-Trivial Zeros of the Riemann 

Zeta Function  

What is the role of the non-trivial zeros of the Riemann zeta function , 

which are mysterious and evidently not much understood? 
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To understand what Riemann wanted to achieve with the non-trivial 

zeros, we need to understand the part played by the complex plane. 

First, the terms in the Riemann zeta function :- 

  




1

5141312111

n

sssssns   (1.1) 

where s is the complex number bi21  

For the term bi2121  above, e.g., whether it would be positive or 

negative in value would depend on which part of the complex plane this term 

bi2121  would be found in, which depends on  n2  and b (it does not 

depend on 2121   and  n2  only determine how far the term is from zero 

in the complex plane). This term could be in the positive half (wherein the 

term would have a positive value) or the negative half (wherein the term 

would have a negative value) of the complex plane. Thus, some of the terms 

in the Riemann zeta function  would have positive values while the rest 

have negative values (depending on the values of n and b). The sum of the 

series in the Riemann zeta function  is calculated with a formula, e.g., the 

Riemann-Siegel formula, or, the Euler-Maclaurin summation formula. 

Riemann evidently anticipated that there would be an equal, or, almost 

equal number of primes among the terms in the positive half and the 

negative half of the complex plane when there is a zero. In other words, he 

thought that the distribution of the primes would be statistically fair, the 

more terms are added to the Riemann zeta function , the fairer or “more 

equal” would be the distribution of the primes in the positive half and the 

negative half of the complex plane when there is a zero. (Compare: The 

tossing of a coin wherein the more tosses there are the “more equal” would be 

the number of heads and the number of tails.) That is, in the longer term, 

with more and more terms added to the Riemann zeta function , more or less 

50% of the primes should be found in the positive half of the complex plane 

and the balance 50% should be found in the negative half of the complex 

plane, the more terms there are the fairer or “more equal” would be this 

distribution, when there is a zero. 
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A non-trivial zero indicates the point in the Riemann zeta function  

wherein the total value of the positive terms equals the total value of the 

negative terms. There is an infinitude of such points, i.e., non-trivial zeros. 

Riemann evidently thought that for the case of a zero the number of primes 

found among the positive terms would be more or less equal to the number of 

primes found among the negative terms, which represents statistical 

fairness. It is evident that through a zero the order or pattern of the 

distribution of the primes could be observed. 

Next, the error term in the following J function for calculating the 

number of primes less than a given quantity:- 

          




p n

p tttdtnLinLinJ log12log 2
 (1.2) 

where the 1st term  nLi  is generally referred to as the “principal term” and 

the 2nd term  
p

pnLi  had been called the “periodic terms” by Riemann, Li 

being the logarithmic integral 

  ,
p

pnLi  the secondary term of the function, the error term, represents 

the sum taken over all the non-trivial zeros of the Riemann zeta function . n 

here is a real number raised to the power of p, which is in this instance a 

complex number of the form ,21 bi  for some real number 21, nb  being 

.n  If the Riemann hypothesis is true, for a given number n, when 

computing the values of pn  for a number of different zeta zeros p, the 

numbers we obtain are scattered round the circumference of a circle of radius 

n  in the complex plane, centered on zero, and are either in the positive half 

or negative half of the complex plane. 

To evaluate  
p

pnLi  each zeta zero has to be paired with its mirror 

image, i.e., complex conjugate, in the south half of the argument plane. These 

pairs have to be taken in ascending order of the positive imaginary parts as 

follows:- 
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zeta zero: i134725.1421   &  its complex conjugate: i134725.1421   

zeta zero: i022040.2121   &  its complex conjugate: i022040.2121   

zeta zero: i010858.2521   &  its complex conjugate: i010858.2521   

. 

. 

. 

(Note: The complex conjugates are all also zeros.) 

If, e.g., we let ,100n  then the error term for 100n  would be 

 .100
p

pLi  To calculate this error term, we have to first raise 100 to the 

power of a long list of zeta zeros in ascending order of the positive imaginary 

parts (the 1st 3 zeta zeros are shown above), the longer the list of zeta zeros 

the better, e.g., 100,000 zeta zeros, in order to achieve the highest possible 

accuracy in the error term. Then we take the logarithmic integrals of the 

above powers (100,000 pairs of zeta zeros and their complex conjugates) and 

add them up, which is as follows:- 

ii 134725.1421134725.1421 100100    

ii 022040.2121022040.2121 100100    

ii 010858.2521010858.2521 100100    

 

 

 

The imaginary parts of the zeta zeros would cancel out the imaginary parts of 

their complex conjugates, leaving behind their respective real parts. For 

example, for the 1st zeta zero ,134725.1421 i  its imaginary part 

i134725.14  would cancel out the imaginary part i134725.14  in its complex 

conjugate ,134725.1421 i  leaving behind only the real parts 21100  for 
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each of them. That is, for ,100100 134725.1421134725.1421 ii    we only have 

to add together the logarithmic integral of 21100  (from i134725.1421100   

and the logarithmic integral of 21100  (from i134725.1421100   to get the 1st 

term. The same is to be carried out for the next 99,999 powers in ascending 

order of the positive imaginary parts, giving altogether a total of 200,000 

logarithmic integrals (of both the zeta zeros and their complex conjugates) to 

be added together to give the 100,000 terms. These terms have either positive 

or negative values, an equal or almost equal number of positive and negative 

values, which depend on whether they are in the positive or negative half of 

the complex plane, as is described above. The positive values and the 

negative values of these 100,000 terms are added together and should cancel 

out each other, slowly converging. The difference between the positive values 

and the negative values of these 100,000 terms constitutes the error term. 

(Note that the Riemann hypothesis asserts that the difference between the 

true number of primes  np  and the estimated number of primes  nq  would 

be not much larger than n  – not much larger than  100100  is also 

expressed as 21100  in the above case. Like the case of tossing a coin 

wherein the statistical probability is that in the long run the number of heads 

would practically equal the number of tails, there should be equal or almost 

equal quantities of positive terms and negative terms, i.e., 50,000 or 

thereabout positive terms and 50,000 or thereabout negative terms, which 

would be statistically fair, the discrepancy if any being the error. 

All this is evidently a laborious process, though the ingenuity of the ideas 

behind the Riemann hypothesis should be acknowledged. 

It may be compared to the sieve of Eratosthenes, which could find the 

exact number of primes less than a given quantity without any error at all. 

2. The Riemann Hypothesis, the Prime Number Theorem and Prime 

Counting 

The Riemann hypothesis is an important outstanding problem in number 

theory as its validity will affirm the manner of the distribution of the prime 

numbers. It posits that all the non-trivial zeros of the zeta function  lie on 
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the critical strip between   0Re s  and   1Re s  at the critical line 

  .21Re s  The important question is whether there would be zeros 

appearing at other locations on this critical strip, e.g., at 

  ,43,31,41Re s  or, ,54  etc., which would disprove the Riemann 

hypothesis. We probe into this here. 

According to the precepts of fractal geometry, phenomena which appear 

random when viewed en masse display some orderliness and pattern which 

could be regarded as a fractal characteristic. For instance, the prime numbers 

are very random and haphazard entities, yet, when viewed en masse they 

display a regularity in the way they thin out, whereby it is affirmed that the 

number of primes not exceeding a given natural number n is approximately 

,log nn  in the sense that the ratio of the number of such primes to nn log  

eventually approaches 1 as n becomes larger and larger, nlog  being the 

natural logarithm (to the base e) of n (vide the prime number theorem proved 

in 1896 by Hadamard and de la Vallee-Poussin). In other words, the prime 

number theorem, which is the direct outcome of the Riemann hypothesis, 

states that the limit of the quotient of the 2 functions  n  and nn log  as n 

approaches infinity is 1, which is expressed by the formula:- 

    1loglim 


nnn
n

 (2.1) 

the larger the number n is, the better is the approximation of the quantity of 

primes, as is implied by the above formula where  n  is the prime counting 

function ( here is not the  which is the constant 3.142 used to compute 

perimeters and areas of circles, but is only a convenient symbol adopted to 

denote the prime counting function) 

All this is in spite of the fact that the primes are scarcer and scarcer as n 

is larger and larger. 

The prime number theorem could in fact be regarded as a weaker version 

of the Riemann hypothesis which posits that all the non-trivial zeros of the 

zeta function  on the critical strip bounded by   0Re s  and   1Re s  

would be at the critical line   .21Re s  For a better understanding of the 

close connection between the prime number theorem and the Riemann 
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hypothesis, it should be noted that Hadamard and de la Vallee Poussin had 

in 1896 independently proven that none of the non-trivial zeros lie on the 

very edge of the critical strip, on the lines   0Re s  or    1Re s  this was 

enough for deducing the prime number theorem. The locations of these non-

trivial zeros on the critical strip could be described by a complex number 

bi21  where the real part is 21  and i represents the square root of – 1. It 

had already been proven that there is an infinitude of non-trivial zeros at the 

critical line   21Re s  on the critical strip between   0Re s  and 

  .1Re s  The moot question is whether there would be any zeros off the 

critical line   21Re s  on the critical strip between   0Re s  and 

  ,1Re s  e.g., at   ,43,31,41Re s  or, ,54  etc., the presence of any of 

which would disprove the Riemann hypothesis. So far, no such “off-the-

critical-line” zeros has been found. 

The validity of the Riemann hypothesis would evidently imply the 

validity of the prime number theorem (which as described above is the 

offspring and weaker version of the Riemann hypothesis) though the validity 

of the prime number theorem does not imply the former. Nevertheless, both 

of them have one thing in common in that they are both concerned with the 

estimate of the quantity of primes less than a given number, with the 

Riemann hypothesis positing a more exact estimate of the quantity of primes 

less than a given number. But, on the other hand, what would be the result if 

the Riemann hypothesis were false? We will come back to this later. 

Meanwhile, more about the non-trivial zeros of the zeta function  s  

defined by a power series shown below:- 

  




1

5141312111

n

sssssns   

At the critical line   21Re s  on the critical strip between   0Re s  and 

  1Re s  all the non-trivial zeros would be found on an oscillatory sine-like 

wave which oscillates in spirals, there being an infinitude of these spirals 

(representing the so-called complex plane). All the properties of the prime 

counting function  n  are in some way coded in the properties of the zeta 

function , evidently resulting in the primes and the non-trivial zeros being 
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some sort of mirror images of one another – the regularity in the way the 

primes progressively thin out and the progressively better approximation of 

the quantity of primes towards infinity by the prime counting function  n  

mirror or reflect the regularity in the way the non-trivial zeros of the zeta 

function  line up at the critical line   21Re s  on the critical strip between 

  0Re s  and   ,1Re s  the non-trivial zeros becoming progressively closer 

together there, with no zeros appearing anywhere else on the critical strip, 

and, all this has been found to be true for the 1st 1013 non-trivial zeros.  

Riemann had posited that the margin of error in the estimate of the 

quantity of primes less than a given number with the prime counting 

function  n  could be eliminated by utilizing the following J function which 

is a step function involving the non-trivial zeros expressed in terms of the 

zeta function , which has been shown to be effective (2 steps are involved 

here – first, the prime counting function  n  is expressed in terms of the 

 nJ  function, then the  nJ  function is expressed in terms of the zeta 

function , with the  nJ  function forming the link between the counting of 

the prime counting function  n  and the measuring (involving analysis and 

calculus) of the zeta function , which would result in the properties of the 

prime counting function  n  somehow encoded in the properties of the zeta 

function ):- 

         




np

p tttdtnLinLinJ log12log 2  

where the 1st term  nLi  is generally referred to as the “principal term” and 

the 2nd term  
p

pnLi  had been called the “periodic terms” by Riemann, Li 

being the logarithmic integral. 

The above formula may look intimidating but is actually not. The 3rd term 

log 2 is a number which is 0.69314718055994… while the 4th term 

   




n

tttdt log12  which is an integral representing the area under the 

curve of a certain function from the argument all the way out to infinity can 
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only have a maximum value of 0.1400101011432869…. Since these 2 terms 

taken together (and minding the signs) are limited to the range from              

– 0.6931… to – 0.5531…, and since the prime counting function  n  deals 

with really large quantities up to millions and trillions they are much 

inconsequential and can be safely ignored. The 1st term or principal term 

 ,nLi  where n is a real number, should also be not much of a problem as its 

value can be obtained from a book of mathematical tables or computed by 

some math software package such as Mathematica or Maple. However, 

special attention should be given to the 2nd term  
p

pnLi  which concerns 

the sum of the non-trivial zeros of the zeta function  (p in this 2nd term is a 

“rho”, which is the 17th letter of the Greek alphabet, and it means “root” – a 

root is a non-trivial zero of the Riemann zeta function  – a root here is a 

solution or value of an unknown of an equation which could be factorized). 

Riemann had evidently called the 2nd term “periodic terms” as the 

components there vary irregularly. 

The prime number theorem asserts that    nLinn ~  (technically 

    

n

xdxnLi

2

log  which also implies the weaker result that 

  .log~ nnn  However, with  nLi  the prime count estimate would have a 

margin of error. The Riemann hypothesis asserts that the difference between 

the true number of primes  np  and the estimated number of primes  nq  

would be not much larger than .n  With the above  nJ  function we could 

eliminate this margin of error and obtain an exact estimate of the quantity of 

primes less than a given number:- 

  nJ  exact quantity of primes less than a given number 

Since the 3rd and 4th terms of the  nJ  function are inconsequential and 

can be safely ignored, as is described above, deducting the 2nd term from the 

1st term should be sufficient:- 

       
p

pnLinLinJ  exact quantity of primes less than a given number 
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The above in a nutshell shows the intimate relationship between the 

primes and the non-trivial zeros of the zeta function , the primes and the 

non-trivial zeros being some sort of mirror images of one another as is 

described above, with the distribution of the non-trivial zeros being regarded 

as the music of the primes by mathematicians. 

We return to the question of the consequence of the falsity of the 

Riemann hypothesis. Let’s here assume that the Riemann hypothesis is false, 

i.e., there are also zeros found off the critical line   21Re s  on the critical 

strip between   0Re s  and   ,1Re s  e.g., at   ,43,31,41Re s  or, ,54  

etc., and see the consequence. What would be the significant implication of 

this assumption? The falsity of the Riemann hypothesis would imply that the 

distribution of the zeros of the zeta function  on the critical strip between 

  0Re s  and   1Re s  has lost the regularity of pattern which is 

characteristic of the non-trivial zeros at the critical line   21Re s  and 

which is described above, and is now disorderly and irregular. This would in 

turn imply that the distribution of the primes is also similarly disorderly and 

irregular since the primes and the non-trivial zeros of the zeta function  are 

intimately linked and are some sort of mirror images of one another – any 

changes in one of them would be reflected in the other on account of their 

intimate link – note that the zeta function  has the property of prime sieving 

(compare: sieve of Eratosthenes; see Appendix A below) encoded within it, the 

properties of the prime counting function  n  being somehow encoded in the 

properties of the zeta function , so that if the zeros generated were 

disorderly and irregular it would mean that the distribution of the primes 

were also similarly disorderly and irregular – the characteristic of the primes 

on the input side of the function determines the characteristic of the zeros on 

the output side of the function (i.e., the distribution of the primes determines 

the distribution of the zeros, so that from a study of the distribution of the 

zeros the distribution of the primes could be deduced and vice versa), which is 

expected for a function. The overall result would be that the more orderly the 

distribution of the zeros is the more orderly would be the corresponding 

distribution of the primes, the more disorderly the distribution of the zeros is 

the more disorderly would be the corresponding distribution of the primes, 

and, vice versa. But, according to the prime number theorem, or, prime 
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counting function  ,n  which is closely connected with the Riemann 

hypothesis itself being an offspring and weaker version of it as is described 

above, there is instead actually a regularity in the way the primes thin out, 

with the prime counting function  n  even providing a progressively better 

estimate of the quantity of primes towards infinity - this progressively better 

estimate would not be possible if the primes behave really badly and are 

really highly disorderly and irregular – there is no such really great disorder 

or irregularity among the primes, a state of affair which is evidently affirmed 

by the fact that the corresponding non-trivial zeros at the critical line 

  21Re s  on the critical strip between   0Re s  and   1Re s  display 

regularity in the way they line up at the critical line   ,21Re s  the non-

trivial zeros becoming progressively closer together there with no zeros 

appearing anywhere else on the critical strip (all of which has been found to 

be true for the 1st 1013 non-trivial zeros – an important point to note is that 

though the non-trivial zeros at the critical line   21Re s  become more and 

more closely packed together the farther along we move up this critical line 

while the primes occur farther and farther along the number line, the density 

of the one is approximately the reciprocal of the density of the other wherein 

the complementariness, regularity, symmetry is evident), this regularity of 

the distribution of the non-trivial zeros mirroring the regularity of the 

distribution of the primes as is explained above. Our assumption of the falsity 

of the Riemann hypothesis has thus resulted in a contradiction of the actual 

distribution of the primes and the actual distribution of the corresponding 

non-trivial zeros at the critical line   21Re s  on the critical strip between 

  0Re s  and   .1Re s  If our assumption that the Riemann hypothesis is 

false is correct, the prime number theorem would be false as there would be 

great disorder and irregularity among the primes with no regularity in the 

way the primes thin out and without the prime counting function  n  

providing a progressively better estimate of the quantity of primes towards 

infinity (this progressively better estimate of the quantity of primes actually 

implies some regularity in the distribution of the primes). However, as is 

explained just above the prime number theorem is not false; it had in fact 

been proven through both non-elementary methods (by Hadamard and de la 

Vallee Poussin) and elementary methods (by Erdos and Selberg later) and is 
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indubitably true. Therefore, our assumption of the falsehood of the Riemann 

hypothesis is at fault. This implies that the Riemann hypothesis is true, since 

the hypothesis cannot be false; this is a proof by contradiction which may be 

interesting but may not be viewed a very strong or convincing proof as the 

reasoning may be too subtle to be fully grasped (even possibly causing 

misunderstanding) and make great sense (though, at least, it shows the close 

connection between the Riemann hypothesis and the prime number theorem); 

the very strong proof will be presented below. The close link between the 

Riemann hypothesis and the prime number theorem is thus evident. 

Appendix A 

The Riemann Zeta Function and the Prime Numbers 

The Riemann zeta function  ,s  shown below, is the sum over all natural 

numbers n: 

  




1

5141312111

n

sssssns   

The function could also be written in the following way (using Euler’s 

product formula) showing its connection with the prime numbers:  

   

primep

ssssssssss pps 1771551331221  (A.1) 

where the product is over the consecutive prime numbers p, providing the 

first hint that the Riemann zeta function  s  is closely linked to the prime 

numbers. 

3. The Non-Trivial Zeros will always be on the Critical Line

  21Re s  

The Riemann hypothesis posits that all the non-trivial zeros of the zeta 

function  (shown below) on the critical strip bounded by   0Re s  and 

  1Re s  will always be at the critical line   21Re s :- 

  




1

5141312111

n

sssssns   

This has been found to be true for the 1st 1013 non-trivial zeros. The 
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locations of these non-trivial zeros on the critical strip are described by a 

complex number bi21  where the real part is 21  and i represents the 

square root of – 1. It should be noted that the mathematical operations and 

logic of the complex numbers ,bia   where a and b are real numbers and i is 

the imaginary number square root of – 1, are practically the same as for the 

real numbers and are even more versatile. For the zeta function  s  shown 

above to be zero, its series would have to have both the positive terms and 

negative terms cancelling each other out, though the positive or “+” signs in 

the series may indicate positive values only which is misleading. The sum of 

this series is calculated with a formula, e.g., the Riemann-Siegel formula, or, 

the Euler-Maclaurin summation formula. Is there a possibility of any non-

trivial zeros being off the critical line   21Re s  on the critical strip 

between   0Re s  and   ,1Re s  e.g., at   ,43,31,41Re s  or, ,54  etc., 

the presence of any of which would disprove the Riemann hypothesis? 

It had already been proven that there will not be zeros at   0Re s  and 

  .1Re s  The 1st 1013 non-trivial zeros are found only at the critical line 

  .21Re s  Nature appears to dictate that these zeros must appear only at 

  ,21Re s  exactly mid-way in the critical strip bounded by   0Re s  and 

  1Re s  where in the symmetry is perfect. “ 21 ” in the complex number 

,21 bi  which is “square root”, also appears to be compatible with and work 

fine with “i”, which is “square root of –1” – both of them are square roots. 

bi21  has what is called a complex conjugate bi21  so that when 

bi21  and bi21  are added together the terms bi  in both bi21  and 

bi21  will cancel out one another – in this way the troublesome i which 

does not actually make mathematical sense will be out of the way. 21  is also 

the reciprocal of the smallest prime and the smallest even number 2, which is 

significant. But there is a much more compelling reason why all the non-

trivial zeros must lie on the critical line   21Re s  and it is due to some 

important similarity to Fermat’s last theorem. 

The reasoning which follows will be reasoning by analogy, with Fermat’s 

last theorem taken as an analogue, whereby the reasoning is that if it is true 

for Fermat’s last theorem it will be true for something comparable in the 

Riemann hypothesis. 
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Fermat’s Last Theorem 

2 square numbers can be added together to form a 3rd square, e.g., 

222 543   and .13125 252   Fermat’s last theorem states that for any 4 

whole numbers zyx ,,  and n, there are no solutions to the equation 

nnn zyx   when .2n  (Such an equation involving whole numbers is 

known as a Diophantine equation.) 

Fermat’s last theorem is connected with Pythagoras’ theorem which 

states that if zyx ,,  represent the lengths of the 3 sides of a right-angled 

triangle, x and y being the adjacent sides and z being the hypotenuse (the 

side opposite the right angle), then .222 zyx   (Here zyx ,,  need not and 

may not be whole numbers, i.e., this equation needs not be a Diophantine 

equation.) 

To put it another way, according to Fermat’s last theorem, the following 

Diophantine equation which has power 2n  is the only Diophantine 

equation with zeros or solutions (zeros and solutions are synonymous):- 

222 zyx   (3.1) 

The following is a partial list of Diophantine equations with their zeros:- 

[1]  222 543   

0543 222   

[2] 322 13125   

013125 222   

[3] 222 25247   

025247 222   

[4] 222 25158   

017158 22   

[5] 222 41409   

041409 222   
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[6] 222 616011   

0616011 222   

[7] 222 373512   

0373512 222   

[8] 222 858413   

0858413 222   

[9] 222 656316   

0656316 222   

[10] 222 292120   

0292120 222   

[11] 222 534528   

0534528 222   

[12] 222 655633   

0655633 222   

[13] 222 857736   

0857736 222   

[14] 22 898039   

0898039 22   

[15] 322 735548   

0735548 222   

[16] 222 977265   
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0977265 2221   

 

 

 

There is some important similarity between Fermat’s last theorem and 

the Riemann hypothesis, both of them being involved with series, which will 

be dealt with. 

Like the series of the Riemann zeta function  ,21  the above 

Diophantine equations (a few equations with terms that are duplicative are 

omitted) could be turned into a long series (in fact, an infinitely long series 

like the series of the Riemann zeta function  21  of positive and negative 

terms which give a zero, by adding them together as follows:- 

22222222222222 6011414091715825247543   

222222222222 452829212085841337351261   

097726573554889803953 2222222222   

or, with the same terms re-arranged in numerically ascending order, as 

follows:- 

22222222222222 2421201715131211987543   

2222222222 48454140393735292825   

22222222 8073726561605553   

.097898584 2222   

The long series above show the uncanny likeness between Fermat’s last 

theorem and the Riemann hypothesis. 

In the above list of Diophantine equations, the regularity of the powers 

2n  is evident. If any of these equations are raised to powers 2n  the 

regularity will be lost, as is explained below. 

We will explain why there are no zeros for the Riemann zeta function  

for 21s  and 21s  by bringing up the common underlying principle 
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behind it and Fermat’s last theorem, 21s  being evidently the optimum or 

equilibrium power, the only power which brings equilibrium, balance or 

regularity and thereby the zeros to the Riemann zeta function . 

For the case for 
nnn zyx   above for Fermat’s last theorem which 

asserts that there are no solutions for ,2n  we first get some mathematical 

insight on why there are no solutions for .2n  We commence by selecting 

example [1] from the list of Diophantine equations above, which has the 

smallest odd prime number 3 and the smallest composite number 4 (which is 

the square of the smallest prime number 2) in the series on the left, i.e., the 

smallest Diophantine equation which has 2 as the power, for illustration:- 

222 543   

If the power of 2 in the series on the left above were increased to 3, which 

is the next, consecutive whole number, e.g., the sum on the right would not be 

a whole number anymore, which is in accordance with Fermat’s last 

theorem:- 

333 49795.443   

The regularity of the power of 2 is now lost. And this is for the smallest 

Diophantine equation which initially had 2 as the power. For the larger 

Diophantine equations with initial powers of 2 the irregularity after 

increasing their powers to 3, which is the next, consecutive whole number, or, 

higher powers, could be expected to be worse. 

Next we bring up the values of, say, 100, of consecutive whole number 

powers n, say, 2 to 5, this quantity 100 being representative of the terms of 

the equation 
nnn zyx   as per Fermat’s last theorem, to explain the 

reason for this irregularity, which is as follows:- 

[1] 000,101002   (The terms of the series of Fermat’s last theorem fall 

under this category. All zeros will be found under this category only.) 

[2] 000,000,11003   (This quantity represents an increase of 9,900% 

compared to [1] above while the increase in power from 2n  to 3n  is 

only 50%.) 
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[3] 000,000,1001004   (This quantity represents an increase of 

999,900% compared to [1] above while the increase in power from 2n  to 

4n  is only 100%.) 

[4] 000,000,000,101005   (This quantity represents an increase of 

99,999,900% compared to [1] above while the increase in power from 2n  to 

5n  is only 150%.) 

 

 

 

The quantities from the consecutive whole number powers 2n  above 

increase progressively compared to [1], the larger the power n is the larger 

the percentage of increase in the quantity is. The increases in the respective 

quantities and powers are also disproportionate when compared to one 

another, with the increases in the respective quantities being evidently much 

too quick. All this implies that the equilibrium, balance or regularity of 

nnn zyx   when 2n  as per Fermat’s last theorem cannot be 

maintained when ,2n  when disproportionateness between the increases in 

the respective quantities and powers sets in as is described above, as the 

increase in quantity is too quick, and, when ,2n  e.g., ,47,23,45n  

etc., as the increase in quantity is too slow as could be extrapolated from the 

above example. (Refer to Appendix B below for analogous example.) For 

Fermat’s last theorem, 2n  can be regarded as the optimum or equilibrium 

power, the only power wherein 
nnn zyx   is possible. There is also the 

question of the easier solubility of equations with whole number powers 

2n  as compared to equations with powers ,2n  e.g., ,5,4,3n  etc., 

and ,2n  e.g., ,47,23,45n  etc., which will be explained below. 

For the case of the Riemann zeta function  wherein there are no zeros 

for powers 21s  and 21s  we bring up the values of the reciprocals of, 

say, 100, with consecutive fractional powers s, say, 21  to 51  these 

reciprocals being representative of the terms of the Riemann zeta function , 

to explain the reason for the irregularity for powers 21s  and ,21s  

which is as follows:- 
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[1] 100.01011001 21   (The terms of the series of the Riemann zeta 

function  as per the Riemann hypothesis fall under this category. 1013 zeros 

have been found under this category only.) 

[2] 215.06416.411001 31   (This quantity represents an increase of 

115% compared to [1] above while the decrease in power from 21s  to 

31s  is only 33.33%.) 

[3] 316.01623.311001 41    (This quantity represents an increase of 

216% compared to [1] above while the decrease in power from 21s  to 

41s  is only 50%.) 

[4] 398.02511911001 51    (This quantity represents an increase of 

298% compared to [1] above while the decrease in power from 21s  to 

51s  is only 60%.) 

. 

. 

. 

As can be seen above, the smaller the power of the 

reciprocal/denominator is the larger will be the result after division with 1 

(or, the larger the power of the reciprocal/denominator is the smaller will be 

the result after division with 1). The quantities from the reciprocals with 

consecutive fractional powers 21s  above increase progressively compared 

to [1], the smaller the power s is the larger the percentage of increase in the 

quantity is, the increases in the quantities being similar to the case above for 

Fermat’s last theorem-this indicates a similarity between Fermat’s last 

theorem and the Riemann hypothesis. The increases in the respective 

quantities and the decreases in the respective powers are also 

disproportionate when compared to one another, with the increases in the 

respective quantities being evidently much too quick, which is similar to the 

case above for Fermat’s last theorem – this indicates another similarity 

between Fermat’s last theorem and the Riemann hypothesis. All this   

implies that the equilibrium, balance or regularity of the Riemann             

zeta function  when 21s  cannot be maintained when 21s  when 
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disproportionateness between the increases and decreases in the respective 

quantities and powers sets in as is described above, as the increase in 

quantity is too quick, and, when ,21s  e.g., ,65,54,43s  etc., as the 

increase in quantity is too slow as could be extrapolated from the above 

example. (Refer to Appendix B below for full details.) For these reciprocals, 

21s  can be regarded as the optimum or equilibrium power, the only 

power wherein zeros for the Riemann zeta function  are possible. Like the 

case for Fermat’s last theorem above, there is also the question of the easier 

solubility of equations with fractional powers 21s  as compared to 

equations with fractional powers ,21s  e.g., ,51,41,31s  etc., and 

,21s  e.g., ,65,54,43s  etc., which will be explained below. 

The following list of the 1st 10 terms of the series of the Riemann zeta 

function  with consecutive fractional powers 21s  also shows that the 

sums with smaller powers increase progressively, i.e., the smaller the power s 

is the larger the percentage of increase in the quantity is:- 

[1]   21212121212121 81716151413121121   

03.510191 2121    (The Riemann hypothesis asserts that all zeros 

will be found in this series only.) 

[2]   31313131313131 81716151413121131   

20.610191 3131    (The sum 6.20 here represents an increase of 

23.26% compared to the sum 5.03 in [1] above while the percentage of 

decrease in power from 21s  to 31s  is 33.33%.) 

[3]   41414141414141 81716151413121141   

97.610191 4141     (The sum 6.97 here represents an increase of 

38.57% compared to the sum 5.03 in [1] above while the percentage of 

decrease in power from 21s  to 41s  is 50%.) 

[4]   51515151515151 81716151413121151   

46.710191 5151    (The sum 7.46 here represents an increase of 

48.31% compared to the sum 5.03 in [1] above while the percentage of 
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decrease in power from 21s  to 51s  is 60%.) 

. 

. 

. 

Note: Though the respective percentages of increase in quantity above, 

namely, 23.26%, 38.57% and 48.31%, are disproportionate with and lower 

than the respective percentages of decrease in power, namely, 33.33%, 50% 

and 60%, at a later stage when there are more and more terms in the series, 

there being an infinitude of terms, when the sums get larger and larger, the 

percentages of increase in quantity will all be infinitely higher than the 

percentages of decrease in power, as is evident from the tabulation below. 

The same will apply for the quantities when the powers ,21s  e.g., 

,65,54,43s  etc., as could be extrapolated from the above list (and 

evident from Appendix C below). 

(The series of the Riemann zeta function  with powers ,21s  e.g.,  

,65,54,43s  etc., will have sums which are all smaller than the sums 

shown in the above list for powers 21s  as could be extrapolated from the 

above list. For the largest power in the critical strip ,1s  which has no 

zeros, the sum of the 1st 10 terms is a mere 2.93. Refer to Appendix B below 

for analogous example.) 

It is clear from all the above that when the sum of the series in the 

Riemann zeta function  increases too quickly as is the case when the powers 

,21s  when disproportionateness between the increases and decreases in 

the respective quantities and powers sets in as is described above, or, too 

slowly as is the case when the powers ,21s  e.g., ,65,54,43s  etc., as 

could be extrapolated from the above list, the equilibrium, balance or 

regularity will be lost and there will not be zeros. (Refer to Appendix B below 

for analogous example.) As is in the case of Fermat’s last theorem wherein all 

the zeros will be at the optimum or equilibrium power 2n  only, all the 

zeros of the Riemann zeta function  will be at the optimum or equilibrium 

powers 21  only. (The analogue of this optimum or equilibrium power 

could be that of a shirt or pants that exactly fits a person, e.g., size A could be 
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too small for the person, size C too large, while size B fits just fine.) At least 

1013 zeros have been found at 21s  while none has been found for 21s  

and .21s  

An important point will be added here. If more and more terms are added 

to the series in the list of the sums of the Riemann zeta function  above 

where the consecutive fractional powers ,21s  which presently have 10 

terms each, the differences in the sums between that for powers 21  and 

that for powers ,21s  e.g., ,51,41,31s  etc., and, that for power 

21s  and that for powers ,21s  e.g., ,65,54,43s  etc., will be 

greater and greater, i.e., the differences between these sums will be more 

pronounced the more terms are added to the series. We can see this point by 

comparing, e.g., the sums of the 1st 5 terms of the Riemann zeta function  for 

consecutive fractional powers 21s  and the sums of the 1st 10 terms of the 

Riemann zeta function  for consecutive fractional powers ,21s  which is 

as follows, and extrapolating from there:- 

[1]   24.351413121121 21212121    (The 

Riemann hypothesis asserts that all zeros will be found in this series only.) 

[2]   69.351413121131 31313131    (The sum 

3.69 here represents an increase of 13.89% (the increase here is 23.26% for 

the 1st 10 terms as is shown in the list above) compared to the sum 3.24 in [1] 

above.) 

[3]   98.351413121141 41414141    (The sum 

3.98 here represents an increase of 22.84% (the increase here is 38.57% for 

the 1st 10 terms as is shown in the list above) compared to the sum 3.24 in [1] 

above.) 

[4]   15.451413121151 51515151    (The sum 

4.15 here represents an increase of 28.09% (the increase here is 48.31% for 

the 1st 10 terms as is shown in the list above) compared to the sum 3.24 in [1] 

above.) 

. 

. 

. 
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The tabulation below of the above-mentioned percentage increases for the 

sums for the 1st 2 terms to the 1st 10 terms for    41,31   and  51  will 

provide a clearer picture:- 

 1st. 2 

Terms 

1st. 3 

Terms 

1st. 4 

Terms 

1st. 5 

Terms 

1st. 6 

Terms 

1st. 7 

Terms 

1st. 8 

Terms 

1st. 9 

Terms 

1st. 10 

Terms 

1st. 11 Terms  

   211   – – – – – – – – – – 

   312   4.68% 8.30% 11.47% 13.89% 16.16% 18.11% 20.09% 21.87% 23.26% To Be Extrapolated 

   413   7.60% 13.54% 18.28% 22.84% 26.30% 29.78% 32.88% 35.88% 38.57% To Be Extrapolated 

   514   9.36% 16.59% 22.94% 28.09% 32.88% 37.22% 41.32% 45.01% 48.31% To Be Extrapolated 

 

 

 

It is evident that the percentage increases shown above will go up in 

value continuously to infinity with the infinitude of the terms of the Riemann 

zeta function . All this indicates more and more bad news for the solubility 

of the Riemann zeta function  for powers ,21s  and, 21s  (as could be 

extrapolated from the above; refer to Appendix B and Appendix C (which 

provides an example) below) when there are more and more terms in the 

Riemann zeta function , i.e., for powers 21s  and ,21s  the more 

terms there are in the Riemann zeta function  the less soluble it will be. This 

is a serious irregularity and is another reason why there are no zeros for the 

Riemann zeta function  for powers 21s  and .21s  

The similarity between the Riemann hypothesis and Fermat’s last 

theorem is striking – they each have an optimum or equilibrium power which 

is the only power where in zeros are possible 21 s  in the case of the 

Riemann hypothesis and 2n  in the case of Fermat’s last theorem, powers 

which are all solely responsible for all the zeros. The fact that all these 

optimum or equilibrium powers are either square root  21s  for the 

Riemann hypothesis) or square  2n  for Fermat’s last theorem) is 

significant as they seem some sort of images of 2 which is the smallest prime 

number and the smallest even number. 21s  is the largest root among the 
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roots with 1 as the numerator. As such 21s  as a fractional power with 1 

as the numerator gives the largest result as compared to the fractional 

powers with 1 as the numerator ,21s  e.g., ,51,41,31s  etc. (but this 

largest result brings the smallest increase in quantity as compared to the 

results of the fractional powers with 1 as the numerator ,21s  e.g., 

,51,41,31s  etc., when divided by 1, e.g., 413121 212121 s  

,21 51  etc. – this is an important similarity to the case for 2n  described 

below) – equations with fractional powers 21s  would evidently be easier 

to solve than equations with fractional powers 21s  (e.g., in a computation 

21s  needs only 1 rooting step while 51s  needs 4 rooting steps) and 

,21s  e.g., ,54,43,32s  etc. (e.g., in a computation 21s  needs 

only 1 rooting step, while 54s  needs 7 steps – 3 squaring steps for 4s  

and 4 rooting steps for  2.51  ns  is the smallest whole number power 

which brings an increase in quantity. As such 2n  is the whole number 

power which brings the smallest increase in quantity as compared to the 

whole number powers ,2n  e.g., ,5,4,3n  etc., for instance 

,2222 5432   etc. – equations with whole number powers 2n  would 

evidently be easier to solve than equations with powers 2n  (with general 

equations with powers 5n  having been proven unsolvable 2 n  needs 

only 1 squaring step while 5n  needs 4 squaring steps) and ,2n  e.g., 

,47,23,45n  etc. (e.g., in a computation 2n  needs only 1 squaring 

step, while 47n  needs 9 steps – 6 squaring steps for 7n  and 3 rooting 

steps for  2.41  nn  and its reciprocals 21s  are the opposite of one 

another but despite this there appears to be complementariness and 

symmetry between them, as can be seen in the cases of Fermat’s last theorem 

and the Riemann hypothesis which involve optimum or equilibrium powers 

2n  and its reciprocal ,21s  the only powers wherein zeros are possible 

for each of them. 2n  and its reciprocal 21s  are evidently important 

quantities which may be comparable to  (3.14159265) or e (2.71828). 

It can be seen that the Riemann hypothesis is the analogue of Fermat’s 

last theorem, which implies its validity. 
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Thus, for the Riemann zeta function 21,  s  is the optimum or 

equilibrium power wherein there will be zeros. There will be no zeros in the 

critical strip bounded by   0Re s  and   1Re s  for 21s  and 21s  

because if 21s  the sum of the series in the zeta function  increases too 

quickly when more and more terms are added to the series and if 21s  the 

sum of the series in the zeta function  increases too slowly when more and 

more terms are added to the series 21 s  is optimum, just nice. 

Hence: 

Theorem due to Riemann 

All the non-trivial zeros of the Riemann zeta function  will always lie on 

the critical line   21Re s  only and not anywhere else on the critical strip 

bounded by   0Re s  and   .1Re s  

Appendix B 

Below are the values of the reciprocals of, say, 100, with consecutive 

fractional powers ,54s  these reciprocals being representative of the terms 

of the Riemann zeta function :- 

[1] 025.08107171.3911001 54   (This quantity represents a 

decrease of 75% compared to [4] below while the increase in power from 

21s  to 54s  is only 60%.) 

[2] 032.062278.3111001 43   (This quantity represents a decrease 

of 68% compared to [4] below while the increase in power from 21s  to 

43s  is only 50%.) 

[3] 046.05444.2111001 32   (This quantity represents a decrease of 

54% compared to [4] below while the increase in power from 21s  to 

32s  is only 33.33%.) 

[4] 100.01011001 21   (The terms of the series of the Riemann zeta 

function  as per the Riemann hypothesis fall under this category. 1013 zeros 

have been found under this category only.) 
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[5] 215.06416.411001 31   (This quantity represents an increase of 

115% compared to [4] above while the decrease in power from 21s  to 

31s  is only 33.33%.) 

[6] 316.01623.311001 41   (This quantity represents an increase of 

216% compared to [4] above while the decrease in power from 21s  to 

41s  is only 50%.) 

[7] 398.05119.211001 51   (This quantity represents an increase of 

298%  compared to [4] above while the decrease in power from 21s  to 

51s  is only 60%.) 

. 

. 

. 

Note the disproportionateness between the respective percentages of 

decrease in quantity and the respective percentages of increase in power for 

the reciprocals with powers ,21s  and, between the respective percentages 

of increase in quantity and the respective percentages of decrease in power 

for the reciprocals with powers .21s  

Appendix C 

The following list of the 1st 5 terms of the series of the Riemann zeta 

function  with consecutive fractional powers 21s  shows that the sums 

with larger powers decrease progressively, i.e., the larger the power s is the 

larger the percentage of decrease in the quantity is:- 

[1]   24.351413121121 21212121    (The Riemann 

hypothesis asserts that all zeros will be found in this series only.) 

[2]   85.251413121132 32323232    (The sum 

2.85 here represents a decrease of 12.04% compared to the sum 3.24 in [1] 

above.) 
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[3]   68.251413121143 43434343    (The sum 

2.68 here represents a decrease of 17.28% compared to the sum 3.24 in [1] 

above.) 

[4]   59.251413121154 54545454    (The sum 

2.59 here represents a decrease of 20.06% compared to the sum 3.24 in [1] 

above.) 

. 

. 

. 

The following is a tabulation of the above-mentioned percentage 

decreases for the sums for the 1st 2 terms to the 1st 5 terms for    43,32   

and   -:54  

1st  1st.2 Terms  1st.3 Terms  1st.4 Terms  1st.5 Terms  1st.6 Terms … 

[1]  21  – – – – – 

[2]  32  4.52% 7.63% 9.98% 12.04% To Be Extrapolated  

[3]  43  6.65% 11.08% 14.37% 17.28% To Be Extrapolated 

[4]  54  7.86% 12.98% 16.78% 20.06% To Be Extrapolated 

 

 

 

4. Conclusion 

It is evident that the non-trivial zeros of the Riemann zeta function  are 

an important and effective tool which could be used to somehow estimate 

with accuracy the number of primes less than a given quantity, as is 

explained in the paper; at the same time the mystery surrounding these non-

trivial zeros should have been dispelled by the paper. Importantly, the 

reasoning in the paper validates the Riemann hypothesis – all the non-trivial 

zeros will always lie exactly mid-way on the critical strip bounded by 

  0Re s  and   ,1Re s  on the critical line   .21Re s  The validity of the 

Riemann hypothesis would ensure the effectiveness of the non-trivial zeros of 
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the Riemann zeta function  as a tool for accurately estimating the number of 

primes less than a given quantity. 

References 

 [1] H. M. Edwards, Riemann’s Zeta Function, Dover Publications, Inc., 2001. 

 [2] G. H. Hardy and E. M. Wright, An Introduction To Theory of Numbers, Oxford, England: 

Clarendon Press, 1979. 

 [3] A. Ivic, The Riemann Zeta-Function: Theory and Applications, Dover Publications, Inc., 

2003. 

 [4] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, 1977. 

 [5] B. Riemann, On The Number Of Prime Numbers Less Than A Given Quantity, Berlin, 

Academy of Sciences, 1859. 

 [6] B. Wong, The non-trivial zeros of the Riemann Zeta function, Journal for Algebra and 

Number Theory Academia 6(2) (2016), 43-57. 


