DOM-CHROMATIC NUMBER OF CERTAIN PATH RELATED GRAPHS

M. JOICE PUNITHA and E. F. BEULAH ANGELINE

${ }^{1}$ Department of Mathematics
Bharathi Women's College (Autonomous)
(Affiliated to University of Madras)
Chennai, Tamilnadu-600108, India
E-mail: joicepunithabwemath@gmail.com
${ }^{2}$ Department of Mathematics
Nazareth College of Arts and Science
(Affiliated to University of Madras)
Chennai, Tamilnadu-600062, India
E-mail: efbeulahenry@gmail.com

Abstract

Let $G\left(V, E, \psi_{G}\right)$ be a graph with χ-coloring. A dominating set of G which is a subset of $V(G)$ is called a dom-coloring set if it contains a minimum of one vertex from each color class of G. The minimum number of such vertices taken over all coloring sets is called the cardinality of that set which yields the dom-chromatic number. It is denoted by $\gamma_{d c}(G)$. In this paper, the basic concepts of domination and coloring have been used to determine the dom-chromatic number of caterpillar, coconut tree, lobster, tadpole, pan and lollipop graphs.

1. Introduction

Graph Theory is a branch of Mathematics which has a wide range of applications in the research field of Mathematics. The basic concepts of domination and coloring in Graph Theory play a vital role in every field of Modern Science and Engineering. In 1962, Ore was the first to use the term "domination" for undirected graphs and he denoted the domination number

[^0]by $\delta(G)$ [5]. In 1977, Cockayne and Hedetniemi introduced the accepted notation $\gamma(G)$ to denote the domination number [3]. Graph coloring originated with the four-color conjecture in 1852. The combination of the two broad concepts give rise to a new problem called the dom-chromatic problem, which deals with the determination of the dom-chromatic number. Chaluvaraju and Appajigowda has introduced $\gamma_{d c}(G)$ in 2016 [2].

2. Preliminaries

Definition 2.1 [1]. Let G be an undirected graph. A subset D of vertex set V of G is a dominating set, if every vertex in G is either in D or adjacent to some vertex in D. The set D with minimum number of vertices gives the cardinality of D which is called the domination number $\gamma(G)$ of G.

Definition $2.2[4,8]$. The chromatic number $\chi(G)$ is the minimum number of colors used to color graph G such that any two adjacent vertices receive distinct colors.

Definition 2.3 [2]. Let $G\left(V, E, \psi_{G}\right)$ be a graph with χ-coloring. A dominating set of G is called a dom-coloring set, if it contains minimum of one vertex from each color class of G. The minimum number of such vertices taken over all dom-coloring sets is called the cardinality of that set which yields the dom-chromatic number. It is denoted by $\gamma_{d c}(G)$.

Definition 2.4 [6]. A path P_{n} is a tree on n vertices with 2 pendant vertices of degree 1 and remaining $n-1$ internal vertices of degree 2 .

Definition 2.5 [6]. A coconut tree $C T(m, l)$ is constructed by identifying l copies of P_{2} to an end vertex of the path P_{m}.

Definition 2.6 [6]. A caterpillar $C P(m, k)$, with k-pendant edges is an extension of $C T(m, l)$ in which every $m-1$ vertices of $C T(m, l)$, leaving the end vertex is attached with at least one copy of P_{2}.

Definition 2.7 [6]. A lobster $L(m, k)$ is an extension of $C P(m, k)$ in which each k pendent vertices of $C P(m, k)$ is attached with one pendant edge. In other words, removal of leaf nodes leaves a caterpillar.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 12, October 2022

Definition 2.8 [7]. Tadpole graph $T_{m, n}$ is obtained by joining a cycle C_{m} to a path P_{n} with a bridge.

Definition 2.9 [7] A pan graph $T_{m, 1}$ is obtained from a tadpole graph $T_{m, n}$ by replacing n by 1 . In other words, $T_{m, 1}$ is obtained by joining a cycle C_{m} to a singleton graph K_{1} with a bridge.

Definition 2.10 [10]. A lollipop graph $L_{m, n}$ is obtained by joining a complete graph K_{m} to a path $P_{n}: u_{1} u_{2}, \ldots u_{n}$ with a bridge.

3. Main Results

In this section certain graphs like coconut tree, caterpillar, lobster, tadpole, pan graph and lollipop graphs have been considered to determine the dom-chromatic number. The coloring algorithms have been designed for acyclic and connected graphs like coconut tree, caterpillar and lobster graphs.

Remark. In all these graphs, the vertices of the central path P_{n} are labelled as $\left\{u_{i}, 1 \leq i \leq n\right\}$ and the pendant vertices adjacent to the central path receive labels $\left\{u_{i k}, 2 \leq i \leq n-1,1 \leq k \leq \operatorname{deg}\left(u_{i}\right)-2\right\} \cup\left\{u_{i k}: i=1, n\right.$ and $\left.1 \leq k \leq \operatorname{deg}\left(u_{i}\right)-1\right\}$. In case of a lobster graph, each vertex of the central path P_{n} will be adjacent to at least one path P_{2}. Each P_{2} path adjacent to $u_{i}, 1 \leq i \leq n \quad$ are \quad labelled \quad as $\quad\left\{u_{i k}^{\prime}, u_{i k}^{\prime \prime}, 2 \leq i \leq n-1,1 \leq k \leq \operatorname{deg}\left(u_{i}\right)-2\right\}$ $\bigcup\left\{u_{i k}^{\prime}, u_{i k}^{\prime \prime}: i=1, n\right.$ and $\left.1 \leq k \leq \operatorname{deg}\left(u_{i}\right)-1\right\}$.

3.1 Coloring Algorithm for Coconut Tree and Caterpillar Graphs.

Input: $C T(m, l)$ or $C P(m, k)$ with $m \geq 3$ vertices.
Step 1. For path P_{m} in $C T(m, l)$ or $C P(m, k)$, color $u_{2 i-1}=1, u_{2 i}=2$ when $1 \leq i \leq m-1$.

Step 2. For pendant vertices adjacent to $u_{1}, 1 \leq i \leq m$, color $u_{i k}=1$ if $u_{i}=2$ and color $u_{i k}=2$ if $u_{i}=1$.

Output. χ-coloring of $C T(m, l)$ or $C P(m, k)$.

3.2 Coloring Algorithm for Lobster Graphs

Input. $L(m, k)$ with $m \geq 3$ vertices.
Step 1. For path P_{m} in $L(m, k)$, color $u_{2 i-1}=1, u_{2 i}=2$ when $1 \leq i \leq m-1$.

Step 2. Color each path $P_{2}:\left\{u_{i k}^{\prime}, u_{i k}^{\prime \prime}, 2 \leq i \leq n-1,1 \leq k \operatorname{deg}\left(u_{i}\right)-2\right\}$ $\cup\left\{u_{i k}^{\prime}, u_{i k}^{\prime \prime}, i=1, n\right.$ and $\left.1 \leq k \leq \operatorname{deg}\left(u_{i}\right)-1\right\}$ adjacent to u_{i} such that if $u_{i}=1$, color $u_{i k}^{\prime}=2, u_{i k}^{\prime \prime}=1$, else color $u_{i k}^{\prime}=1, u_{i k}^{\prime \prime}=2$.

Output. χ-coloring of $L(m, k)$.

3.3 Dom-Chromatic Number of Certain Path Related Graphs

The dom-chromatic number for certain path related graphs like coconut tree, caterpillar, lobster, tadpole, pan graph and lollipop graphs have been determined in this section.

Theorem 3.3.1 [2]. For any graph $G, \max \{\gamma(G), \chi(G)\} \leq \gamma_{d c}(G)$ $\leq \gamma(G)+\chi(G)-1$. The bounds are sharp.

Theorem 3.3.2. Let $C T(m, l)$ be a coconut tree with $m, l \geq 2$. Then $\gamma_{d c}(C T(m, l))=\left\{\begin{array}{lc}\frac{m}{3}+1, & m \equiv 0 \bmod 3 \\ \left\lceil\frac{m}{3}\right\rceil, & \text { otherwise }\end{array}\right.$.

Proof. Let $G=C T(m, l)$ be a coconut tree with $\left\{P_{m}: u_{i}, 1 \leq i \leq m\right\}$ as the central path and l pendant vertices adjacent to u_{m} are $u_{m l}, l>1$. By Coloring Algorithm 3.1, $C T(m, l)$ yields a proper coloring.

Case (i). For $m \equiv 0 \bmod 3$.
Let $D=\left\{u_{3 i-1}, 1 \leq i \leq \frac{m}{3}\right\} \cup\left\{u_{m}\right\}$ be a subset of $V(C T(m, l))$ such that every vertex in $V(C T(m, l))-D$ and some vertex in D are adjacent. Hence D is a dominating set with minimum of one vertex from every color class of $C T(m, l)$. Therefore, D is a dom-chromatic set with cardinality $\gamma_{d c}(G)=\frac{m}{3}+1$.

Case (ii). For $m \not \equiv 0 \bmod 3$.
Let $D=\left\{u_{3 i-1}, 1 \leq i \leq\left\lfloor\frac{m}{3}\right\rfloor\right\} \cup\left\{u_{m}\right\}$ be a subset of $V(C T(m, l))$ such that every vertex in $V(C T(m, l))-D$ and some vertex in D are adjacent. Hence D is a dominating set with a minimum of one vertex from every color class of $C T(m, l)$. Therefore, D is a dom-chromatic set with cardinality $\gamma_{d c}(G)=\left\lfloor\frac{m}{3}\right\rfloor+1=\left\lceil\frac{m}{3}\right\rceil$.

Figure 1. Coconut tree graph $C T(6,5)$.
Theorem 3.3.3. Let $C T(m, k)$ be a caterpillar graph with $m, k \geq 2$. Then $\gamma_{d c}(C T(m, k))=m$.

Proof. Let $G=C T(m, k)$ be a caterpillar graph with $\left\{P_{m}: u_{i}, 1 \leq i \leq m\right\}$ as the central path and the pendant vertices adjacent to the central path are $\left\{u_{i k}, 2 \leq i \leq n-1,1 \leq k \leq \operatorname{deg}\left(u_{i}\right)-2\right.$ and $u_{i k}, i=1, m$ and $\left.1 \leq k \leq \operatorname{deg}\left(u_{i}\right)-1\right\}$. By Coloring Algorithm 3.1, $C T(m, k)$ yields a proper coloring. Let $D=\left\{u_{i}, 1 \leq i \leq m\right\}$ be a subset of $V(C T(m, k))-D$ such that every vertex in $V(C T(m, k))-D$ and some vertex in D are adjacent. Hence D is a dominating set with minimum of one vertex from every color class of $C T(m, k)$. The dominating set D is minimum because one vertex less than m does not satisfy the domination property. Hence D is a dom-chromatic set with cardinality $\gamma_{d c}(G)=m$.

Figure 2. Caterpillar graph $C P(5,11)$.
Theorem 3.3.4. Let $L(m, k)$ be a lobster graph with $m, k \geq 2$. Then $\gamma_{d c}(L(m, k))=\sum_{i=1}^{m} d\left(u_{i}\right)-2(m-1)$.

Proof. Consider $G=L(m, k)$ to be a lobster with $\left\{P_{m}: u_{i}, 1 \leq i \leq m\right\}$ as the central path and each vertex of the central path P_{m} will be adjacent to at least one path of length 2 . Each path P_{2} adjacent to $u_{i}, 1 \leq i \leq m$ are labelled as $\left\{P_{2}: u_{i k}^{\prime} u_{i k}^{\prime}, 2 \leq i \leq m-1,1 \leq k \leq \operatorname{deg}\left(u_{i}\right)-2\right.$ and $u_{i k}, i=1, n$ and $\left.1 \leq k \leq \operatorname{deg}\left(u_{i}\right)-1\right\}$. The Coloring Algorithm 3.2, yields a proper coloring of $L(m, k)$. Let $D=\left\{u_{i k}^{\prime}, 2 \leq i \leq m-1,1 \leq \operatorname{deg}\left(u_{i}\right)-2\right.$ and $u_{i k}, i=1, m$ and $\left.1 \leq k \leq \operatorname{deg}\left(u_{i}\right)-1\right\}$ be a subset of $V(L(m, k))$ such that every vertex in $V(L(m, k))-D$ and some vertex in D are adjacent. Hence D is a dominating set with minimum one vertex from every color class of $L(m, k)$. Therefore D is a dom-chromatic set with cardinality $\gamma_{d c}(G)=\sum_{i=1}^{m} d\left(u_{i}\right)-2(m-2)-2$ $=\sum_{i=1}^{m} d\left(u_{i}\right)-2 m+4-2 m+4-2=\sum_{i=1}^{m} d\left(u_{i}\right)-2 m+2=\sum_{i=1}^{m} d\left(u_{i}\right)-(m-1)$.

Figure 3. Lobster $L(3,6)$.

Theorem 3.3.5 [2]. For any path P_{p} with $p \geq 4$ vertices, $\gamma_{d c}\left(P_{p}\right)=\gamma\left(P_{p}\right)=\left\lceil\frac{p}{3}\right\rceil$.

Theorem 3.3.6 [9]. Let G be a cycle C_{n}, of length $n>5$. Then $\gamma_{d c}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.

Theorem 3.3.7 [2]. Let G be an arbitrary graph. Then $\gamma_{d c}(G)=p$ if and only $G \cong K_{p}$ or $\overline{K_{p}}$.

Theorem 3.3.8. Let $T_{m, n}$ be a tadpole graph $m \geq 5, n \geq 2$. Then $\gamma_{d c}\left(C_{m}\right)=\left\lceil\frac{m}{3}\right\rceil$ and $\gamma_{d c}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.

Proof. Consider a tadpole $T_{m, n}$ which has a cycle $C_{m}: v_{1} v_{2} \ldots v_{m} v_{1}$ and path $P_{n}: u_{1} u_{2} \ldots u_{n}$ joined by a bridge, $m \geq 5, n \geq 2$. Choose v_{1} as the vertex which joins C_{m} with the path P_{n} such that v_{1} is adjacent with u_{1}. By the theorems 3.3.5 and 3.3.6, $\gamma_{d c}\left(C_{m}\right)=\left\lceil\frac{m}{3}\right\rceil$ and $\gamma_{d c}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$. Since the vertex v_{1} of C_{m} dominates u_{1} of P_{1}, the dom-chromatic number is obtained for $P_{n-1}: u_{2} u_{3} \ldots u_{n}$ starting from vertex v_{2}. Hence $\gamma_{d c}\left(P_{n-1}\right)=\left\lceil\frac{n-1}{3}\right\rceil$. Therefore we get $\gamma_{d c}\left(T_{m, n}\right)=\left\lceil\frac{m}{3}\right\rceil+\left\lceil\frac{n-1}{3}\right\rceil$.

Figure 4. Tadpole graph $T_{6,4}$.

Theorem 3.3.9. Let $T_{m, 1}$ be a pan graph with $m \geq 5$. Then $\gamma_{d c}\left(T_{m, 1}\right)=\gamma_{d c}\left(C_{m}\right)=\left\lceil\frac{m}{3}\right\rceil$.

Proof. Consider a pan graph $T_{m, 1}$ which has a cycle $C_{m}: v_{1} v_{2} \ldots v_{m} v_{1}, m \geq 5$ and K_{1} joined by a bridge. Choose v_{1} as the vertex which joins C_{m} with K_{1} such that v_{1} is adjacent with u of K_{1}. By the Theorem 3.3.6, $\gamma_{d c}\left(C_{m}\right)=\left\lceil\frac{m}{3}\right\rceil$. Since the vertex v_{1} of C_{m} dominates u of K_{1}, the dom-chromatic number of $T_{m, 1}$ is the same as that of C_{m}. Hence $\gamma_{d c}\left(T_{m, 1}\right)=\left\lceil\frac{m}{3}\right\rceil$.

Figure 5. Pan graph $T_{7,1}$.
Theorem 3.3.10. Let $L_{m, n}$ be a lollipop graph with $m \geq 5, n \geq 2$. Then $\gamma_{d c}\left(L_{m, n}\right)=m+\left\lceil\frac{n-1}{3}\right\rceil$.

Proof. Consider a lollipop $L_{m, n}$. Let $v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of a complete graph K_{m}. Choose v_{1} as the vertex which joins K_{m} with the path P_{n} such that v_{1} is adjacent with u_{1}. By Theorems 3.3.5 and 3.3.7, $\gamma_{d c}\left(K_{m}\right)=m$ and $\gamma_{d c}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$. Since the vertex v_{1} of K_{m} dominates u_{1} of P_{1}, the dom-chromatic number is obtained for $P_{n-1}: u_{2} u_{3} \ldots u_{n}$ starting from vertex v_{2}. Hence $\gamma_{d c}\left(P_{n-1}\right)=\left\lceil\frac{n-1}{3}\right\rceil$. Therefore we get $\gamma_{d c}\left(L_{m, n}\right)=m$ $+\left\lceil\frac{n-1}{3}\right\rceil$.

Figure 6. Lollipop graph $L_{6,4}$.

4. Conclusion

In this paper, the concepts of domination and coloring are applied to determine the dom-chromatic number of certain path related graphs like coconut tree, caterpillar, lobster, tadpole, pan graph and lollipop graphs. This can be extended to networks like Butterfly and Benes network which is open for study.

References

[1] B. Chaluvaraju and C. AppajiGowda, The Neighbour Colouring Set in Graphs, International Journal of Applied Mathematics and Computation (2012), 301-311.
[2] B. Chaluvaraju and C. Appajigowda, The Dom-Chromatic number of a graph, Malaya Journal of Matematik (2016), 1-7.
[3] E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977), 247-261.
[4] E. Sampathkumar and G. D. Kamath, A Generalization of Chromatic Index, Discrete Mathematics 124 (1994), 173-177.
[5] O. Ore, Theory of graphs, Amer. Math. Soci. Transl. 38 (1962), 206-212.
[6] Pradeep G. Bhat and Devadas Nayak C, Balance index set of caterpillar and lobster graphs, International J. Math. Combin. 3 (2016), 123-135.
[7] Saumya Verma and Mohit James, Chromatic index, total coloring and diameter of pan and tadpole graph, Journal of Computer and Mathematical Sciences 10(6) (2019), 12941301.
[8] T. R. Jensen and B. Toft, Graph coloring problem, John Wiley and Sons, Inc, New York, 1995.
[9] P. Usha, M. Joice Punitha and E. F. Beulah Angeline, Dom-chromatic number of certain graphs, International Journal of Computer Sciences and Engineering 7(5) (2019), 198202.
[10] V. T. Chandrasekaran and N. Rajasri, Essential Domination of Some Special Graphs, Journal of Physical Sciences 24 (2019), 91-96.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 12, October 2022

[^0]: 2020 Mathematics Subject Classification: 62.
 Keywords: Dominating set, Chromatic number, Dom-coloring set, Dom-chromatic number. Received February 3, 2022; Accepted March 2, 2022

