GEOSATURATION POLYNOMIAL OF A GRAPH

C. SHEEJA ${ }^{\mathbf{1}}$ and D. NIDHA ${ }^{2}$

${ }^{1}$ Research Scholar, Reg.No:20213112092014
Department of Mathematics
Nesamony Memorial Christian College
Marthandam - 629 165, Tamil Nadu, India
E-mail: sheeja1096@gmail.com
${ }^{2}$ Assistant Professor
Department of Mathematics
Nesamony Memorial Christian College
Marthandam - 629 165, Tamil Nadu, India
Affiliated to Manonmaniam Sundaranar University
Abishekapatti, Tirunelveli - 627 165, Tamil Nadu, India
E-mail: dnmaths@nmcc.ac.in

Abstract

Let G be a simple graph of order p. The geosaturation number of a graph $G=(V, E)$ is the least positive integer m such that every vertex of G lies in a geodetic set of cardinality m and is denoted by $g s(G)$. The geosaturation polynomial of a graph G of order p is the polynomial $\mathcal{G}(G, x)=\sum_{i=g s(G)}^{|V(G)|} g(G, i) x^{i}$, where $g(G, i)$ is the number of geodetic sets of G of size i and $g s(G)$ is the geosaturation number of G. If a, b and c are integers such that $2 \leq b \leq a-1$ and $b+1 \leq c \leq a$, then there exists a connected graph G of order a, diameter b and $g s(G)=c$. Moreover, the geosaturation polynomial is $\mathcal{G}(G, x)=\sum_{i=c}^{a}(a-c+1) C_{i-(c-1)} x^{i}$. In this paper, we obtain several results connecting $g(G), g s(G)$ and other graph theoretic parameters.

[^0]
1. Introduction

Throughout this paper, G denotes a graph with order p. By a graph we mean a finite undirected graph without loops or multiple edges. For graph theoretic terms we refer Harary [3]. In particular, for terminology related to domination theory we refer Hayanes [4] and for terminology related to geodetic theory we refer [1].

2. Geodetic Polynomial of a Graph

Definition 2.1. The geodetic polynomial of a graph G of order p is the polynomial $\mathcal{G}(G, x)=\sum_{i=g(G)}^{|V(G)|} g(G, i) x^{i}$, where $g(G, i)$ is the number of geodetic sets of G of size i and $g(G)$ is the geodetic number of G.

Definition 2.2. A root of $\mathcal{G}(G, x)$ is called a geodetic root of G and is denoted by $Z(\mathcal{G}(G, x))$.

Theorem 2.3. Let T be any tree, $\mathcal{G}(T, x)=\sum_{i=n}^{m+n} m C_{i-n} x^{i}$.
Proof of Theorem 2.3. Let T be a tree with $m+n$ vertices, where m is the cardinality of non-pendent vertices and n is the cardinality of pendent vertices. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m}\right\}$. Since x_{i} 's are pendent vertices, x_{i} 's belongs to the geodetic set. Therefore, $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is the geodetic set. If we remove a pendent vertex x_{i} and add a non-pendent vertex $y_{j},\left\{y_{j}\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}-\left\{x_{i}\right\}$, for $i=1,2, \ldots, n$ and $j=1,2,3, \ldots, m$ is not a geodetic set, since x_{i} does not lie any geodesic path. Therefore, $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is the one and only minimal geodetic set. Hence $g(T)=n$. Now, the number of geodetic set with cardinality n is 1 . The number of geodetic set with cardinality $n+1$ is $m C_{1}$. The number of geodetic set with cardinality $n+2$ is $m C_{2}$. Proceeding like this, the number of geodetic set with cardinality $n+m$ is $m C_{m}$. Therefore,

$$
\mathcal{G}(T, x)=1 \cdot x^{n}+m C_{1} x^{n+1}+\ldots+m C_{m} x^{n+m}
$$

$$
=\sum_{i=n}^{m+n} m C_{i-n} x^{i}
$$

2.1 Graph with two Geodetic Roots

Theorem 2.4. Let T be a tree of order p. Then $Z(\mathcal{G}(T, x))=\{0,-1\}$.
Proof of Theorem 2.4. Let T be a tree with $p=a+b$ vertices, where a is the cardinality of non-pendent vertices and b is the cardinality of pendent vertices. Since zero is the geodetic root with multiplicity b, for every tree $T, \mathcal{G}(T, x)$ has two distinct roots, we have $\mathcal{G}(T, x)=x^{b}(x+c)^{p-b}$, for some $c>0$, where $p=|V(G)|$. Therefore, the coefficient of x^{p-1} is $(p-b) c$ and so $(p-b) c \in N \bigcup\{0\}$. This means that c is a rational number. Since every rational algebraic integer is an integer, we have $c \in N$. Now, we have to prove that $c=1$. Since T is a tree, the coefficient of x^{p-1} in $\mathcal{G}(T, x)$ is $p-b$. Then $c=1$. Therefore-1 is a root of multiplicity $p-b$. Hence $Z(\mathcal{G}(T, x))=\{0,-1\}$.

Problem 2.5. Characterize Graphs with three geodetic roots.
Problem 2.6. Characterize geodetic roots of all connected graphs.

3. Geosaturation number and Polynomial of a graph

3.1. Geosaturation number of a Graph

Definition 3.1. The geosaturation number of a graph $G=(V, E)$ is the least positive integer m such that every vertex of G lies in a geodetic set of cardinality m and is denoted by $g s(G)$.

Definition 3.2. A graph G is said to be a class 1 or class 2 according as $g s(G)=g(G)$ or $g s(G)=g(G)+1$.

Any complete graph K_{n} is of class 1 and tree T is of class 2.
Observation 3.3. For any graph G, G has a cut-vertex, then G is of class 2.

Theorem 3.4. Let G be a connected graph of order $p \geq 2$. Then
$g(G)=g s(G)=g_{c}(G)=p$ if and only if G is the complete graph with p vertices.

Proof of Theorem 3.4. We know that the result holds for $p=2$. We now consider the case where $p \geq 3$. Assume that $g(G)=g s(G)=g_{c}(G)=p$. Suppose to the contrary that there are two non-adjacent vertices a, b in G. Let P be an $a-b$ geodesic and let x be a vertex on P which is adjacent to a. Then $V(G) /\{x\}$ is a geodetic set of G, which is a contradiction to our assumption. Hence G is a complete graph. Conversely, if $G=K p$, then obviously $g s(G)=p$, by theorem in [2], $g(G)=n$ and by theorem in [1], $g_{c}(G)=p$. Therefore $g(G)=g s(G)=g_{c}(G)=p$.

Theorem 3.5. For any two positive integers a and b with $2 \leq a \leq b$, there exists a connected graph G with $g s(G)=a$ and $|V(G)|=b$.

Proof of Theorem 3.5. Clearly, the result is true for $2 \leq a \leq b$. Since if $b=2$, then $G=P_{2}$, while if $b=3$, then $G \in\left\{P_{3}, K_{3}\right\}$. Let us consider the case that $b \geq 4$. If $a=b$, let $G=K_{b}$ and if $a=b-1$, let $G=K_{1}, b-1$. For $a \leq b-2$, let G be a graph obtained from the star $K_{1, b-2}$ with support x leaves $x_{1}, x_{2}, \ldots, x_{b-2}$ by adding a new vertex y and joining y to the vertices $x_{i}(a-1 \leq i \leq b-2)$. Then $\left\{x_{1}, x_{2}, \ldots, x_{a-2}, y\right\}$ is the geodetic set. Therefore $g(G)=a-1$. But the vertices $\left\{x_{a-1}, x_{a}, \ldots, x_{b-2}, x\right\}$ does not belong to any geodetic set of cardinality $a-1$. Therefore $g s(G)=a$.

Theorem 3.6. If G is a connected graph with $\gamma(G)=1$, then $g s(G)=g_{c}(G)$.

Proof of Theorem 3.6. If $G=K_{p}$, then $\gamma(G)=1$ and $g s(G)=g_{c}(G)=p$, so we only have to consider the case $G \neq K_{p}$. Since $\gamma(G)=1, \Delta(G)=p-1$ and $\operatorname{diam} G \leq 2$. Since $G \neq K_{p}$, there exists at least two non-adjacent vertices in G. Therefore, $\operatorname{diam} G=2$. Let S be the minimum cardinality geodetic set of G and let $x \notin S$ (such a vertex in G). Since S is a geodetic set, there exists a vertices $x, y \in S$ such that a belongs to a $x-y$ geodesic. Since $\operatorname{diam} G=2$, it follows thatthe $x-y$ geodesic
containing a must be the path xay. Also, a does not belong to any geodetic set, $g s(G)=g(G)+1$. Also, by theorem in [1], a must be in the connected geodetic set. Therefore $g s(G)=g_{c}(G)$.

Theorem 3.7. For every non-trivial tree T of order $n, g s(T)=p-m+2$ if and only if T is a caterpillar.

Proof of Theorem 3.7. Let T be any non-trivial tree of order p. Let $m=d(u, v)$ and let $P: u=v_{0}, v_{1}, \ldots, v_{m-1} v_{m}=v$ be a diameteral path. Let a be the number of end vertices of T and b be the number of internal vertices of T other than $v_{1}, v_{2}, \ldots, v_{m-1}$. Then $m-1+b+a=p$. This implies that $a=p-m-b+1$ therefore $g(T)=a$ and so $g(T)=p-m-b+1 . T$ is a caterpillar if and only if all the internal vertices of T lie on the diametrical path P if and only if $b=0$ if and only if $g(T)=p-m+1$. But the vertices $v_{1}, v_{2}, \ldots, v_{m-1}$ are does not lie on any geodetic set. Then $g s(T)=p-m+2$. Hence T is a caterpillar if and only if $g s(T)=n-d+2$.

Corollary 3.9. For a wounded sider T of order n, $g s(T)=p-m+2$ if and only if T is obtained from $K_{1, n}(n \geq 1)$ by subdividing at most two of its edges.

Proof of Corollary 3.9. It is clear that an wounded spider T is a caterpillar if and only if T is obtained from $K_{1, n}(n \geq 1)$ by subdividing at most two of its edges. Now, the corollary follows from the above theorem.

3.2 Geosaturation Polynomial of a graph

Definition 3.10. The geosaturation polynomial of a graph G of order p is the polynomial $\mathcal{G} s(G, x)=\sum_{i=g s(G)}^{|V(G)|} g(G, i) x^{i}$, where $g(G, i)$ is the number of geodetic sets of G of size i and $g s(G)$ is the geosaturation number of G.

Theorem 3.11. For any tree $T, \mathcal{G} s(T, x)=\sum_{i=n+1}^{m+n} m C_{i-n} x^{i}$.
Proof of Theorem 3.11. Let T be a tree with $m+n$ vertices, where m is the cardinality of non-pendent vertices and n is the cardinality of pendent vertices. Let $X=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{m}\right\}$. Since v_{i} 's are simplicial
vertices, v_{i} 's belongs to the geodetic set. Therefore, $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the geodetic set. Hence $g(T)=n$. But the non-pendent vertices v_{i} 's does not belongs to the geodetic set. Therefore $g s(T)=n+1$. Now, the number of geodetic sets with cardinality $n+1$ is $m C_{1}$. The number of geodetic sets with cardinality $n+2$ is $m C_{2}$. The number of geodetic sets with cardinality $n+3$ is $m C_{2}$. Proceeding like this, the number of geodetic sets with cardinality $n+m$ is $m C_{m}$. Therefore, $T, \mathcal{G} s(T, x)=\sum_{i=n+1}^{m+n} m C_{i-n} x^{i}$.

Theorem 3.12. For a positive integers a, b and $c \geq b+1$ with $a<b \leq 2 a$, there exists a connected graph G with $\operatorname{rad} G=a$, $\operatorname{diam} G=b$ and $g s(G)=c . \quad$ Moreover \quad the geosaturating polynomial is $\mathcal{G} s(G, x)=\sum_{i=c}^{a+b+c-3}(a+b-2) C_{i-(c-1)} x^{i}$.

Proof of Theorem 3.12. Let $a=1$, then $b=1$ or 2 . If $b=1$, let $G=K_{c}$. Then $g(G)=c$. This implies that $g s(G)=c$. If $b=2$, let $G=K_{1}, c-1$. Then $g(G)=c-1$. But the support vertex does not lie on the geodetic set. Therefore, $g s(G)=c$. Now, Let $a<b \leq 2 a$. Let $C_{2 a}$ be the even cycle of order $2 a$ with the vertices $v_{1}, v_{2}, \ldots, v_{2 a}$ and let P_{b-a+1} be a path of order $b-a+1$ with the vertices $u_{0}, u_{1}, \ldots, u_{b-a}$. Let $K_{1, c-3}$ be a star graph with vertices $w_{0}, w_{1}, \ldots, w_{c-3}$. Let G be a graph obtained from $C_{2 a}$ and P_{b-a+1} by identifying v_{1} in $C_{2 a}$ and u_{0} in P_{b-a+1} and also identifying the vertex u_{b-a-1} with w_{0} in $G=K_{1, c-3}$. The Graph G is shown below:

Figure 1. G.

Then $\operatorname{rad} G=a$ and $\operatorname{diam} G=b$. Let $M=\left\{u_{b-a}, w_{1}, w_{2}, \ldots, w_{c-3}\right\}$ be the pendent vertices of the graph G with $|M|=c-2$. Clearly, all the pendent vertices belongs to the geodetic set. Let $N=M \bigcup\left\{v_{a+1}\right\}$. Clearly N is a geodetic set with $|N|=c-1$. Therefore $g(G)=c-1$. But $\left\{v_{1}, v_{2}, \ldots, v_{a-1}, v_{a+1}, \ldots, u_{1}, u_{2}, \ldots, u_{b-a-1}\right\}$ does not lie on the geodetic set. Therefore $g s(G)=c$. Now, we form a geosaturation polynomial. Let G be a graph with $a+b+c-3$ vertices. Since $g(G)=c-1, g s(G)=c$ and this can be done in $(a+b-2) C_{1}$ ways. Therefore, the number of geodetic set with cardinality c is $(a+b-2) C_{1}$. Now, the number of geodetic set with cardinality $c+1$ is $(a+b-2) C_{1}$. Also, the number of geodetic set with cardinality $c+2$ is $(a+b-2) C_{3}$. Proceeding like this, The number of geodetic set with cardinality $a+b+c-3$ is $(a+b-2) C_{a+b-2}$. Therefore, the geosaturation polynomial is
$\mathcal{G} s(G, x)$

$$
\begin{aligned}
& =(a+b-2) C_{1} x^{c}+(a+b-2) C_{2} x^{c+1}+\ldots+(a+b-2) C_{(a+b-2)} x^{a+b+c-2} \\
& \mathcal{G} s(G, x)=\sum_{i=c}^{a+b+c-3}(a+b-2) C_{i-(c-1)} x^{i} \\
& v_{a+1}
\end{aligned}
$$

Problem 3.13. For any three positive integers a, b and $c \geq b+1$ such that $a=b \leq 2 a$, does there exist a connected graph G with $\operatorname{radG}=a, \operatorname{diam} G=b$ and $g s(G)=c$.

Theorem 3.14. If a, b and c are integers such that $2 \leq b \leq a-1$ and $b+1 \leq c \leq a$, then there exists a connected graph G of order a, diameter b and $g s(G)=c$. Moreover, the geosaturation polynomial is $\mathcal{G} s(G, x)$ $=\sum_{i=c}^{a}(a-b+1) C_{i-(c-1)^{x^{i}}}$.

Proof of Theorem 3.14. We prove this theorem by considering three cases.

Case (i). Let $b=2$. If $c=b+1$, then $c=3$. Let $P_{3}: u_{1}, u_{2}, u_{3}$ be a path of order 3 . Now, we choose $a-3$ new vertices $w_{1}, w_{2}, \ldots, w_{a-3}$ and joining each $w_{i}(1 \leq i \leq a-3)$ to u_{1} and u_{3}. The graph G in Figure 2 is the resultant graph.

Figure 2. G.
Then G has order a and diameter 2. Clearly, $M=\left\{u_{1}, u_{3}\right\}$ is the minimum cardinality geodetic set of G. Therefore $g(G)=2=c-1$. But $\left\{u_{2}, w_{1}, w_{2}, \ldots, w_{a-3}\right\}$ does not lie on the geodetic set. Thus $g s(G)=c$. Now, let $b+1 \leq c \leq a$. Consider a complete graph $K_{a-1},\left\{w_{1}, w_{2}, \ldots, w_{a-c+1}\right.$, $\left.v_{1}, v_{2}, \ldots, v_{c-2}\right\}$ as its vertex set. Now, add a new vertex x to K_{a-1}. Then a graph G by joining x with $w_{i}(1 \leq i \leq a-c+1)$. The graph G in Figure 3 is the resultant graph.

Figure 3. G.
Then G has order a and diameter $b=2$. Let $M=\left\{v_{1}, v_{2}, \ldots, v_{c-2}, x\right\}$. Clearly M is the minimum cardinality geodetic set of G. Therefore, $g(G)=c-1$. But $\left\{w_{1}, w_{2}, \ldots, w_{a-c+1}\right\}$ does not lie on the geodetic set. Thus $g s(G)=c$.

Case (ii). Let $3 \leq b \leq a-2$. Consider a path $P_{b+1}, u_{1}, u_{2}, \ldots, u_{b+1}$ as its vertex set of length b. Now, choose $a-b-c-2$ new vertices $w_{1}, w_{2}, \ldots, w_{a-b-c+2}$ and joining $w_{i}(1 \leq i \leq a-b-c+2)$ to u_{1} and u_{3}. Also, we can choose $c-3$ new vertices $v_{1}, v_{2}, \ldots, v_{c-3}$ and joining $v_{i}(1 \leq i \leq c-3)$ to u_{b}. Then graph G in Figure 4 is the resultant graph.

Figure 4. G.
Then G has order a and diameter b. Let $M=\left\{v_{1}, v_{2}, \ldots, v_{c-2}, u_{b+1}\right\}$ be the set of all pendent vertices. Clearly, all the pendent vertices belongs to geodetic set. Now, $M \bigcup\left\{u_{1}\right\}$ is a geodetic set. Therefore $g(G)=c-1$. But
$\left\{w_{1}, w_{2}, \ldots, w_{a-b-c+2}, u_{2}, u_{3}, \ldots, u_{b}\right\}$ does not lie on the geodetic set. Thus $g s(G)=c$.

Case (iii). Let $b=a-1$. Then $c=a$. Let G be the complete graph of order c. Then $g(G)=c$. This implies that $g s(G)=c$. Now, we form a geosaturation polynomial. Let G be a graph with c vertices. Since $g(G)=c-1, g s(G)=c$ and this can be done in $(a-c+1) C_{1}$ ways. Therefore, the number of geodetic set with cardinality c is $(a-c+1) C_{1}$. Now, the number of geodetic set with cardinality $c+1$ is $(a-c+1) C_{2}$. Also, the number of geodetic set with cardinality $c+2$ is $(a-c+1) C_{3}$. Proceeding like this, the number of geodetic set with cardinality a is $(a-c+1) C_{a-c+1}$. Therefore,
$\mathcal{G} s(G, x)$

$$
\begin{aligned}
& \quad=(a-c+1) C_{1} x^{c}+(a-c+1) C_{2} x^{2}+\ldots+(a-c+1) C_{(a-c+1)} x^{a-c+1} \\
& \mathcal{G s}(G, x)=\sum_{i=c}^{a}(a+c-2) C_{i-(c-1)} x^{i}
\end{aligned}
$$

4. The Geosaturation Polynomial of $G \circ K_{1}$.

In this section, we study the geosaturation number and geosaturation polynomial of $G \circ K_{1}$.

Lemma 4.1. For a connected graph G of order $p-1, g s\left(G \circ K_{1}\right)=p$.
Proof of Lemma 4.1. Let $\left\{v_{1}, v_{2}, \ldots, v_{p-1}\right\}$ be the vertices of a connected graph G. Add $p-1$ new vertices $\left\{u_{1}, u_{2}, \ldots, u_{p-1}\right\}$ to G. Now, connect u_{i} to v_{i} for $1 \leq i \leq p-1$. If T is a geodetic set of G, then for every $i, 1 \leq i \leq p-1, u_{i} \in T$. This implies that $|T|=p-1$. But $\left\{v_{1}, v_{2}, \ldots, v_{p-1}\right\}$ does not lie any geodetic set. Therefore, $g s\left(G \circ K_{1}\right)=p$.

Remark 4.2. By lemma 4.1, $g\left(G \circ K_{1, k}\right)=0$, for every $k, k<p$. So we shall compute $g\left(G \circ K_{1, k}\right)$ for each $k, p<k \leq 2 p$.

Theorem 4.3. For any graph G of order p and $p<k \leq 2 p$, we have
$g\left(G \circ K_{1, k}\right)=\binom{p}{k-p}$. Hence $\mathcal{G} s(G, x)=x^{p}\left[(x+1)^{p}-1\right]$.
Proof of Theorem 4.3. Let G be any graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Add p new vertices $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ and join u_{i} to v_{i} for $1 \leq i \leq p$. By previous lemma 4.1, $g s\left(G \circ K_{1}\right)=p+1$. Suppose that T is a geodetic set of $G \circ K_{1}$ of size k. There are $\binom{p}{k-p}$ possibilities to choose the remaining vertices. Therefore, $g\left(G \circ K_{1, k}\right)=\binom{p}{k-p}$.

References

[1] A. P. Santhakumaran, P. Titus and J. John, On the connected geodetic number of a graph, J. Combin. Math. Combin. Comput. 69 (2009), 219-229. Available online at https://www.researchgate.net/publication/330882534_On_the_connected_geodetic_numbe r_of_a_graph
[2] A. P. Santhakumaran and J. John, Edge geodetic number of a graph, Journal of Discrete Mathematical Sciences and Cryptography 10(3) (2007), 415-432. Taylor and Francis; Available online at https://www.researchgate.net/publication/266979785 Edge geodetic number of a graph.
[3] F. Harary, Graph Theory, Addition - Wesley Publishing Company Inc, USA, (1969). Available online at https://doi.org/10.1201/9780429493768
[4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, 2013, CRC press; Available online at https://doi.org/10.1201/9781482246582

[^0]: 2020 Mathematics Subject Classification: 05C12, 05C31.
 Keywords: geodetic number; geodetic set; geodetic polynomial; geosaturation number; geosaturation number.

