EXPONENTIAL DIOPHANTINE EQUATION IN THREE UNKNOWNS

MANJU SOMANATH ${ }^{1}$, K. RAJA ${ }^{2}$, J. KANNAN ${ }^{3}$ and S. NIVETHA ${ }^{4}$

${ }^{1,2}$ PG and Research Department of Mathematics
National College, Trichy-620 001, India
3,4Department of Mathematics
Ayya Nadar Janaki Ammal College
Sivakasi-626 124, India
E-mail: jayram.kannan@gmail.com
nivetha19699@gmail.com

Abstract

In this manuscript, we demonstrate with the purpose of the given two singular Exponential Diophantine equation $E_{1}: 23^{x}+24^{y}=z^{2}$ and $E_{2}: 62^{x}+63^{y}=z^{2}$ has a unique solution in $N \cup\{0\}$. The solution (x, y, z) are $(0,1,5)$ and $(0,1,8)$ respectively.

I. Introduction

In 2007, Acu [1] proved that $(3,0,3)$ and $(2,1,3)$ are only two solutions (x, y, z) for the Diophantine Equation $2^{x}+5^{y}=z^{2}$ where x, y and z are non-negative integers. In 2011, Suvarnamnai, Singta and Chotchaisthit [3] proved that the two Diophantine equations $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$ have no non-negative integer solution. In 2012, Chotchaisthit [3] found all non-negative integer solutions for the Diophantine equation of type $4^{x}+p^{y}=z^{2}$ where p is a positive prime number.

In this paper, we show that with the purpose of the given two singular exponential Diophantine equation $E_{1}: 23^{x}+24^{y}=z^{2} \quad$ and $E_{2}: 62^{x}+63^{y}=z^{2}$ has a unique solution in $N \cup\{0\}$. The solution (x, y, z) are $(0,1,5)$ and $(0,1,8)$ respectively.

II. Preliminaries

In this part we make use of the factorizable technique and Catalan's conjecture to donate with indication the two lemmas.

Proposition 2.1 [4] (The Catalan's conjecture). (3, 2, 2, 3) is a only one of its kind explanation (a, b, x, y) designed for the Diophantine equation $E: a^{x}-b^{y}=1$ where a, b, x and y are integers with $\min \{a, b, x, y\} \geq 2$.

Lemma 2.2. The Diophantine equation $E_{11}: 23^{x}+1=z^{2}$ has no nonnegative integer points.

Proof. Presume that at hand are non-negative integers x and y such that $23^{x}+1=z^{2}$. We deal with different cases.

Case 1: Fix, $x=0$ implies $z^{2}=2$, which is contradiction to $z \in N \bigcup\{0\}$. We conclude that $x \geq 1$.

Case 2: Now $x \geq 1$, Thus, $E_{11}: z^{2}=23^{x}+1 \geq 23^{1}+1=24$. Then $z \geq 5$. At the moment, we think about on the equation $E_{11}: z^{2}-23^{x}=1$. By Proposition 2.1, E_{11} there is no integer points in $N \cup\{0\}$, if $x>1$. Then we conclude that implies that $z^{2}=24$. This is a contradiction. Hence, the equation $23^{x}+1=z^{2}$ has no non-negative integer solution.

Lemma 2.3. $(1,5)$ is a inimitable integer point (y, z) for the Diophantine Equation $E_{12}: 1+24^{y}=z^{2}$ everywhere y and z are non-negative integers.

Proof. Suppose y and z are non-negative integers such with the intention of $1+24^{y}=z^{2}$. Now, we consider the equation E_{12} in different cases.

Case (i): Fix, $y=0$ followed by $z^{2}=2$, which is unfeasible (z does not belongs to $N \bigcup\{0\}$).

Case (ii): Fix, $y \geq 1$. Therefore,

$$
\begin{aligned}
z^{2} & =24^{y}+1 \\
& \geq 24+1=25 .
\end{aligned}
$$

At that time, $z \geq 5$. At the moment, we think about on the equation $E_{12}: z^{2}-24 y=1$. By Proposition 2.1, E_{12} there is no integer points in $N \cup\{0\}$, if $y>1$. Then we conclude that $y=1$, implies that $z=5$. Hence, $(1,5)$ is a unique points (y, z) for the equation $E_{12}: 1+24^{y}=z^{2}$ where y and z are non-negative integers.

By lemma 2.3, we can see that $23^{0}+24^{1}=5^{2}$. In the after that section, we determination establish the focal effect.

Lemma 2.4. The Diophantine equation $E_{21}: 62^{x}+1=z^{2}$ has no nonnegative integer points.

Proof. Assume that there are non- negative integers x and z such that $62^{x}+1=z^{2}$. We will discuss in this satiation in several cases.

Case (i): Fix $x=0$ implies the equation E_{21} gives $z^{2}=2$ which is without a solution in $N \cup\{0\}$.

Case (ii): Now, the value of $x \geq 1$. Thus the equation E_{21} implies $z^{2}=62^{x}+1 \geq 62^{1}+1=63$.

That means $z \geq 8$. Now, we consider on the equation $E_{21}: z^{2}-62^{x}=1$. By Proposition 2.1, if $x>1$, there is no integer points other than $(z, x)=(3,2)$, then we have $x=1$. Then $z^{2}=63$. This is a contradiction to $z \in N \cup\{0\}$. Hence, the equation $62^{x}+1=z^{2}$ has no nonnegative integer points.

Lemma 2.5. (1,8) is a single point of (y, z) for the equation $E_{22}: 1+63^{y}=z^{2}$ where y and z are non-negative integers.

Proof. Let y and z be non-negative integers such that $1+63^{y}=z^{2}$. If $y=0$, then $z^{2}=2$ which is impossible. Then $y \geq 1$. Thus, $z^{2}=63^{y}+1 \geq 63+1=64$. Then, $z \geq 8$. Now, we consider on the equation $z^{2}-63^{y}=1$. By Proposition 2.1, we have $y=1$. Then, $z=8$. Hence, $(1,8)$
is a unique solution (y, z) for the equation $1+63^{y}=z^{2}$ where y and z are non-negative integers.

By lemma 2.5, we can see that $62^{0}+63^{1}=8^{2}$. In the next section, we will present the most important consequence.

III. Main Results

Theorem 3.1. $(0,1,5)$ is a single integral points (x, y, z) for the Diophantine equation $E_{M 1}: 23^{x}+24^{y}=z^{2}$ where x, y and z are nonnegative integers.

Proof. Let (x, y) and z be non-negative integers such that $23^{x}+24^{y}=z^{2}$. By Lemma 2.2, we have $y \geq 1$. Now, we divide the number x into two cases.

Case (i): Fix, $x=0$. By Lemma 2.3, we have only the integral point is $(y, z)=(1,5)$.

Case(ii). Fix, $x \geq 1$. Make a note of that z is an odd integer. Then $z^{2} \equiv 1(\bmod 4)$. If x is odd, then $23^{x} \equiv 3(\bmod 4)$, it follows that $24^{y} \equiv 2(\bmod 4)$. This is a contradiction to $24^{y} \equiv 0(\bmod 4)$. Hence conclude that x is only non-negative even number.

Suppose that, x is any non-negative even number. That is $x=2 k$, where $k \in N \cup\{0\}$. Then $z^{2}-23^{2 k}=24^{y}$. Using factorization methods to finding the solutions.

Case (i). Assume that, $\left(z+23^{k}\right)\left(z-23^{k}\right)=24^{y}$ which equivalent is to $\left(z-23^{k}\right)=2^{2 y}$ and $\left(z+23^{y}\right)=2^{y}\left(3^{y}\right)$. It follows that $2\left(23^{k}\right)=2^{y}\left(3^{y}\right)$ $-2^{2 y}=2^{y}\left(3^{y}-2^{y}\right)$ which implies $2=2^{y}$ and $3^{y}-2^{y}=23^{k}$, its only possible $y=1$. It gives $3^{y}-2^{y}=23^{0}$. Hence $x=0$, which is only suitable non-negative even integer.

Case (ii): Suppose that, $\left(z+23^{k}\right)\left(z-23^{k}\right)=24^{y}$ which equivalent is to
$\left(z+23^{k}\right)=12^{y}$ and $\left(z-23^{k}\right)=2^{y}$. By the factoring that $2\left(23^{k}\right)=2^{y}\left(6^{y}-1\right)$ which implies $2^{y}=2$ and $23^{k}=6^{y}-1$. It follows that $y=1$ but $23^{k} \neq 5, \forall k \in N$.

Therefore, ($0,1,5$) is a single point (x, y, z) for the equation $23^{x}+24^{y}=z^{2}$ where x, y and z are non-negative integers.

Corollary 3.2. The Diophantine equation $23^{x}+24^{y}=w^{4}$ has no nonnegative integer point.

Proof. Assume that there are non-negative integers x, y and w such that $23^{x}+24^{y}=w^{4}$. Let $z=w^{2}$. Then $23^{x}+24^{y}=z^{2}$. By Theorem 3.1, we have $(x, y, z)=(0,1,5)$.

Then $w^{2}=z=5$. This is a contradiction to w is an integer. Hence, the equation $23^{x}+24^{y}=w^{4}$ has no non-negative integer solution.

Theorem 3.3. $(0,1,8)$ is a unique solution (x, y, z) for the Diophantine equation $E_{M 2}: 62^{x}+63^{y}=z^{2}$ where x, y and z are non-negative integers.

IV. Conclusion

We announcement in our consequences that 23 is odd prime number and $24-23=1$. Let p be an odd prime number. We possibly will request for the set of all points (x, y, z) for the Diophantine equation $E: p^{x}+(p+1)^{y}=z^{2}$ where x, y and z are non-negative integer.

References

[1] D. Acu, On a Diophantine equation $2^{x}+5^{y}=z^{2}$, Gen. Math. 15 (2007), 145-148.
[2] E. Catalan, Noteextraite dune lettre adressee a lediteur, J. Reine Angew. Math. 27 (1844), 192.
[3] S. Chotchaisthit, On the Diophantine equation $4^{x}+p^{y}=z^{2}$ where p is a prime number, Amer. J. Math. Sci. 1 (2012), 191-193.
[4] P. Mihailescu, Primary cycolotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. 27 (2004), 167-195.

1118 MANJU SOMANATH, K. RAJA, J. KANNAN and S. NIVETHA

[5] B. Sroysang, On the Diophantine equation $3^{x}+5^{y}=z^{2}$, Int. J. Pure Appl. Math. 81 (2012), 605-608.
[6] L. J. Mordell, Diophantine Equations, Academic Press, New York, 1969.
[7] L. E. Dickson, History of Theory of Numbers, Vol.2, Chelsea Publishing Company, New York, 1952.
[8] Manju Somanath, J. Kannan and K. Raja, On a class of solutions for hyperbolic Diophantine equation, International Journal of Applied Mathematics 32(3) (2019), 443449.

