

EXPONENTIAL DIOPHANTINE EQUATION IN THREE UNKNOWNS

MANJU SOMANATH¹, K. RAJA², J. KANNAN³ and S. NIVETHA⁴

^{1,2}PG and Research Department of Mathematics National College, Trichy-620 001, India

^{3,4}Department of Mathematics
Ayya Nadar Janaki Ammal College
Sivakasi-626 124, India
E-mail: jayram.kannan@gmail.com
nivetha19699@gmail.com

Abstract

In this manuscript, we demonstrate with the purpose of the given two singular Exponential Diophantine equation $E_1: 23^x + 24^y = z^2$ and $E_2: 62^x + 63^y = z^2$ has a unique solution in $N \cup \{0\}$. The solution (x, y, z) are (0, 1, 5) and (0, 1, 8) respectively.

I. Introduction

In 2007, Acu [1] proved that (3, 0, 3) and (2, 1, 3) are only two solutions (x, y, z) for the Diophantine Equation $2^x + 5^y = z^2$ where x, y and z are non-negative integers. In 2011, Suvarnamnai, Singta and Chotchaisthit [3] proved that the two Diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$ have no non-negative integer solution. In 2012, Chotchaisthit [3] found all non-negative integer solutions for the Diophantine equation of type $4^x + p^y = z^2$ where p is a positive prime number.

In this paper, we show that with the purpose of the given two singular exponential Diophantine equation $E_1 : 23^x + 24^y = z^2$ and $E_2 : 62^x + 63^y = z^2$ has a unique solution in $N \cup \{0\}$. The solution (x, y, z) are (0, 1, 5) and (0, 1, 8) respectively.

2010 Mathematics Subject Classification: 11D09, 11D99.

Keywords: exponential Diophantine equation, congruence, lattice points, Catalan's conjecture. Received March 7, 2020; Accepted May 12, 2020

II. Preliminaries

In this part we make use of the factorizable technique and Catalan's conjecture to donate with indication the two lemmas.

Proposition 2.1 [4] (The Catalan's conjecture). (3, 2, 2, 3) is a only one of its kind explanation (a, b, x, y) designed for the Diophantine equation $E: a^x - b^y = 1$ where a, b, x and y are integers with min $\{a, b, x, y\} \ge 2$.

Lemma 2.2. The Diophantine equation $E_{11}: 23^x + 1 = z^2$ has no nonnegative integer points.

Proof. Presume that at hand are non-negative integers *x* and *y* such that $23^x + 1 = z^2$. We deal with different cases.

Case 1: Fix, x = 0 implies $z^2 = 2$, which is contradiction to $z \in N \cup \{0\}$. We conclude that $x \ge 1$.

Case 2: Now $x \ge 1$, Thus, $E_{11} : z^2 = 23^x + 1 \ge 23^1 + 1 = 24$. Then $z \ge 5$. At the moment, we think about on the equation $E_{11} : z^2 - 23^x = 1$. By Proposition 2.1, E_{11} there is no integer points in $N \cup \{0\}$, if x > 1. Then we conclude that implies that $z^2 = 24$. This is a contradiction. Hence, the equation $23^x + 1 = z^2$ has no non-negative integer solution.

Lemma 2.3. (1, 5) is a inimitable integer point (y, z) for the Diophantine Equation $E_{12}: 1 + 24^y = z^2$ everywhere y and z are non-negative integers.

Proof. Suppose y and z are non-negative integers such with the intention of $1 + 24^y = z^2$. Now, we consider the equation E_{12} in different cases.

Case (i): Fix, y = 0 followed by $z^2 = 2$, which is unfeasible (z does not belongs to $N \cup \{0\}$).

Case (ii): Fix, $y \ge 1$. Therefore,

$$z^2 = 24^y + 1$$

 $\ge 24 + 1 = 25.$

At that time, $z \ge 5$. At the moment, we think about on the equation $E_{12}: z^2 - 24y = 1$. By Proposition 2.1, E_{12} there is no integer points in $N \cup \{0\}$, if y > 1. Then we conclude that y = 1, implies that z = 5. Hence, (1, 5) is a unique points (y, z) for the equation $E_{12}: 1 + 24^y = z^2$ where y and z are non-negative integers.

By lemma 2.3, we can see that $23^0 + 24^1 = 5^2$. In the after that section, we determination establish the focal effect.

Lemma 2.4. The Diophantine equation $E_{21}: 62^x + 1 = z^2$ has no nonnegative integer points.

Proof. Assume that there are non-negative integers x and z such that $62^x + 1 = z^2$. We will discuss in this satiation in several cases.

Case (i): Fix x = 0 implies the equation E_{21} gives $z^2 = 2$ which is without a solution in $N \cup \{0\}$.

Case (ii): Now, the value of $x \ge 1$. Thus the equation E_{21} implies $z^2 = 62^x + 1 \ge 62^1 + 1 = 63$.

That means $z \ge 8$. Now, we consider on the equation $E_{21}: z^2 - 62^x = 1$. By Proposition 2.1, if x > 1, there is no integer points other than (z, x) = (3, 2), then we have x = 1. Then $z^2 = 63$. This is a contradiction to $z \in N \cup \{0\}$. Hence, the equation $62^x + 1 = z^2$ has no non-negative integer points.

Lemma 2.5. (1, 8) is a single point of (y, z) for the equation $E_{22}: 1+63^y = z^2$ where y and z are non-negative integers.

Proof. Let y and z be non-negative integers such that $1 + 63^y = z^2$. If y = 0, then $z^2 = 2$ which is impossible. Then $y \ge 1$. Thus, $z^2 = 63^y + 1 \ge 63 + 1 = 64$. Then, $z \ge 8$. Now, we consider on the equation $z^2 - 63^y = 1$. By Proposition 2.1, we have y = 1. Then, z = 8. Hence, (1, 8)

is a unique solution (y, z) for the equation $1 + 63^y = z^2$ where y and z are non-negative integers.

By lemma 2.5, we can see that $62^0 + 63^1 = 8^2$. In the next section, we will present the most important consequence.

III. Main Results

Theorem 3.1. (0, 1, 5) is a single integral points (x, y, z) for the Diophantine equation $E_{M1}: 23^x + 24^y = z^2$ where x, y and z are non-negative integers.

Proof. Let (x, y) and z be non-negative integers such that $23^x + 24^y = z^2$. By Lemma 2.2, we have $y \ge 1$. Now, we divide the number x into two cases.

Case (i): Fix, x = 0. By Lemma 2.3, we have only the integral point is (y, z) = (1, 5).

Case(ii). Fix, $x \ge 1$. Make a note of that z is an odd integer. Then $z^2 \equiv 1 \pmod{4}$. If x is odd, then $23^x \equiv 3 \pmod{4}$, it follows that $24^y \equiv 2 \pmod{4}$. This is a contradiction to $24^y \equiv 0 \pmod{4}$. Hence conclude that x is only non-negative even number.

Suppose that, x is any non-negative even number. That is x = 2k, where $k \in N \cup \{0\}$. Then $z^2 - 23^{2k} = 24^y$. Using factorization methods to finding the solutions.

Case (i). Assume that, $(z + 23^k)(z - 23^k) = 24^y$ which equivalent is to $(z - 23^k) = 2^{2y}$ and $(z + 23^y) = 2^y(3^y)$. It follows that $2(23^k) = 2^y(3^y) - 2^{2y} = 2^y(3^y - 2^y)$ which implies $2 = 2^y$ and $3^y - 2^y = 23^k$, its only possible y = 1. It gives $3^y - 2^y = 23^0$. Hence x = 0, which is only suitable non-negative even integer.

Case (ii): Suppose that, $(z+23^k)(z-23^k) = 24^y$ which equivalent is to

 $(z+23^k) = 12^y$ and $(z-23^k) = 2^y$. By the factoring that $2(23^k) = 2^y(6^y - 1)$ which implies $2^y = 2$ and $23^k = 6^y - 1$. It follows that y = 1 but $23^k \neq 5$, $\forall k \in N$.

Therefore, (0, 1, 5) is a single point (x, y, z) for the equation $23^{x} + 24^{y} = z^{2}$ where x, y and z are non-negative integers.

Corollary 3.2. The Diophantine equation $23^x + 24^y = w^4$ has no nonnegative integer point.

Proof. Assume that there are non-negative integers x, y and w such that $23^x + 24^y = w^4$. Let $z = w^2$. Then $23^x + 24^y = z^2$. By Theorem 3.1, we have (x, y, z) = (0, 1, 5).

Then $w^2 = z = 5$. This is a contradiction to w is an integer. Hence, the equation $23^x + 24^y = w^4$ has no non-negative integer solution.

Theorem 3.3. (0, 1, 8) is a unique solution (x, y, z) for the Diophantine equation E_{M2} : $62^x + 63^y = z^2$ where x, y and z are non-negative integers.

IV. Conclusion

We announcement in our consequences that 23 is odd prime number and 24-23 = 1. Let p be an odd prime number. We possibly will request for the set of all points (x, y, z) for the Diophantine equation $E: p^{x} + (p+1)^{y} = z^{2}$ where x, y and z are non-negative integer.

References

- [1] D. Acu, On a Diophantine equation $2^x + 5^y = z^2$, Gen. Math. 15 (2007), 145-148.
- [2] E. Catalan, Noteextraite dune lettre adressee a lediteur, J. Reine Angew. Math. 27 (1844), 192.
- [3] S. Chotchaisthit, On the Diophantine equation $4^x + p^y = z^2$ where p is a prime number, Amer. J. Math. Sci. 1 (2012), 191-193.
- [4] P. Mihailescu, Primary cycolotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. 27 (2004), 167-195.

1118 MANJU SOMANATH, K. RAJA, J. KANNAN and S. NIVETHA

- [5] B. Sroysang, On the Diophantine equation $3^x + 5^y = z^2$, Int. J. Pure Appl. Math. 81 (2012), 605-608.
- [6] L. J. Mordell, Diophantine Equations, Academic Press, New York, 1969.
- [7] L. E. Dickson, History of Theory of Numbers, Vol.2, Chelsea Publishing Company, New York, 1952.
- [8] Manju Somanath, J. Kannan and K. Raja, On a class of solutions for hyperbolic Diophantine equation, International Journal of Applied Mathematics 32(3) (2019), 443-449.