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Abstract 

Closed-form analytical expressions for displacements at any point of a two-phase medium 

consisting of a homogeneous, isotropic, perfectly elastic half-space in smooth contact with a 

homogeneous, orthotropic, perfectly elastic half-space caused by a tensile fault of finite width 

located at an arbitrary distance from the interface in the isotropic half-space are obtained. The 

Airy stress function approach is used to obtain the expressions for displacements using the 

stress field by Minakshi [11]. The variation of the displacement field with the distance from the 

fault and with depth has been studied graphically for various dip angles. The effect of depth and 

dip angle is also examined. Also, the horizontal and vertical displacements of the surface are 

depicted graphically. 
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1. Introduction 

The study of earthquakes is linked closely to various fields including 

Basic Sciences such as Physics and Mathematics. Generally, earthquakes 

occur along geological faults which are surfaces of material discontinuity in 

the earth. A fault may be regarded as a dislocation created by the fracture of 

the rock material separating two rock masses. During the fracture of the two 

opposing fault surfaces suffer displacement with respect to each other. Fault 

models can provide valuable insights into the characteristics of faults and 

their behavior over time. These models can provide estimates of future 

deformation based on the observations of the past. The basic objective of 

these models is to provide mathematical explanation of how Earth’s crust 

spatially deforms and ultimately predict how it will change with time. The 

tensile source model is the generalization of the shear source model with the 

assumption that the slip vector can be arbitrarily oriented with respect to the 

fault and is not constrained to lie within the fault plane. In particular, tensile 

earthquakes occur in geothermal and volcanic areas which are rich in fluids. 

Tensile fault representation has several important geophysical applications, 

such as modeling of the deformation fields due to dyke injection in the 

volcanic region, mine collapse and fluid-driven cracks. The strains and 

stresses within the Earth constitute important precursors of earthquake. 

Therefore, the calculation of the static and quasi-static deformation of the 

Earth around surface faults is vital for any scheme for the prediction of 

earthquakes. 

Dislocation theory is very useful to determine the static changes that a 

company faulting within the earth, which has been discussed by Steketee [14, 

15]. As a mathematical model of a fault he used a displacement dislocation 

surface, i.e., a surface across which there is a discontinuity in the 

displacement vector. The calculation of the displacement and deformation at 

a given observation point in different earth models due to slip has a wide 

range of applications. Many researchers have considered the two half-space 

model comprising of two half-spaces with different properties separated by a 

single plane boundary to study the effect of faulting at a material 

discontinuity such as Singh and Rani [12], Singh et al. [13], Bonafede and 

Rivalta [2], Kumari et al. [8], Kumar et al. [7], Rani and Bala (2006), Bala 

and Rani [1], Malik et al. [9, 10], Godara et al. [5, 6] and others. Malik et al. 
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[10] studied the deformation of two isotropic, homogeneous, perfectly elastic 

half-spaces in smooth contact caused by a vertical tensile fault. Godara et al. 

[5] replaced the lower isotropic half-space by the orthotropic half-space and 

obtained the expressions for stresses and displacements at any point of a two-

phase medium consisting of a homogeneous, isotropic, perfectly elastic half-

space in smooth contact with a homogeneous, orthotropic, perfectly elastic 

half-space caused by due to various seismic sources. Godara et al. [6] studied 

the deformation caused by an inclined dip slip fault of finite width located at 

an arbitrary distance from the interface in the isotropic half-space. Minakshi 

et al. [11] considered the same model except the fault type and obtained the 

expressions for Airy stress function and stresses for both the half-spaces 

caused by a long inclined tensile fault.  

In the present paper, our aim is to obtain the displacement field caused 

by an inclined tensile fault of finite width located at an arbitrary distance 

from the interface in the isotropic half-space using the Airy stress function 

approach. The displacement field due to interface breaking and buried 

inclined tensile fault has been studied numerically for two orthotropic 

materials namely Barytes and Topaz. The surface plots for horizontal and 

vertical displacements are also drawn. It has been observed that variation in 

depth and dip angle have a significant effect on the variation of horizontal 

and vertical displacements. The results for an isotropic material, a 

transversely isotropic material and for a cubic material can be derived as 

particular cases. 

2. Theory 

A two-dimensional model consisting of two half-spaces (homogeneous, 

perfectly elastic that are in smooth contact along the plane 03 x  is 

established. The fault lies entirely in the upper half-space  03 x  that is 

isotropic with stress-strain relations; 

 ,3,2,1,,
21

2 





 



 jieep kkijijij  (1) 

where ijp  are the components of stress tensor, ije  are the components of 

strain tensor,  is the shear modulus and  is Poisson’s ratio. 
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The lower half-space  03 x  is assumed to be orthotropic with stress-

strain relations 
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Figure 1. Geometry of a long tensile fault of finite width L having lower edge 

at a distance d from the interface in the isotropic half-space in smooth contact 

with an orthotropic half-space where  is dip angle and s is the distance from 

the lower edge of the fault, measured in dip direction. 

The expressions of Airy stress function and stresses for a long tensile 

fault of width L and infinite length with lower edge of the fault at distance d 

from the interface obtained by Minakshi et al. [11] are as follows: 

for isotropic half-space, 
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for orthotropic half-space, 
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where now, 
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3. Solution of the Problem 

The displacements, for the isotropic half-space, are given by the 

expressions (Singh and Rani [12]) 
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The displacements, for the orthotropic half-space, are given by the 

expressions (Singh and Rani [12]) 
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Using equations (8), (10), (12a), and (12b), we will obtain the following 

expressions of displacements for a long tensile fault of width L and infinite 

length with lower edge of the fault at distance d from the interface as for 

orthotropic half-space, 
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4. Numerical Results and Discussion 

We compare the displacement field due to a long vertical tensile fault of 

width L its edge at the distance d from the interface located in the isotropic 

half-space in smooth contact with orthotropic half-space along the horizontal 

plane of two orthotropic materials namely Barytes and Topaz. We assume the 

isotropic half-space to be Poissonian so that .25.0  For the orthotropic half-
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space, we use the values of elastic constants given by Love (1944). For Topaz, 

3000,3560,2870 332211  ccc  

,860,900,1280 132312  ccc  

.1330,1350,1100 665544  ccc  

In terms of a unit of 610  grammes ,cmwt 2  this yields 2992.1a  and 

.8385.0b  For Barytes, 

,1074,800,907 332211  ccc  

,275,273,468 132312  ccc  

.283,293,122 665544  ccc  

In terms of a unit of 610  grams ,cmwt 2  this yields 3118.2a  and 

.3735.0b  

The results when the lower half-space is also isotropic follow by taking  

 





21

12
232211 ccc  






21

2
231312 ccc  

.665544  ccc  

We take 25.0  and 5.044 c  for numerical computations.  

When the lower half-space is cubic, we may take  

,332211 ccc   

,231312 ccc   

.665544 ccc   

The results when the lower half-space is transversely isotropic follow by 

taking 

,,, 554423132211 cccccc   

 
.

2
1211

66
cc

c


  
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Figure 2(a) 

 

Figure 2(b) 

 

Figure 2(c) 

Figure 2. Variation of 2U  versus y. 
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Figure 3(a) 

 

Figure 3(b) 

 

Figure 2(c) 

Figure 2. Variation of 2U  versus y. 
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Figures 2 and 3 display the variation of the horizontal displacement with 

distance from the fault caused by a tensile fault located in the upper half-

space at distance     Ldbda 5.0,0   and   Ldc   from the interface for 

dip angles  60,30  and 90  for Barytes and Topaz respectively. Here, 

the observer is in the upper half-space at .3 Lx   It is noticed that on moving 

from interface breaking fault to buried faults, the magnitude of horizontal 

displacement varies significantly. For Topaz, the horizontal displacement is 

zero for dip angle 30  for all y. The magnitude of maximum horizontal 

displacement for Topaz is more than that of Barytes in each case.  

In figures 4 and 5, the variation of vertical displacement with respect to 

distance from the fault is shown. In figure 4(a), for interface breaking fault, 

the displacement varies abruptly for dip angles 30° and 60°. The pattern and 

magnitude of displacement varies to a great extent as the value of d 

increases. The vertical displacement in case of topaz is negligible for dip 

angle 30° for interface breaking fault  .0d  In figure 4(a), the discontinuity 

of vertical displacement exists at 0y  for dip angle 30° while in case of 

Topaz, the displacement is discontinuous at 0y  and 5.0y  for dip angle 

60° for interface breaking fault and at 0y  for buried fault placed at depth 

Hd 5.0  inclined at dip 30°. 

Figures 6 and 7 depict the variation of horizontal displacement with 

depth from the fault for various dip angles for varying 𝑑 for Barytes and 

Topaz respectively. Here, the observer is at .3 Lx   It is observed that as the 

dip angle increases, the magnitude of maximum horizontal displacement 

decreases in each case. The variation of displacement is smooth for all the dip 

angles and all the values of d. The pattern of variation is not affected as the 

value of d increases in each case.  

In figures 8 and 9, the variation of vertical displacement with depth from 

the fault is represented. For Topaz, the vertical displacement is negligible 

near the fault, but as we move away from the fault, 3U  converges from 

negative to positive values. The pattern of variation of vertical displacement 

remains unchanged on moving from interface breaking fault to buried faults 

for each case.  
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Figures (10)-(13) depict the surface plots of horizontal and vertical 

displacement due to a vertical tensile fault located at (a) interface breaking 

fault (b) Ld 5.0  (c) Ld   for Barytes and Topaz. In figures (10) and (11), 

as the value of d increases, the horizontal and vertical displacement becomes 

less pronounced for Baryte. But in case of Topaz, the horizontal displacement 

is less pronounced and vertical displacement is more pronounced for interface 

breaking faults than buried faults. 

 

Figure 4(a) 

 

Figure 4(b) 
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Figure 4(c) 

Figure 4. Variation of 3U  versus y. 

 

Figure 5(a) 

 

Figure 5(b) 
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Figure 5(c) 

Figure 5. Variation of 3U  versus y. 

 

Figure 6(a) 

 

Figure 6(b) 
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Figure 6(c) 

Figure 6. Variation of 2U  versus z. 

 

Figure 7(a) 

 

Figure 7(b) 
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Figure 7(c) 

Figure 7. Variation of 2U  versus z. 

 

Figure 8(a) 

 

Figure 8(b) 
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Figure 8(c) 

Figure 8. Variation of 3U  versus z. 

 

Figure 9(a) 

 

Figure 9(b) 
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Figure 9(c) 

Figure 9. Variation of 3U  versus z. 

 

Figure 10(a) 

 

Figure 10(b) 
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Figure 10(c) 

Figure 10. Surface plots for .2U  

 

Figure 11(a) 

 

Figure 11(b) 
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Figure 11(c) 

Figure 11. Surface plots for .2U  

 

Figure 12(a) 

 

Figure 12(b) 
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Figure 12(c) 

Figure 12. Surface plots for .2U  

 

Figure 13(a) 

 

Figure 13(b) 
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Figure 13(c) 

Figure 13. Surface plots for .3U  

6. Conclusion 

We have obtained the closed-form expressions for displacements at any 

point of a two-phase medium consisting of an isotropic half-space overlying 

the orthotropic half-space due to an inclined tensile fault placed at distance d 

from the interface in the isotropic half-space. The results obtained satisfy the 

necessary continuity conditions 

,, 333333 uupp   

0,0 2323  pp  

at 03 x  for two half-spaces in smooth contact along the plane .03 x  It 

has been verified that when the lower half-space is replaced by the isotropic 

one, then the results of the present paper, in the limit, coincide with the 

corresponding results of Malik et al. [10] for two half-spaces to be in smooth 

contact. Numerical computations show that Topaz shows more displacement 

than Barytes for all the cases. Both the horizontal and vertical displacement 

tends to zero as y and z approaches to  for the orthotropic materials Barytes 

and Topaz. Further, there is significant effect of increasing the dip angle on 

the pattern and magnitude of displacements. Also, the effect of anisotropy is 

more pronounced in case of Topaz than Barytes. Variation in d results in 

strong variation in the pattern of displacements w.r.t. distance from the fault 
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in comparison to that of depth from the fault for both the materials. The 

present study may find application in analysing the deformation field around 

mining tremors and drilling into the crust of the earth. It may also find 

application in geophysical engineering problems regarding the deformation of 

isotropic medium lying over an orthotropic medium.  
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