

MADDENING SOLUTIONS FOR AN EXPONENTIAL DIOPHANTINE EQUATION CONCERNING DEFINITE PRIME NUMBERS $(2P + 1)^{u} + (P - 1)^{v} - 2 = w^{2}$

S. SARANYA and V. PANDICHELVI

¹Research Scholar
²Assistant Professor
PG and Research Department of Mathematics
Urumu Dhanalakshmi College, Trichy, India
Affiliated to Bharathidasan University, India
E-mail: srsaranya1995@gmail.com
mvpmahesh2017@gmail.com

Abstract

In this calligraphy, an exponential Diophantine equation $(2P+1)^{u} + (P-1)^{v} - 2 = w^{2}$ where *P* is a prime number of the form 6n + 1, $n \in N$, the set of all-natural numbers and *n* is not a multiple of prime numbers 2, 3, 5, 7 etc. and *u*, *v*, *w* are non-negative integers is studied for all the choices of u + v = 1, 2, 3. Also, it is evinced that the crucial solutions are (u, v, w) = (1, 2, P) and there is no solution for all other choices of *u*, *v* by retaining elementary concepts of congruencies.

Introduction

A Diophantine equation is an equation generally connecting two or more variables such that its solutions are integers. A Diophantine equation has further a variable or variables as exponents, it is recognized as an exponential Diophantine equation [1-4]. In [5-7], the authors clarify the solution of different types of exponential Diophantine equations involving prime numbers. In provision of comprehensive study one can relegate [8-11]. In this paper, an exponential Diophantine equation $(2P + 1)^u + (P - 1)^v - 2$

²⁰²⁰ Mathematics Subject Classification: 11D61.

Keywords: Exponential Diophantine Equation, integer solutions, congruent. Received August 13, 2021 Accepted December 12, 2021

 $= w^2$ where P is a prime number of the category 6n + 1, $n \in N$, the set of all-natural numbers and n is not a multiple of prime numbers 2, 3, 5, 7 etc. and u, v, w are non-negative integers is considered for all the preferences of u + v = 1, 2, 3. Also, it is revealed that all possible solutions are (u, v, w) = (1, 2, P) and there is no other solution by employing basic perceptions of congruences.

Lemma 1. If $P \ge 7$ is a prime number of the form 6n + 1 where $n \in N$ and n is not a manifold of prime numbers 2, 3, 5, 7 etc, then the non-linear Diophantine equation $(2P + 1)^u - 1 = w^2$ has no solution where u and w are non-negative integers.

Proof. It is clear that any square number is congruence to either 0 (mod 3) or 1(mod 3).

On the other hand, for any prime number $P \ge 7$ is of the form P = 6n + 1 where $n \in N$ and n is not a multiple of prime numbers 2, 3, 5, 7 etc, $P \equiv 1 \pmod{3}$

Consequently

$$2P + 1 \equiv 0 \pmod{3}$$
$$\Rightarrow (2P + 1)^{u} \equiv 0 \pmod{3}$$
$$\Rightarrow (2P + 1)^{u} - 1 \equiv 2 \pmod{3}.$$

This contradiction shows that, there is no solution to the desired equation.

Lemma 2. If P > 3 is a prime number of the form 6n + 1 where $n \in N$ and *n* is not a multiple of prime numbers 2, 3, 5, 7 etc, then the equation $(P-1)^{v} - 1 = w^{2}$ has no integer solution where *v* and *w* are non-negative integers.

Proof. As the explanation given in lemma 1, $P \equiv 1 \pmod{3}$

Thus,

$$P - 1 \equiv 0 \pmod{3}$$
$$\Rightarrow (P - 1)^{u} \equiv 0 \pmod{3}$$
$$\Rightarrow (P - 1)^{u} - 1 \equiv 2 \pmod{3}.$$

Note that, the left-hand side expression of the original equation is congruence to $2 \pmod{3}$ where as the right side is congruence to either $0 \pmod{3}$ or $1 \pmod{3}$.

This inconsistency indicates that there exists no integer solution to an equation.

Theorem. Let P = 6n + 1 be a prime number where $n \in N$, the set of allnatural numbers and n is not a multiple of prime numbers 2, 3, 5, 7 etc. If u + v = 1, 2, 3, then an exponential Diophantine equation $(2P + 1)^u$ $+ (P - 1)^v - 2 = w^2$ has solutions (u, v, w) = (1, 2, P) where u, v, w are whole numbers.

Proof. The rule that, any square number satisfies the succeeding conditions.

$$w^{2} = \begin{cases} 0 \pmod{3} \text{ if } n \text{ is odd} \\ 1 \pmod{3} \text{ if } n \text{ is even} \end{cases} \text{ and } w^{2} = \begin{cases} 1 \pmod{4} \text{ if } n \text{ is odd} \\ 0 \pmod{4} \text{ if } n \text{ is even} \end{cases}$$
(1)

Since P = 6n + 1 where $n \in N$ and *n* is not a multiple of prime numbers 2, 3, 5, 7 etc, $P \equiv 1 \pmod{3}$

Also, $P \equiv \begin{cases} 3 \pmod{4} \text{ if } n \text{ is odd} \\ 1 \pmod{4} \text{ if } n \text{ is even} \end{cases}$

Let us analyse the theorem for the following three cases

Case 1. *u* + *v* = 1

Sub case 1(i). u = 0, v = 1

Then, the inventive solutions to an equation can be reduced into $P-2 = w^2$

Since,
$$P \equiv 1 \pmod{3}$$
, $P - 2 \equiv 2 \pmod{3}$ (2)

Sub case 1 (ii). u = 1, v = 0

These options modify an equation to $2P = w^2$

Here, $2P \equiv 2 \pmod{3}$

Case 2. u + v = 2

Sub case 2(i). u = 0, v = 2

The corresponding equation becomes for these values of u and v as

$$(P-1)^2 - 1 = w^2$$

It is identified that $(P-1)^2 \equiv 0 \pmod{3}$

$$\Rightarrow (P-1)^2 - 1 \equiv 2 \pmod{3} \tag{4}$$

Sub case 2(ii). u = 1, v = 1

The equation for examining solution is customized into $3P - 2 = w^2$

It is profoundly scrutinized that for all prime number P sustaining our hypothesis

$$3P \equiv \begin{cases} 1 \pmod{4} \text{ if } n \text{ is odd} \\ 3 \pmod{4} \text{ if } n \text{ is even} \end{cases}$$
$$\Rightarrow 3P - 2 \equiv \begin{cases} 3 \pmod{4} \text{ if } n \text{ is odd} \\ 1 \pmod{4} \text{ if } n \text{ is even} \end{cases}$$
(5)

Sub case 2(iii). u = 2, v = 0

The deliberated equation for these choices can be condensed to $(2P+1)^2 - 1 = w^2$

Since
$$2P + 1 \equiv 0 \pmod{3}$$
, $(2P + 1)^2 - 1 \equiv 2 \pmod{3}$ (6)
Case 3. $u + v = 3$

Sub case 3(i). u = 0, v = 3

The preferred equation is revised into $(P-1)^3 - 1 = w^2$

Advances and Applications in Mathematical Sciences, Volume 21, Issue 11, September 2022

6610

(3)

But, $(P-1)^3 \equiv 0 \pmod{3}$ provides the following condition

$$(P-1)^3 - 1 \equiv 2 \pmod{3} \tag{7}$$

Sub case 3(ii). u = 2, v = 1

The equivalent form of the chosen equation can be simplified by $(2P+1)^2 + P - 3 = w^2$

The two already analysed conditions

$$(2P+1)^2 \equiv \begin{cases} 1 \pmod{4} \text{ if } n \text{ is odd} \\ 1 \pmod{4} \text{ if } n \text{ is even} \end{cases} \text{ and } P \equiv \begin{cases} 3 \pmod{4} \text{ if } n \text{ is odd} \\ 1 \pmod{4} \text{ if } n \text{ is even} \end{cases}$$

together gives the succeeding declaration

$$(2P+1)^2 + P - 3 \equiv \begin{cases} 1 \pmod{4} \text{ if } n \text{ is odd} \\ 3 \pmod{4} \text{ if } n \text{ is even} \end{cases}$$
(8)

Sub case 3(iii). u = 3, v = 0

These constraints condense the equation that the solution to be discovered as

$$(2P+1)^3 - 1 = w^2$$

It is deeply observed that $2P + 1 \equiv 0 \pmod{3}$ and subsequently

$$(2P+1)^3 - 1 \equiv 2 \pmod{3} \tag{9}$$

It is noticed that all the conclusions exposed from (2) to (9) for various selections of u and v are the left-hand side expressions for the inspected equation which contradicts the conditions of the right-hand side of the same equation specified in (1).

Hence, there is no solution in integer for all above choices of u an v.

Sub case 3(iv). u = 1, v = 2

Then, the original equation is converted into $P^2 = w^2 \Rightarrow P = w$

Hence, the required solutions to the equation are (u, v, w) = (1, 2, P).

Corollary 1. The Diophantine equation $(2P+1)^{u} + (P-1)^{v} + 2 = w^{2}$ has no integer solution where the exponents u, v are non-negative integers.

Corollary 2. The Diophantine equation $(2P-1)^u + (P-1)^v + 2 = w^2$ has no solution in integer where u, v are whole numbers.

Corollary 3. The exponential Diophantine equation $(2P+1)^u + (P+1)^v + 2 = w^2$ has solutions (u, v, w) = (1, 2, P+2).

Corollary 4. The solutions of the exponential Diophantine equation $(P-1)^{u} + (2P+1)^{v} - 2 = w^{2}$ are (u, v, w) = (2, 1, P).

Conclusion

In this inscription, especially integer solutions to a particular exponential equation $(2P+1)^u + (P-1)^v - 2 = w^2$ where P is a prime number of the form 6n+1, $n \in N$ and n is not a manifold of prime numbers 2, 3, 5, 7 etc. and u, v, w are whole numbers are calculated for all the picks of u+v=1, 2, 3. In this way, one may also explore solutions of assumed equation for u = v > 3.

References

- Ivan Niven, S. Hibert, Zuckerman and L. Huge, Montgomery, An Introduction to the Theory of Numbers, Fifth Edition, John Wiley and Sons Inc., (2004).
- [2] R. D. Carmichael, The theory of numbers and diophantine analysis, Dover Publication, New York, (1959).
- [3] L. J. Mordell, Diophantine Equations, Academic Press, London (1969).
- [4] H. John, Conway and Richard K. Guy, The Book of Numbers, Springer Verlag, New York, (1995).
- [5] N. Burshtein, On the infinitude of solution to the Diophantine equation $p^x + q^x = z^2$ when p = 2 and p = 3, Annals of Pure and Applied Mathematics 13(2) (2017), 207-210.
- [6] N. Burshtein, All the solution of the Diophantine equation $p^{x} + (p+4)^{y} = z^{2}$, when p, (p+4) are prime and x + y = 2, 3, 4, Annals of Pure and Applied Mathematics 16(1) (2018), 241-244.

- [7] N. Burshtein, On the Diophantine equation $p^x + (p+6)^y = z^2$, Annals of Pure and Applied Mathematics 17(1) (2018), 101-106.
- [8] B. Poonen, Some Diophantine equation of the form $x^n + y^n = z^m$, Acta Arith. 86 (1998), 193-205.
- [9] B. Sroysang, On the Diophantine equation $5^x + 7^x = z^2$, International Journal of Pure and Applied Mathematics 89 (2013), 115-118.
- [10] A. Suvarnamani, On the Diophantine equation $p^{x} + (p+1)^{y} = z^{2}$, International Journal of Pure and Applied Mathematics 94(5) (2014), 689-692.
- [11] S. Saranya and V. Pandichelvi, Frustrating solutions for two exponential Diophantine equations $\mathbb{P}^{a} + (\mathbb{P} + 3)^{b} 1 = c^{2}$ and $(\mathbb{P} + 1)^{a} \mathbb{P}^{b} + 1 = c^{2}$, Journal of Xian Shiyou University, Natural Science Edition 17(05) 147-156.