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Abstract

Let G be a simple graph of order p. The geosaturation number of a graph G = (V, E) is the
least positive integer m such that every vertex of G lies in a geodetic set of cardinality m and is

denoted by gs(G). The geosaturation polynomial of a graph G of order p is the polynomial
V(G ;

GG, x) = E ‘_ @I 2(G, i)x', where g(G, i) is the number of geodetic sets of G of size i and
i=gs(G)

gs(G) is the geosaturation number of G. If a, b and c are integers such that 2<b<a-1 and

b+1<c<a, then there exists a connected graph G of order a, diameter b and gs(G) = c.
. . a i .
Moreover, the geosaturation polynomial is G(G, x) = E . (a=c+1)C_(c_1yx". In this paper,
1=C

we obtain several results connecting g(G), gs(G) and other graph theoretic parameters.
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1. Introduction

Throughout this paper, G denotes a graph with order p. By a graph we
mean a finite undirected graph without loops or multiple edges. For graph
theoretic terms we refer Harary [3]. In particular, for terminology related to
domination theory we refer Hayanes [4] and for terminology related to

geodetic theory we refer [1].
2. Geodetic Polynomial of a Graph

Definition 2.1. The geodetic polynomial of a graph G of order p is the

polynomial G(G, x) = Z‘lfgg)‘g(G, i)x', where g(G,i) is the number of

geodetic sets of G of size i and g(G) is the geodetic number of G.

Definition 2.2. A root of G(G, x) is called a geodetic root of G and is
denoted by Z(G(G, x)).

Theorem 2.3. Let T be any tree, G(T, x) = Z:r:;n mC;_,x'.

Proof of Theorem 2.3. Let T be a tree with m + n vertices, where m is
the cardinality of non-pendent vertices and n is the cardinality of pendent

vertices. Let X = {x, Xo, ..., X;, ¥» Y2, ---» ¥m)- Since x;’s are pendent
vertices, x;’s belongs to the geodetic set. Therefore, {x{, x9, ..., x,} is the
geodetic set. If we remove a pendent vertex x; and add a non-pendent vertex
Vi Wit Uler, xg, .., 2 ) =4, for i=1,2,...,n and j=1,23,...,m is
not a geodetic set, since x; does not lie any geodesic path. Therefore,
{1, %9, ..., x,} is the one and only minimal geodetic set. Hence g(T') = n.

Now, the number of geodetic set with cardinality n is 1. The number of

geodetic set with cardinality n +1 is mC;. The number of geodetic set with
cardinality n+2 is mGC,. Proceeding like this, the number of geodetic set

with cardinality n + m is mC,,. Therefore,

G(T, x) =1-x" + mCyx™ + ...+ mC,x™t™
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m+n i
= E . mGC_,x".
=n

2.1 Graph with two Geodetic Roots

Theorem 2.4. Let T be a tree of order p. Then Z(G(T, x)) = {0, —1}.

Proof of Theorem 2.4. Let T be a tree with p = a + b vertices, where a

is the cardinality of non-pendent vertices and b is the cardinality of pendent

vertices. Since zero is the geodetic root with multiplicity b, for every tree
T, G(T, x) has two distinct roots, we have G(T, x) = x%(x + ¢)’™?, for some

¢ >0, where p =|V(G)|. Therefore, the coefficient of xP is (p —b)c and
so (p—b)c e NU{0}. This means that c is a rational number. Since every
rational algebraic integer is an integer, we have ¢ € N. Now, we have to
prove that ¢ = 1. Since T'is a tree, the coefficient of x”™ in G(T', x) is p - b.

Then ¢ =1. Therefore-1 is a root of multiplicity p—-b. Hence
Z(G(T, x)) = {0, —1}. a

Problem 2.5. Characterize Graphs with three geodetic roots.
Problem 2.6. Characterize geodetic roots of all connected graphs.

3. Geosaturation number and Polynomial of a graph

3.1. Geosaturation number of a Graph

Definition 3.1. The geosaturation number of a graph G = (V, E) is the

least positive integer m such that every vertex of G lies in a geodetic set of
cardinality m and is denoted by gs(G).

Definition 3.2. A graph G is said to be a class 1 or class 2 according as

8s(G) = g(G) or gs(G) = (G) +1.
Any complete graph K,, is of class 1 and tree T'is of class 2.

Observation 3.3. For any graph G, G has a cut-vertex, then G is of class

Theorem 3.4. Let G be a connected graph of order p > 2. Then
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2(G) = gs(G) = g.(G) = p if and only if G is the complete graph with p
vertices.

Proof of Theorem 3.4. We know that the result holds for p = 2. We
now consider the case where p > 3. Assume that g(G) = gs(G) = g.(G) = p.
Suppose to the contrary that there are two non-adjacent vertices a, b in G.

Let P be an a — b geodesic and let x be a vertex on P which is adjacent to a.

Then V(G)/{x} is a geodetic set of G, which is a contradiction to our
assumption. Hence G is a complete graph. Conversely, if G = Kp, then
obviously gs(G) = p, by theorem in [2], g(G)=n and by theorem in [1],
8¢(G) = p. Therefore g(G) = gs(G) = g.(G) = p. a

Theorem 3.5. For any two positive integers a and b with 2 < a < b, there
exists a connected graph G with gs(G) = a and | V(G)| = b.

Proof of Theorem 3.5. Clearly, the result is true for 2 < a < b. Since if
b =2, then G = P,, while if b =3, then G € {P;, K3}. Let us consider the

casethat b>4. If a = b, let G = K andif a =b -1, let G = K;, b—-1. For
a <b-2, let G be a graph obtained from the star Kjj; o with support x
leaves xq, X9, ..., Xp_9 by adding a new vertex y and joining y to the vertices
x;(@—1<i<b-2). Then {x1, xg, ..., X4_9, ¥} is the geodetic set. Therefore
g(G) = a —1. But the vertices {x,_i, Xq, ..., Xp_g, x} does not belong to any

geodetic set of cardinality a —1. Therefore gs(G) = a. O

Theorem 3.6. If G is a connected graph with v(G)=1, then
25G) = g:(G).

Proof of Theorem 3.6. If G =K, then v¥G)=1 and
gs(G) = g.(G) = p, so we only have to consider the case G # K,. Since
¥(G) =1, A(G) = p-1 and diamG < 2. Since G # K,,, there exists at least

two non-adjacent vertices in G. Therefore, diamG= 2. Let S be the
minimum cardinality geodetic set of G and let x ¢ S (such a vertex in G).

Since S is a geodetic set, there exists a vertices x, y € S such that a belongs

to a x —y geodesic. Since diamG = 2, it follows thatthe x —y geodesic
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containing a must be the path xay Also, a does not belong to any geodetic
set, gs(G) = g(G)+1. Also, by theorem in [1], a must be in the connected
geodetic set. Therefore gs(G) = g.(G). o

Theorem 3.7. For every non-trivial tree T of order n, gs(T)=p-m+ 2 if
and only if T is a caterpillar.

Proof of Theorem 3.7. Let T be any non-trivial tree of order p. Let
m =d(u, v) andlet P:u =uvg, vy, ..., Up_1U,, = U be a diameteral path. Let

a be the number of end vertices of T and b be the number of internal vertices
of T other than vy, vy, ..., Uy,_1. Then m —1+b+a = p. This implies that

a=p-m-b+1 therefore g(T)=a and so g(T)=p-m-b+1. Tis a
caterpillar if and only if all the internal vertices of T lie on the diametrical
path P if and only if b = 0 if and only if g(7T') = p —m +1. But the vertices

U1, Ug, ..., Upy_1 are does not lie on any geodetic set. Then gs(T') = p —m + 2.

Hence T'is a caterpillar if and only if gs(T)=n—-d + 2. a]

Corollary 3.9. For a wounded sider T of order n, gs(T)=p—-m+2 if
and only if T is obtained from Kl,n(n > 1) by subdividing at most two of its

edges.

Proof of Corollary 3.9. It is clear that an wounded spider 7T is a
caterpillar if and only if T is obtained from Kj ,(n > 1) by subdividing at

most two of its edges. Now, the corollary follows from the above theorem. m]
3.2 Geosaturation Polynomial of a graph

Definition 3.10. The geosaturation polynomial of a graph G of order p is

the polynomial Gs(G, x) = Z\ V(G)|

i=gs(G)g(G’ i)x', where g(G, i) is the number of

geodetic sets of G of size i and gs(G) is the geosaturation number of G.

m+n

Theorem 3.11. For any tree T, Gs(T, x) = Z mC;_,x".

i=n+1

Proof of Theorem 3.11. Let 7T be a tree with m + n vertices, where m is
the cardinality of non-pendent vertices and n is the cardinality of pendent

vertices. Let X = {v, vg, ..., Uy, Uy, Ug, ..., Uy, }. Since v;’s are simplicial
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vertices, v;’s belongs to the geodetic set. Therefore, {vy, vg, ..., v,} is the
geodetic set. Hence g(T)=n. But the non-pendent vertices v;’s does not
belongs to the geodetic set. Therefore gs(T')=n +1. Now, the number of
geodetic sets with cardinality n +1 is mC;. The number of geodetic sets with
cardinality n + 2 is mCy. The number of geodetic sets with cardinality n + 3
is mCy. Proceeding like this, the number of geodetic sets with cardinality
m+n )

n+m is mC,,. Therefore, T, Gs(T, x) = Z mC;_,x". a]

i=n+1

Theorem 3.12. For a positive integers a,b and c¢>b+1 with
a < b < 2a, there exists a connected graph G with radG = a, diamG = b and

gs(G) = c. Moreover, the geosaturating polynomial is

Gs(G, x) = Z ?:+cb+c_3 (@+b- 2)Ci,(c,1)xi.

Proof of Theorem 3.12. Let a=1, then =1 or 2. If b=1, let
G =K, Then g(G)=c This implies that gs(G)=c. If b=2, let
G = Kj, ¢ —1. Then g(G) = ¢ —1. But the support vertex does not lie on the
geodetic set. Therefore, gs(G) = c¢. Now, Let a < b < 2a. Let Cy, be the even
cycle of order 2a with the vertices vy, vy, ..., Uy, and let F,_,.; be a path of
order b —a +1 with the vertices ug, u, ..., 4p_o. Let Kj ._3 be a star graph
with vertices wy, wy, ..., wq._3. Let G be a graph obtained from C,, and
B,_, .1 by identifying v; in Cy, and uy in B,_,,; and also identifying the

vertex u,_q_1 with wy in G = Kj ._3. The Graph G is shown below:

wy; Wy ws We—3

Up—q

Up—q—1 = Wy

Uq Ua—1 Uy

Figure 1. G.
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Then radG = a and diamG =b. Let M = {u,_,, wy, Wy, ..., w._3} be
the pendent vertices of the graph G with |M|=c—2. Clearly, all the
pendent vertices belongs to the geodetic set. Let N = M U {v,,1}. Clearly N
is a geodetic set with |N|=c—-1. Therefore g(G)=c-1. But
{U1, V9, coes Ug1s Ugals > Ups U, ..., Up_q—1} does not lie on the geodetic set.
Therefore gs(G) = c. Now, we form a geosaturation polynomial. Let G be a
graph with a + b + ¢ — 3 vertices. Since g(G) = ¢ -1, gs(G) = ¢ and this can
be done in (a +b —2)C; ways. Therefore, the number of geodetic set with
cardinality ¢ is (a+b-2)C;. Now, the number of geodetic set with
cardinality ¢+1 is (a+b—-2)C;. Also, the number of geodetic set with
cardinality ¢+2 is (a+b—2)C3. Proceeding like this, The number of
geodetic set with cardinality a+b+c¢—-3 is (a+b—-2)C,,p_o. Therefore,

the geosaturation polynomial is

Gs(G, x)

—(@+b-2)Cx° +(a+b—-2)Cox“™t + ...+ (@a+b- 2)C(a+b72)xa+b“’*2

a+b+c—3 i
Gs(G, x) = Y T a+b-2)Cp ey
Ua+1-

Problem 3.13. For any three positive integers a, b and ¢ > b +1 such

that a =b<2a, does there exist a connected graph G with
radG = a, diamG = b and gs(G) = c.

Theorem 3.14. If a, b and c are integers such that 2<b<a-1 and
b+1<c<a, then there exists a connected graph G of order a, diameter b

and gs(G)=c. Moreover, the geosaturation polynomial is Gs(G, x)
= Za (a-b+ l)Ci_(c_l)xi.
1=C

Proof of Theorem 3.14. We prove this theorem by considering three
cases.
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Case (i). Let b=2. If c=b+1, then ¢=3. Let P;:uy, ug, ug be a
path of order 3. Now, we choose a—3 new vertices wy, ws, ..., Wy_3 and
joining each w;(1 <i <a-3) to y; and wuz. The graph G in Figure 2 is the

resultant graph.

uy U Uus

w1

Wq—3

Figure 2. G.

Then G has order a and diameter 2. Clearly, M = {i, ug} is the
minimum cardinality geodetic set of G. Therefore g(G)=2=c—-1. But
{ug, wy, wy, ..., w,_3} does not lie on the geodetic set. Thus gs(G) = ¢. Now,
let b+1<c<a. Consider a complete graph K, 1, {w, W, ..., Wg_c41>
U1, Ug, ..., Uo_g} as its vertex set. Now, add a new vertex x to K, ;. Then a
graph G by joining x with w;(1 <i < a — ¢ +1). The graph G in Figure 3 is the

resultant graph.
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S
rd \\\
.’ - wy ) \
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\ Wy Ue—3 /
- /
u 1 Veog
\\\ ///
/
\\k - e
Figure 3. G.

Then G has order a and diameter b =2. Let M = {vy, vy, ..., U._g, X}.

Clearly M is the minimum cardinality geodetic set of G. Therefore,
g(G)=c-1. But {w;, wo, ..., Wy_41} does not lie on the geodetic set. Thus

gs(G) = c.

Case (ii). Let 3 < b < a—2. Consider a path Py,q, 4, Ug, ..., Up,q asits
vertex set of length b&. Now, choose a—-b-c—-—2 new vertices
Wy, Wy, .., Wy_p_cr2 and joining w;(1<i<a-b-c+2) to u; and us.
Also, we can choose c¢c—3 new vertices Uy, Ug,...,U._3 and joining

v;(1 <i<c—3)to uy. Then graph G in Figure 4 is the resultant graph.

g Uy Uy g Up—1 iy Upt1
- . o i . .

'
/ N
r{ : f':d
//
#;_.v
Figure 4. G.
Then G has order a and diameter b. Let M = {v, v, ..., Us._g, Up,1} be

the set of all pendent vertices. Clearly, all the pendent vertices belongs to
geodetic set. Now, M U {u;} is a geodetic set. Therefore g(G)=c—1. But
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{wy, wo, ..., Wy_p_ci9, Ug, Us, -.., Uy} does not lie on the geodetic set. Thus
gs(G) = c.

Case (iii). Let b = a—1. Then ¢ = a. Let G be the complete graph of
order c¢. Then g(G)=c. This implies that gs(G)=c. Now, we form a

geosaturation polynomial. Let G be a graph with ¢ vertices. Since
2(G) = ¢ -1, gs(G) = ¢ and this can be done in (a — ¢ + 1)C; ways. Therefore,

the number of geodetic set with cardinality ¢ is (a —c +1)C;. Now, the
number of geodetic set with cardinality c¢+1 is (a—c+1)Cy. Also, the
number of geodetic set with cardinality ¢ +2 is (a — ¢ + 1)C5. Proceeding like
this, the number of geodetic set with cardinality a is (@ —c+1)Cy_c41-
Therefore,

Gs(G, x)

=(a-c+1)Cx’ +(@a-c+1)Cox?® + ...+ (a—c+ 1)C(a,c+1)xafc+1

Gs(G, x) = Z?:c (@+c- 2)Ci_(c_1)xi.

4. The Geosaturation Polynomial of G - Kj.

In this section, we study the geosaturation number and geosaturation
polynomial of G o Kj.

Lemma 4.1. For a connected graph G of order p —1, gs(G - K;) = p.

Proof of Lemma 4.1. Let {vj, vy, ..., Up_1} be the vertices of a connected
graph G. Add p —1 new vertices {u, Ug, ..., 4,1} to G. Now, connect u; to
v; for 1<i1<p-1. If T is a geodetic set of G, then for every
i,1<i<p-1u €T. This implies that |T'| = p—1. But {v;, vy, ..., Uy}
does not lie any geodetic set. Therefore, gs(G o K;) = p.

Remark 4.2. By lemma 4.1, g(Go Kl,k) =0, for every k, k < p. So we
shall compute g(G o Kj 1) for each k, p < k < 2p.
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Theorem 4.3. For any graph G of order p and p < k < 2p, we have
gGoKy )= (k_ll’)). Hence Gs(G, x) = xP[(x + 1P —1]

Proof of Theorem 4.3. Let G be any graph with vertex set
{1, vg, ..., vp}. Add p new vertices {1y, ug, ..., u,} and join u; to v; for

1 <i < p. By previous lemma 4.1, gs(Go K;) = p +1. Suppose that T is a

geodetic set of G o K of size k. There are (,, P p) possibilities to choose the

remaining vertices. Therefore, g(G o K 1,) = (7 p ).
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