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Abstract 

We adapt a deterministic Human Immunodeficiency Virus (HIV) epidemic model to a 

Stochastic Differential Equations (SDE) model in this study by including random disturbances. 

Using Lyapunov theory, we show that the SDE system has a unique positive global solution and 

that the threshold value SR
~

 may be utilized to govern the stochastic dynamics of the SDE 

model. When we combine 1
~

SR  with additional conditions, we see that the solution of the 

stochastic system swings around the solution of the deterministic system. Furthermore, we 

explore the long-term behaviour of stochastic system near the endemic equilibrium of 

deterministic system when .1
~

SR  Analytical results are numerically validated. 

1. Introduction 

Epidemiology is a discipline of medicine that examines infectious diseases 

in communities and is concerned with all elements of an epidemic, including 

transmission, control, and vaccine strategy. Many models addressing the 

spread of infectious diseases are based on the famous SIR model of Kermack 

and Mckendrick [9]. 

One of the world’s most critical health and development issues is AIDS 

(Acquired Immunodeficiency Syndrome) which is caused by HIV. HIV 

spreads through bodily fluids and gradually weakens the immune system by 
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eliminating cells that fight pathogens, diseases, and bacteria like 

tuberculosis, especially CD4+T cells. When this happens, the immune system 

weakens, making it more difficult for the immune system to combat infections 

and other diseases. The person is thus more vulnerable to illnesses such as 

pneumonia and tuberculosis, and HIV can lead to the development of AIDS. 

Approximately 38 million people are presently infected with HIV, and 

tens of millions have died as a result of AIDS-related illnesses since the 

epidemic’s inception. 

The most prevalent routes for HIV to be transferred across the world are 

(i) sexual contact, (ii) exchanging contaminated blood products or needles, 

and (iii) vertical transmission from infected mothers to their babies during 

gestation, birth, or breastfeeding [19]. Vertical HIV transmission continues to 

be a substantial contributor to the HIV epidemic, accounting for 9% of new 

infections worldwide. 

Although there is no cure for HIV, antiretroviral medication decreases 

the quantity of HIV in the blood, allowing the victim to live longer without 

experiencing HIV-related symptoms [19]. 

Mathematical modelling is a widely used tool for studying and 

investigating infectious disease dynamics, as well as recommending disease 

outbreak mitigation techniques. Many scholars have employed mathematical 

models extensively to explore epidemiology [3, 4, 6, 10, 11, 12, 13]. Recently, 

mathematical modelling has been used in HIV/AIDS epidemiology to assist 

increase our understanding of the primary contributing causes to the 

epidemic. Furthermore, the HIV/AIDS dynamics pose a slew of new 

challenges for mathematics, biologists, and epidemiologists since it differs 

from classical infectious disease in a variety of ways. May and Anderson were 

the first to present the models [1, 15]. The existence of a threshold expressible 

in terms of epidemic and demographic characteristics (birth, death, 

transmission, and recovery rates) that distinguishes conditions in which the 

disease finally dies out from those in which the disease becomes endemic is of 

apparent epidemiological relevance. 

Samanta et al. [18] developed a five compartmental HIV model using 

ordinary differential equations to investigate the influence of infection delay. 



     STABILITY ANALYSIS OF STOCHASTIC HIV/AIDS EPIDEMIC … 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 8, June 2023 

1881 

 

     

 

 

 


























AdIT
dt

dA

TI
dt

dT

II
dt

dI

IIISII
dt

dI

SSII
dt

dS

2

2

21
2

1212211
1

2211

  (1.1) 

Here, the entire population is split up into five groups: Susceptible 

population  ,tS  infective population without symptoms  ,1 tI  infective 

population with symptoms  ,2 tI  infected population under treatment  tT  

and full-blown AIDS group  ;tA  the key parameters are: , the recruitment 

rate of ,; 1S  horizontal transmission rate of ,; 21 I  horizontal transmission 

rate of ,;2 I  recruitment rate of new borne infected children into ,;2 I  

progression rate from 1I  to ,;2 I  the proportion of 2I  who enter into ,; T  

progression rate to A from ,;2 I  transfer rate from T to ,; dA  death rate of A 

due to the disease; , the natural death rate. 

In our study we account for the vertical transmission of HIV infection and 

therapy that reduces infection transmission in the HIV epidemic model [18]. 
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with initial conditions: 

        .00,00,00,00 21  TIIS  

The above deterministic model of system (1.2) has a disease-free 

equilibrium 










 0,0,0,0E  with basic reproduction number 
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0R  which represents the average new 
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infected produced by one infected individual during his life time when the 

population at the disease-free equilibrium. Further we found the system (1.2) 

has a positive endemic equilibrium 
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The diversity and unpredictability of the environment are intrinsically 

tied to the character of an epidemic. The deterministic technique has 

substantial shortcomings in mathematical modelling of infectious disease 

transmission, and precisely projecting the future dynamics of the system is 

challenging. This occurs when deterministic models fail to account for the 

impact of changing environmental conditions. Stochastic differential equation 

models, which provide more realism than deterministic counterparts, are 

used in a wide range of applications, including infectious disease dynamics. 

In fact, due to continual environmental fluctuation, the parameters employed 

in ecological system modeling are never absolute constants and always 

oscillate around prescribed average values. As a result, several researchers 

have studied the dynamics of epidemic models with parameter perturbation 

[5, 8, 16, 17, 20, 21]. 

To account for the influence of a randomly changing environment in 

system (1.2), we assumed stochastic disturbances of white noise type that are 

directly proportional to      tItItS 21 ,,  and  .tT  

The stochastic model corresponding to sub model of system (1.1) is: 
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 (1.3) 

where i  are the white noise intensities and  tBi  are independent Wiener 

processes. 

The following is how this article is structured. Section 2 demonstrates 

that the system (1.3) has a unique positive solution by the method indicated 
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in [5]. In Section 3, we establish the threshold value SR
~

 and we show that 

when ,1
~

SR  the solution of the system (1.3) oscillates around the disease-

free equilibrium .0E  In Section 4, we investigate the asymptotic behaviour of 

the stochastic model (1.3) around the endemic equilibrium of the 

deterministic model. Finally, we carry out numerical simulations to verify our 

theoretical conclusions in Section 5. 

Throughout the article, let    Ptt ,,, 0   be a complete probability 

space with a filtration   0tt  that meets the standard criteria (i.e., it is right 

continuous and 0  includes all P-null sets). 

Denote  ,0:  i
nn xRxR  for all   ,0:,1   i

nn xRxRni  

for all .1 ni   

A general d-dimensional stochastic differential equation takes the form 

[14]  

         tdBttxgdtttxftdx ,,   on 0tt   (1.4) 

with initial value   ,00
dRxtx   where  tB  denotes d-dimensional 

standard Brownian motion defined on the above probability space. 

2. Existence and Uniqueness of Global Positive Solution 

In this section, we show that the system (1.3) owns a unique, positive and 

global solution using Lyapunov analysis approach. 

Theorem 2.1. For any initial value          ,0,0,0,0 4
21  RTIIS  the 

system (1.3) admits a unique solution         tTtItItS ,,, 21  on ,0t  and the 

solution will remain in 4
R  with probability 1, (i.e.),       ,,, 21 tItItS   

  4
 RtT  for all 0t  almost surely. 

Proof. Note that the coefficients of the equations in system (1.3) are 

locally Lipschitz continuous for any given initial value       ,0,0,0 21 IIS  

  .0 4
 RT  As a result, the system possesses a unique local solution 
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        tTtItItS ,,, 21  on  ,,0 et   where e  is the explosion time [2]. To 

demonstrate that this solution is global, just we only need to show that 

e  a.s. Allow 1k  to be sufficiently large enough that all 

        0,0,0,0 21 TIIS  lie inside the interval  .,1 kk   For each integer 

,kn   let us define the stopping time as  

n  
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where, throughout the paper, we assume inf  (as usual  denotes the 

empty set). Obviously, n  is increasing when .n  Denote ,lim n
n




  

when e  a.s. If   a.s., consequently e  and       ,0,0,0 21 IIS  

  40  RT  a.s. for all .0t  To put it in other words, we just need to claim 

that   a.s. 

If it is not, we may find some 0U  and  1,0  such that 

  . UP  
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   UP  for all .1kn   (2.1) 
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Now a 2C  function   RRV 4
1 :  is defined by 



     STABILITY ANALYSIS OF STOCHASTIC HIV/AIDS EPIDEMIC … 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 8, June 2023 

1885 

       2211211 log1log1log1,,, IIIISSTIISV    

 ,log1 TT   

which is non-negative, since .0,0log1  vvv   

Itô’s formula yields, 

 dtSSISI
S

dV 






  22111
1

1  

     dtIIISISI
I 1212211
1

1
1 








  

       dtTI
T

dtII
I








 







 221

2

1
1

1
1  

         tdBItdBSdt 22111
2
4

2
3

2
2

2
1 11

2

1
  

       tdBTtdBI 44332 11   

    dtK





  2
4

2
3

2
2

2
121 2

1
4  

               tdBTtdBItdBItdBS 4433222111 1111   

           tdBItdBItdBSdtK 33222111 111    

   tdBT 441   

Therefore, if ,1 Ut   

              
  

 
1 1 1

0 0 0
11211 1,,,

t t tn n n
tdBSdtKtTtItItSdV  

        
 


1 1

0 0
323212 11

t tn n
tdBItdBI  

   .1
1

0
44




tn

tdBT  

 



K. PONMARI and M. SENTHILKUMARAN 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 8, June 2023 

1886 

Taking expectations, 

         1121111 ,,, tTtItItSVE nnnn   

         



1

0
211 0,0,0,0

tn
dtKETIISV  

         UKTIISV  0,0,0,0 211  (2.2) 

Set  Unn   for 1kn   and by (2.1),   .nP  Notice that, for 

any ,n  there is at least one of       ,,,,, 21 nnn IIS  and   ,nT  

takes the value either n or ,1 n  and hence 

           .log1
1

log1,,,,,,, 211 






  n
n

nnTIISV nnnn  

It then follows from (2.1) and (2.2) that 

         UKTIISV 0,0,0,0 211  

             ,,,,,,,1 211 nnnn TIISVE
n

 

              ,,,,,,,1 211 nnnn TIISVEP
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







  n
n

nn  

where  n
1  is the indicator function of .n  Allowing n  results in the 

contradiction          .0,0,0,0 211  UKTIISV  As a result,   

a.s. which completes the proof of Theorem 2.1. 

In nature, the initial value      ,0,0,0 21 IIS  and  0T  may be zero. It is 

both interesting and practically important to consider what happens when 

         .0,0,0,0 4
21  RTIIS  

Theorem 2.2. For any initial value          ,0,0,0,0 4
21  RTIIS  the 

solution of system (1.3) will remain in 4
R  with probability 1. 

Proof. Clearly, first equation of (1.3) gives 
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Next, we consider the infective population without symptoms  .1 tI  

 
       











 




t t
udBduuSt

etI
0 0 221

2
2

2

1  

        
     



















 
  











 
t udBduuSu

t t

euIuSuII
0

2

2221

0 0 221

2
2

0  

Obviously,   01 tI  no matter   01 tI  or   .01 tI  

Third equation of (1.3) yields, 

  tI2  

   

   
   



















 
 











 












 


dueuIIe
t udBuudBt

tt

0

2

12

2 0 33

2
3

0 33

2
3

0  

Clearly   002 I  no matter if   002 I  or   .002 I  

From (1.3), 

 
   

   
   



















 
 











 












 


dueuITetT
t udBuudBt

tt

0

2

2

2 0 44

2
4

0 44

2
4

0  

Clearly .0T  

(i.e.) we can conclude that the variables       0,0,0 21  tItItS  and 

  .00 T  
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Remark 2.3. From Theorems 2.1 and 2.2, we see that that for any initial 

value          ,0,0,0,0 4
21  RTIIS  the system (1.3) admits a unique, global 

solution          4
21 ,,,  RtTtItItS  almost surely. Therefore, 

      dtTIISTIISd  2121  

and  

                 















  0000 2121 TIISetTtItItS t  

Obviously,         ,21 


 tTtItItS  when      000 21 IIS   

  .0



 T  

 The region defined by 

 











 TIISTIISTIIS 212121 ,0,0,0,0:,,,  

is a positively invariant set of the stochastic system (1.3). 

Hereafter, we assume that any initial solution     00 1IS   

    .002  TI  

3. Asymptotic Behavior around Disease-Free Equilibrium 

In this section, we use the stochastic Lyapunov function [14] to examine 

the stability of the disease free equilibrium 










 0,0,0,0E  of the 

deterministic model. 

Lemma 3.1[14] (Strong Law of Large Numbers). Let   0 ttMM  denote 

a real-valued continuous local martingale that vanishes at .0t  Then  




t
t

MM ,lim  a. s. 0
,

lim 
 t

t

t MM

M
 a.s. 

and also 



     STABILITY ANALYSIS OF STOCHASTIC HIV/AIDS EPIDEMIC … 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 8, June 2023 

1889 


 t

MM
t

t

,
suplim  a.s. 0lim 

 t

Mt

t
 a.s. 

Based on this lemma, we give the main theorem in this section. 

Define 

      

   
.

2

1

~
2
2

2
21








SR  

Theorem 3.2. Let         tTtItItS  21  be the solution of the system 

(1.3) with any initial value         .0000 4
21  RTIIS  If ,1

~
SR  

  ,2
3

2





  and ,2

4  

       
2

2
1

0

2
4

2
23

2
12

2

1
1

suplim 



































dssTrsIrsIrsSrE
t

t

t

 

where     2
3

2

321 ,2, 



 rrr  and 

  .2
44 r  

Proof. Let .,,, 21 TzIwIvSu 



  Then ,0,0  vu  

.0,0  zw  

The system (1.3) deduces to the system of equations: 

   tdBudtuuwuvtdu 1121 





















































  

       tvdBdtvwvuwuvtdv 2221 





 






















  

      twdBdtwvtdw 33  

      tzdBdtwtdz 44  

Define the stochastic Lyapunov function :4
 RR   
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    ,,,, 2222
2 zwavvuzwvuV   

where ,0a  to be found later. Then 

     





 










 vwvuvuLV 22  

      wvwvwvuwuvav 





 






















 22 21  

     .12 22
4

22
3

22
2

2
2
1 zwvauzwz 











  

Note that .0u  Then 

    vwuvuLV  22  

 





 






















 vwwvav 212  

        22
2

2
2
1 122 vazwzwvw 











  

22
4

22
3 zw   

      22
1

2 222 wvu 













 



  

  22 z  

     





























 12222

2
2
12 wzvwauv  

22
4

22
3

22
2 zwv   

      22
1

2 222 wvu 













 



  

  22 z  
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 
 

  22

2

2
22

2
2

wv

a

uv 

























  

    .1 22
4

22
3

22
2

2
2
1

22
2

zwvazw 















  

After some simple calculations, we get 

   
 




















 





2

1
2

2
2

2

1
2 auLV   

   
 

  23
3

2
22

2

2
2

2

1

2

1
wv

a
a



































  

  
2

2
1

22
4 











 z  

   



























2

2
22

2

12
au  

        21
~

2  SRa  

 
    22

2

2
2

v








  

    
2

2
1

22
4

22
2

2


























 zw  

Choose a such that 

        2
2

2
2 1

~
2 











 SRaa  

 
  0

2 2
2

2














  
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Thus 

    22
2

2
22

2 2 wvuLV 












  

  
2

2
1

22
4 











 z  

(i.e.) 
2

2
1

2
4

2
23

2
12

2

12 






















 TrIrIrSrLV  

Integrating from 0 to t and taking expectations, 

           












t t t

dssIrEsIrEdssSrEVtEV
0 0 0

2
23

2
12

2

122 0  

   












t t

dsEdssTrE
0 0

2
2
1

2
4  

            dssTrsIrsIrsIrsSrEV
t

 





















0

2
4

2
24

2
23

2
12

2

12 0   

t
2

2
1 











  

Thus  

        .
1

suplim
0

2
2
1

2
4

2
23

2
12

2

1 



































t

t

dssTrsIrsIrsSrE
t

 

Remark 3.3. Theorem 3.2 shows that the solution of the system (1.3) 

oscillates near the disease free equilibrium 










 0,0,0,0E  in the time 

mean sense if 1
~

SR  and the magnitude of the oscillation is proportional to 

the intensity of the noise. From the biological point of view, the disease will 

be controlled in a small. 

Besides, if ,01   from the proof of Theorem 3.2, we have 
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,2
4

2
23

2
12

2

12 TrIrIrSrLV 










  

which is negative definite. 

Thus the solution of system (1.3) is stochastically asymptotically stable in 

the large. 

4. Asymptotic Behavior near the Endemic Equilibrium of the 

Deterministic System 

In this section, we look at how the solution of the stochastic system (1.3) 

behaves towards the endemic equilibrium of the deterministic system ,E  to 

see whether the disease will prevail. 

Theorem 4.1. Let         tTtItItS ,,, 21  be the solution of system (1.3) 

with any initial value          .0,0,0,0 4
21  RTIIS  If 1

~
SR  and, then we 

have 

                  



t

t

HdsTsTIsIIsISsSd
t 0

222
22

2
11

2~1
suplim   

a.s., 

where   TIIS ,,, 21  is the endemic equilibrium of system (1.2), 

  ,1,~
2
4

2
3

2
21

2
1

2

2














 a
d

H  

       ,
2

,212,,min
~

212


 aaad  

   
  2

21
1 ;

2
aa




  

       
.

5.12 2211211











 IIS

 

Proof. Define 
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         TTIIaIIaIISSV
2

222
2

111
2

113  

where 1a  and 2a  are positive constants to be found later. 

By Itô’s formula, 

          1111111113 222 IIaIISStSdBIISSdV  

         tTdBTTtdBIIIatdBI 44323222212 22    

where 

3LV  

          121211112 IIISSIIIIISS    

        2121211112 IISSSIIa 








   

          SIIIIII 22112111  

          22112222 IIIIIIa  

           22
4

2
2

2
3

2
1

2
21

22
122 12 TIIaSTTIITT    

 22  SS  

         2112211211112  











 



 IIIISaa  

         TTIIa 22
2

222  

       











 

21111 2212 aIISS  

            SSIIaaIIII 22212211 2212  

      22
4

2
2

2
3

2
1

2
21

22
122 12 TIIaSTTII    

Choose 1a  such that 
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    .0222 211 



a  

Thus  

   
 

.
2

21
1 


a  

            211
2

3 1122 aaaSSLV    

    21122112112  



 IIIISa  

       222212 212  IIaaa  

      22
4

2
2

2
3

2
1

2
21

22
1

2
1

2
2 TIIaSTT 






 
   

Choose 2a  such that 

           





 



 

2211211211 2112 IISaaaa  

  .0  

       















 








2211211

2

5.12 IISa

a  

       211
2

3 2   IISSLV  

         222212 212  IIaaa  

      22
4

2
2

2
3

2
1

2
21

22
1

2
1

2
2 TIIaSTT 






 
   

       24
2

223
2

112
2

1
  TTdIIdIIdSSd  

  22
4

2
2

2
3

2
1

2
21

22
1 1 TIIaS   

        22
22

2
11

2   TTIIIISSd  
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  22
4

2
2

2
3

2
1

2
21

22
1 1 TIIaS   

         22
22

2
11

2
3

  TTIIIISSddV  

    tdBSIISSdt 1111

2
2 2 











   

          tdBIIIatdBIIIaSS 323222212111 212    

   tTdBTT 442    

Integrating it from 0 to t gives, 

                    
 

t

dsTsTIsIIsISsSdVtV
0

22
22

2
11

2
33

~
0  

          
 













t

sdBIsISsSsSt
0

1111

2
2 2  

             
 

t

sdBIsIaSsSsI
0

211112 12  

                
 

t t

sdBTsTsTsdBIsIsIa
0 0

44322232 22  

Let 

           
 

t

sdBIsISsSsStM
0

1111  

               
 

t

sdBIsIaSsSsItM
0

211112 1  

         


t

sdBIsIsItM
0

32233  

         


t

sdBTsTsTtM
0

44  

Clearly    4,3,2,1, itMi  are continuous, local martingale and also 

  00 iM  for .4,3,2,1i  
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It is easy to check that 

 
0lim 

 t

tMi

t
 a.s. for .4,3,2,1i  

Thus 

   
            

 
 t

dsTsTIsISsS
t

d

t

VtV

0

22
11

233
~

0
  

       
t

tM

t

tM
a

t

tM

t

tM 4
4

3
33

2
2

1
1

2
2 2222 











  

It therefore follows from (4.1) that 

                





t

t

dsTsTIsIIsISsS
t 0

22
22

2
11

21
suplim  

22

~ 













d
 a.s. 

This completes the proof of Theorem 4.1. 

Remark 4.2. Theorem 4.1 shows that, if ,1
~

SR  the solution of the 

system (1.3) oscillates around the endemic equilibrium ,E  for a long time 

while the intensity of the white noise is weak. 

The parameter values used in the simulation of the stochastic model (1.3) 

are given in the following tables. 

Table 1. Existence for .0E  

Parameter Values Source 

 0.3 [18] 

 0.2 Assumed 

 0.2 [18] 

1  0.03 [18] 

2  0.04 [18] 

 0.07 [18] 

 0.09 [18] 

 0.05 [18] 
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Table 2. Existence for .E  

Parameter Values Source 

 0.1 [18] 

 0.1 [18] 

 0.2 Assumed 

1  0.1 Assumed 

2  0.8 [18] 

 0.007 [18] 

 0.009 [18] 

 0.05 [18] 

5. Numerical Simulation 

In this section, we present some examples to illustrate the obtained 

theoretical results and give a brief discussion. For the numerical simulation, 

we use Milstein’s higher order method in [7] to obtain the following 

discretization of system (1.3). 

   1
2

2
,1

2
2
1

,11,22,111 


 kkkkkkkkkkk tStStSISISSS  

      kkkkkkkkkkk tItIIIISISII ,2,12,1,2,1,22,11,11,1   

 1
2

2
,2

2
,1

2
2 


 kk tI  

     1
2

2
,3

2
,2

2
3

,3,23,2,1,21,2 


 kkkkkkkk tItItIIII  

     1
2

2
,4

2
2
4

,44,21 


 kkkkkkkk tTtTtTITT  

where the increment 0,0 2  it  denote the intensities of white noise, 

 4,3,2,1,  iki  are the Gaussian random variables which follow the 
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distribution  .1,0N  Choosing different values of parameters, we give its 

simulation with initial value           .4.0,5.0,1,10,0,0,0 21 TIIS  

 

Figure 1. Simulation of trajectories of      tItItS 21 ,,  and  tT  of system 

(1.3) and system (1.2) with .1
~

SR  

 

Figure 2. Simulation of trajectories of      tItItS 21 ,,  and  tT  of system 

(1.3) and system (1.2) with 1
~

SR  and .01   

Example 5.1. We have taken the parameter values ,2.0,3.0   

,05.0,09.0,07.0,04.0,03.0,2.0 21   as in Table 1, 

with ,7.0  white noise intensities 5.0,5.0,1.0,8.0 4321   

such that 13060.0
~

,12431.00  SRR  and  





2

369.0   

.25.09.0,25.0 2
4

2
3   Thus the conditions in Theorem 3.1 are 

satisfied. Therefore by Theorem 3.1, the paths of SDE system (1.3) oscillates 

around the paths of ODE system (1.2). See Figure 1(a). 
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Moreover as mentioned in Remark 3.3, if ,01   then the solution of 

system (1.3) is asymptotically stable in the large. See Figure 2(a). 

From Figures 1 and 2, it is clear that the solution of both systems 

converges to the disease-free equilibrium  .0,0,0,5.10 E  That is, both 

infections  tI1  and  tI2  tend to zero very quickly and the disease will die 

out in the population. Also the susceptible population  tS  will approach 

5.1



 in time average. 

Example 5.2. Now we give a numerical simulation to explain Theorem 

4.1 using the parameter values given in Table 2. ,2.0,1.0,1.0   

,8.0,9.0,05.0,009.0,007.0,8.0,1.0,7.0 2121 

8.0,8.0 43   with .17642.12
~

SR  In this case, the disease will 

persists and the trajectories of stochastic system (1.3) oscillate around the 

trajectories of deterministic system (1.2) which supports Theorem 4.1.        

See Figure 3. We noticed that 10 R  and the solution of deterministic               

system (1.2) converges to the positive endemic equilibrium 

 .0085.0,99361.0,5429.0,1107.0E  

From Figure 4, it is evident that when the intensity of noises decreases, 

the fluctuation become small. 

 

Figure 3. Simulation of trajectories of      tItItS 21 ,,  and  tT  of system 

(1.3) and system (1.2). 
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Figure 4. Simulation of trajectories of      tItItS 21 ,,  and  tT  of system 

(1.3) for different white noise intensities. 

6. Conclusion 

In this work we proposed an HIV/AIDS epidemic model with vertical 

transmission and analyzed it with stochastic disturbances of white noise type. 

The importance of study may be divided into two categories. First, it 

contained the existence and uniqueness of positive global solution of the 

stochastic system. Second, it examines the stability of the stochastic system 

by establishing a threshold parameter .
~SR  When ,1

~
SR  the solution of 

stochastic system (1.3) oscillating around the disease free equilibrium of 

deterministic system (1.2). Furthermore we showed that when 1
~

SR  with 

increasing the noise intensities, the solution of stochastic system (1.3) is 

oscillating substantially around the endemic equilibrium of deterministic 

system (1.2). From our analytical and numerical results, we conclude that the 

main factor that affects the stability of the stochastic model (1.3) is the 

intensities of white noise. Finally, numerical simulations are used to validate 

our derived conclusions. 
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