

GEOSATURATION POLYNOMIAL OF A GRAPH

C. SHEEJA¹ and D. NIDHA²

¹Research Scholar, Reg.No:20213112092014 Department of Mathematics Nesamony Memorial Christian College Marthandam - 629 165, Tamil Nadu, India E-mail: sheeja1096@gmail.com

²Assistant Professor Department of Mathematics Nesamony Memorial Christian College Marthandam - 629 165, Tamil Nadu, India Affiliated to Manonmaniam Sundaranar University Abishekapatti, Tirunelveli - 627 165, Tamil Nadu, India E-mail: dnmaths@nmcc.ac.in

Abstract

Let G be a simple graph of order p. The geosaturation number of a graph G = (V, E) is the least positive integer m such that every vertex of G lies in a geodetic set of cardinality m and is denoted by gs(G). The geosaturation polynomial of a graph G of order p is the polynomial $\mathcal{G}(G, x) = \sum_{i=gs(G)}^{|V(G)|} g(G, i) x^i$, where g(G, i) is the number of geodetic sets of G of size i and gs(G) is the geosaturation number of G. If a, b and c are integers such that $2 \le b \le a - 1$ and $b+1 \le c \le a$, then there exists a connected graph G of order a, diameter b and gs(G) = c. Moreover, the geosaturation polynomial is $\mathcal{G}(G, x) = \sum_{i=c}^{a} (a - c + 1)C_{i-(c-1)}x^i$. In this paper, we obtain several results connecting g(G), gs(G) and other graph theoretic parameters.

2020 Mathematics Subject Classification: 05C12, 05C31.

Received September 3, 2021; Accepted November 4, 2021

Keywords: geodetic number; geodetic set; geodetic polynomial; geosaturation number; geosaturation number.

1. Introduction

Throughout this paper, G denotes a graph with order p. By a graph we mean a finite undirected graph without loops or multiple edges. For graph theoretic terms we refer Harary [3]. In particular, for terminology related to domination theory we refer Hayanes [4] and for terminology related to geodetic theory we refer [1].

2. Geodetic Polynomial of a Graph

Definition 2.1. The geodetic polynomial of a graph G of order p is the polynomial $\mathcal{G}(G, x) = \sum_{i=g(G)}^{|V(G)|} g(G, i) x^i$, where g(G, i) is the number of geodetic sets of G of size i and g(G) is the geodetic number of G.

Definition 2.2. A root of $\mathcal{G}(G, x)$ is called a geodetic root of G and is denoted by $Z(\mathcal{G}(G, x))$.

Theorem 2.3. Let T be any tree, $\mathcal{G}(T, x) = \sum_{i=n}^{m+n} mC_{i-n}x^i$.

Proof of Theorem 2.3. Let *T* be a tree with m + n vertices, where *m* is the cardinality of non-pendent vertices and *n* is the cardinality of pendent vertices. Let $X = \{x_1, x_2, ..., x_n, y_1, y_2, ..., y_m\}$. Since x_i 's are pendent vertices, x_i 's belongs to the geodetic set. Therefore, $\{x_1, x_2, ..., x_n\}$ is the geodetic set. If we remove a pendent vertex x_i and add a non-pendent vertex $y_j, \{y_j\} \cup \{x_1, x_2, ..., x_n\} - \{x_i\}$, for i = 1, 2, ..., n and j = 1, 2, 3, ..., m is not a geodetic set, since x_i does not lie any geodesic path. Therefore, $\{x_1, x_2, ..., x_n\}$ is the one and only minimal geodetic set. Hence g(T) = n. Now, the number of geodetic set with cardinality n + 1 is mC_1 . The number of geodetic set with cardinality n + m is mC_m . Therefore,

$$\mathcal{G}(T, x) = 1 \cdot x^n + mC_1 x^{n+1} + \ldots + mC_m x^{n+m}$$

$$=\sum_{i=n}^{m+n}mC_{i-n}x^{i}.$$

2.1 Graph with two Geodetic Roots

Theorem 2.4. *Let T be a tree of order p. Then* $Z(\mathcal{G}(T, x)) = \{0, -1\}$ *.*

Proof of Theorem 2.4. Let *T* be a tree with p = a + b vertices, where *a* is the cardinality of non-pendent vertices and *b* is the cardinality of pendent vertices. Since zero is the geodetic root with multiplicity *b*, for every tree *T*, $\mathcal{G}(T, x)$ has two distinct roots, we have $\mathcal{G}(T, x) = x^b(x+c)^{p-b}$, for some c > 0, where p = |V(G)|. Therefore, the coefficient of x^{p-1} is (p-b)c and so $(p-b)c \in N \cup \{0\}$. This means that *c* is a rational number. Since every rational algebraic integer is an integer, we have $c \in N$. Now, we have to prove that c = 1. Since *T* is a tree, the coefficient of x^{p-1} in $\mathcal{G}(T, x)$ is p-b. Then c = 1. Therefore-1 is a root of multiplicity p-b. Hence $Z(\mathcal{G}(T, x)) = \{0, -1\}$.

Problem 2.5. Characterize Graphs with three geodetic roots.

Problem 2.6. Characterize geodetic roots of all connected graphs.

3. Geosaturation number and Polynomial of a graph

3.1. Geosaturation number of a Graph

Definition 3.1. The geosaturation number of a graph G = (V, E) is the least positive integer m such that every vertex of G lies in a geodetic set of cardinality m and is denoted by gs(G).

Definition 3.2. A graph G is said to be a class 1 or class 2 according as gs(G) = g(G) or gs(G) = g(G) + 1.

Any complete graph K_n is of class 1 and tree *T* is of class 2.

Observation 3.3. For any graph G, G has a cut-vertex, then G is of class 2.

Theorem 3.4. Let G be a connected graph of order $p \ge 2$. Then

 $g(G) = gs(G) = g_c(G) = p$ if and only if G is the complete graph with p vertices.

Proof of Theorem 3.4. We know that the result holds for p = 2. We now consider the case where $p \ge 3$. Assume that $g(G) = gs(G) = g_c(G) = p$. Suppose to the contrary that there are two non-adjacent vertices a, b in G. Let P be an a - b geodesic and let x be a vertex on P which is adjacent to a. Then $V(G)/\{x\}$ is a geodetic set of G, which is a contradiction to our assumption. Hence G is a complete graph. Conversely, if G = Kp, then obviously gs(G) = p, by theorem in [2], g(G) = n and by theorem in [1], $g_c(G) = p$. Therefore $g(G) = gs(G) = g_c(G) = p$.

Theorem 3.5. For any two positive integers a and b with $2 \le a \le b$, there exists a connected graph G with gs(G) = a and |V(G)| = b.

Proof of Theorem 3.5. Clearly, the result is true for $2 \le a \le b$. Since if b = 2, then $G = P_2$, while if b = 3, then $G \in \{P_3, K_3\}$. Let us consider the case that $b \ge 4$. If a = b, let $G = K_b$ and if a = b - 1, let $G = K_1$, b - 1. For $a \le b - 2$, let G be a graph obtained from the star $K_{1,b-2}$ with support x leaves $x_1, x_2, \ldots, x_{b-2}$ by adding a new vertex y and joining y to the vertices $x_i(a - 1 \le i \le b - 2)$. Then $\{x_1, x_2, \ldots, x_{a-2}, y\}$ is the geodetic set. Therefore g(G) = a - 1. But the vertices $\{x_{a-1}, x_a, \ldots, x_{b-2}, x\}$ does not belong to any geodetic set of cardinality a - 1. Therefore gs(G) = a.

Theorem 3.6. If G is a connected graph with $\gamma(G) = 1$, then $gs(G) = g_c(G)$.

Proof of Theorem 3.6. If $G = K_p$, then $\gamma(G) = 1$ and $gs(G) = g_c(G) = p$, so we only have to consider the case $G \neq K_p$. Since $\gamma(G) = 1, \Delta(G) = p - 1$ and $diamG \leq 2$. Since $G \neq K_p$, there exists at least two non-adjacent vertices in G. Therefore, diamG = 2. Let S be the minimum cardinality geodetic set of G and let $x \notin S$ (such a vertex in G). Since S is a geodetic set, there exists a vertices $x, y \in S$ such that a belongs to a x - y geodesic. Since diamG = 2, it follows that the x - y geodesic

containing a must be the path *xay*. Also, *a* does not belong to any geodetic set, gs(G) = g(G) + 1. Also, by theorem in [1], a must be in the connected geodetic set. Therefore $gs(G) = g_c(G)$.

Theorem 3.7. For every non-trivial tree T of order n, gs(T) = p - m + 2 if and only if T is a caterpillar.

Proof of Theorem 3.7. Let *T* be any non-trivial tree of order *p*. Let m = d(u, v) and let $P : u = v_0, v_1, ..., v_{m-1}v_m = v$ be a diameteral path. Let *a* be the number of end vertices of *T* and *b* be the number of internal vertices of *T* other than $v_1, v_2, ..., v_{m-1}$. Then m - 1 + b + a = p. This implies that a = p - m - b + 1 therefore g(T) = a and so g(T) = p - m - b + 1. *T* is a caterpillar if and only if all the internal vertices of *T* lie on the diametrical path *P* if and only if b = 0 if and only if g(T) = p - m + 1. But the vertices $v_1, v_2, ..., v_{m-1}$ are does not lie on any geodetic set. Then gs(T) = p - m + 2.

Corollary 3.9. For a wounded sider T of order n, gs(T) = p - m + 2 if and only if T is obtained from $K_{1,n}(n \ge 1)$ by subdividing at most two of its edges.

Proof of Corollary 3.9. It is clear that an wounded spider T is a caterpillar if and only if T is obtained from $K_{1,n} (n \ge 1)$ by subdividing at most two of its edges. Now, the corollary follows from the above theorem. \Box

3.2 Geosaturation Polynomial of a graph

Definition 3.10. The geosaturation polynomial of a graph *G* of order *p* is the polynomial $\mathcal{G}s(G, x) = \sum_{i=gs(G)}^{|V(G)|} g(G, i) x^i$, where g(G, i) is the number of geodetic sets of *G* of size *i* and gs(G) is the geosaturation number of *G*.

Theorem 3.11. For any tree T, $\mathcal{G}s(T, x) = \sum_{i=n+1}^{m+n} mC_{i-n}x^i$.

Proof of Theorem 3.11. Let *T* be a tree with m + n vertices, where *m* is the cardinality of non-pendent vertices and *n* is the cardinality of pendent vertices. Let $X = \{v_1, v_2, ..., v_n, u_1, u_2, ..., u_m\}$. Since v_i 's are simplicial

vertices, v_i 's belongs to the geodetic set. Therefore, $\{v_1, v_2, ..., v_n\}$ is the geodetic set. Hence g(T) = n. But the non-pendent vertices v_i 's does not belongs to the geodetic set. Therefore gs(T) = n + 1. Now, the number of geodetic sets with cardinality n + 1 is mC_1 . The number of geodetic sets with cardinality n + 2 is mC_2 . The number of geodetic sets with cardinality n + 3 is mC_2 . Proceeding like this, the number of geodetic sets with cardinality n + m is mC_m . Therefore, T, $\mathcal{G}s(T, x) = \sum_{i=n+1}^{m+n} mC_{i-n}x^i$.

Theorem 3.12. For a positive integers a, b and $c \ge b+1$ with $a < b \le 2a$, there exists a connected graph G with radG = a, diamG = b and gs(G) = c. Moreover, the geosaturating polynomial is $\mathcal{G}s(G, x) = \sum_{i=c}^{a+b+c-3} (a+b-2)C_{i-(c-1)}x^i$.

Proof of Theorem 3.12. Let a = 1, then b = 1 or 2. If b = 1, let $G = K_c$. Then g(G) = c. This implies that gs(G) = c. If b = 2, let $G = K_1, c - 1$. Then g(G) = c - 1. But the support vertex does not lie on the geodetic set. Therefore, gs(G) = c. Now, Let $a < b \le 2a$. Let C_{2a} be the even cycle of order 2a with the vertices v_1, v_2, \ldots, v_{2a} and let P_{b-a+1} be a path of order b - a + 1 with the vertices $u_0, u_1, \ldots, u_{b-a}$. Let $K_{1,c-3}$ be a star graph with vertices $w_0, w_1, \ldots, w_{c-3}$. Let G be a graph obtained from C_{2a} and P_{b-a+1} by identifying v_1 in C_{2a} and u_0 in P_{b-a+1} and also identifying the vertex u_{b-a-1} with w_0 in $G = K_{1,c-3}$. The Graph G is shown below:

Figure 1. G.

Then radG = a and diamG = b. Let $M = \{u_{b-a}, w_1, w_2, ..., w_{c-3}\}$ be the pendent vertices of the graph G with |M| = c - 2. Clearly, all the pendent vertices belongs to the geodetic set. Let $N = M \cup \{v_{a+1}\}$. Clearly Nis a geodetic set with |N| = c - 1. Therefore g(G) = c - 1. But $\{v_1, v_2, ..., v_{a-1}, v_{a+1}, ..., u_1, u_2, ..., u_{b-a-1}\}$ does not lie on the geodetic set. Therefore gs(G) = c. Now, we form a geosaturation polynomial. Let G be a graph with a + b + c - 3 vertices. Since g(G) = c - 1, gs(G) = c and this can be done in $(a + b - 2)C_1$ ways. Therefore, the number of geodetic set with cardinality c is $(a + b - 2)C_1$. Now, the number of geodetic set with cardinality c + 1 is $(a + b - 2)C_1$. Also, the number of geodetic set with cardinality c + 2 is $(a + b - 2)C_3$. Proceeding like this, The number of geodetic set with cardinality a + b + c - 3 is $(a + b - 2)C_{a+b-2}$. Therefore, the geosaturation polynomial is

 $\mathcal{G}s(G, x)$

$$= (a + b - 2)C_1x^c + (a + b - 2)C_2x^{c+1} + \dots + (a + b - 2)C_{(a+b-2)}x^{a+b+c-2}$$

$$\mathcal{G}_{s}(G, x) = \sum_{i=c}^{a+b+c-3} (a + b - 2)C_{i-(c-1)}x^i$$

$$v_{a+1}.$$

Problem 3.13. For any three positive integers a, b and $c \ge b+1$ such that $a = b \le 2a$, does there exist a connected graph G with radG = a, diamG = b and gs(G) = c.

Theorem 3.14. If a, b and c are integers such that $2 \le b \le a - 1$ and $b+1 \le c \le a$, then there exists a connected graph G of order a, diameter b and gs(G) = c. Moreover, the geosaturation polynomial is $\mathcal{G}s(G, x) = \sum_{i=c}^{a} (a-b+1)C_{i-(c-1)}x^{i}$.

Proof of Theorem 3.14. We prove this theorem by considering three cases.

Case (i). Let b = 2. If c = b + 1, then c = 3. Let $P_3 : u_1, u_2, u_3$ be a path of order 3. Now, we choose a-3 new vertices $w_1, w_2, \ldots, w_{a-3}$ and joining each $w_i(1 \le i \le a-3)$ to u_1 and u_3 . The graph G in Figure 2 is the resultant graph.

Figure 2. G.

Then G has order a and diameter 2. Clearly, $M = \{u_1, u_3\}$ is the minimum cardinality geodetic set of G. Therefore g(G) = 2 = c - 1. But $\{u_2, w_1, w_2, ..., w_{a-3}\}$ does not lie on the geodetic set. Thus gs(G) = c. Now, let $b+1 \le c \le a$. Consider a complete graph K_{a-1} , $\{w_1, w_2, ..., w_{a-c+1}, v_1, v_2, ..., v_{c-2}\}$ as its vertex set. Now, add a new vertex x to K_{a-1} . Then a graph G by joining x with $w_i(1 \le i \le a - c + 1)$. The graph G in Figure 3 is the resultant graph.

Figure 3. G.

Then G has order a and diameter b = 2. Let $M = \{v_1, v_2, ..., v_{c-2}, x\}$. Clearly M is the minimum cardinality geodetic set of G. Therefore, g(G) = c - 1. But $\{w_1, w_2, ..., w_{a-c+1}\}$ does not lie on the geodetic set. Thus gs(G) = c.

Case (ii). Let $3 \le b \le a-2$. Consider a path P_{b+1} , u_1 , u_2 , ..., u_{b+1} as its vertex set of length b. Now, choose a-b-c-2 new vertices $w_1, w_2, \ldots, w_{a-b-c+2}$ and joining $w_i(1 \le i \le a-b-c+2)$ to u_1 and u_3 . Also, we can choose c-3 new vertices $v_1, v_2, \ldots, v_{c-3}$ and joining $v_i(1 \le i \le c-3)$ to u_b . Then graph G in Figure 4 is the resultant graph.

Then G has order a and diameter b. Let $M = \{v_1, v_2, ..., v_{c-2}, u_{b+1}\}$ be the set of all pendent vertices. Clearly, all the pendent vertices belongs to geodetic set. Now, $M \cup \{u_1\}$ is a geodetic set. Therefore g(G) = c - 1. But

 $\{w_1, w_2, \dots, w_{a-b-c+2}, u_2, u_3, \dots, u_b\}$ does not lie on the geodetic set. Thus gs(G) = c.

Case (iii). Let b = a - 1. Then c = a. Let G be the complete graph of order c. Then g(G) = c. This implies that gs(G) = c. Now, we form a geosaturation polynomial. Let G be a graph with c vertices. Since g(G) = c - 1, gs(G) = c and this can be done in $(a - c + 1)C_1$ ways. Therefore, the number of geodetic set with cardinality c is $(a - c + 1)C_1$. Now, the number of geodetic set with cardinality c + 1 is $(a - c + 1)C_2$. Also, the number of geodetic set with cardinality c + 2 is $(a - c + 1)C_3$. Proceeding like this, the number of geodetic set with cardinality a is $(a - c + 1)C_{a-c+1}$. Therefore,

Gs(G, x)

$$= (a - c + 1)C_1x^c + (a - c + 1)C_2x^2 + \dots + (a - c + 1)C_{(a - c + 1)}x^{a - c + 1}$$

$$\mathcal{G}s(G, x) = \sum_{i=c}^{a} (a + c - 2)C_{i - (c - 1)}x^i.$$

4. The Geosaturation Polynomial of $G \circ K_1$.

In this section, we study the geosaturation number and geosaturation polynomial of $G \circ K_1$.

Lemma 4.1. For a connected graph G of order p-1, $gs(G \circ K_1) = p$.

Proof of Lemma 4.1. Let $\{v_1, v_2, ..., v_{p-1}\}$ be the vertices of a connected graph G. Add p-1 new vertices $\{u_1, u_2, ..., u_{p-1}\}$ to G. Now, connect u_i to v_i for $1 \le i \le p-1$. If T is a geodetic set of G, then for every $i, 1 \le i \le p-1, u_i \in T$. This implies that |T| = p-1. But $\{v_1, v_2, ..., v_{p-1}\}$ does not lie any geodetic set. Therefore, $gs(G \circ K_1) = p$.

Remark 4.2. By lemma 4.1, $g(G \circ K_{1,k}) = 0$, for every k, k < p. So we shall compute $g(G \circ K_{1,k})$ for each $k, p < k \le 2p$.

Theorem 4.3. For any graph G of order p and $p < k \le 2p$, we have $g(G \circ K_{1,k}) = \binom{p}{k-p}$. Hence $\mathcal{G}s(G, x) = x^p[(x+1)^p - 1]$.

Proof of Theorem 4.3. Let G be any graph with vertex set $\{v_1, v_2, ..., v_p\}$. Add p new vertices $\{u_1, u_2, ..., u_p\}$ and join u_i to v_i for $1 \le i \le p$. By previous lemma 4.1, $gs(G \circ K_1) = p + 1$. Suppose that T is a geodetic set of $G \circ K_1$ of size k. There are $\binom{p}{k-p}$ possibilities to choose the remaining vertices. Therefore, $g(G \circ K_{1,k}) = \binom{p}{k-p}$.

References

- A. P. Santhakumaran, P. Titus and J. John, On the connected geodetic number of a graph, J. Combin. Math. Combin. Comput. 69 (2009), 219-229. Available online at https://www.researchgate.net/publication/330882534_On_the_connected_geodetic_number_of_a_graph
- [2] A. P. Santhakumaran and J. John, Edge geodetic number of a graph, Journal of Discrete Mathematical Sciences and Cryptography 10(3) (2007), 415-432. Taylor and Francis; Available online at https://www.researchgate.net/publication/266979785 Edge geodetic number of a graph.
- F. Harary, Graph Theory, Addition Wesley Publishing Company Inc, USA, (1969). Available online at https://doi.org/10.1201/9780429493768
- [4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, 2013, CRC press; Available online at https://doi.org/10.1201/9781482246582