MADDENING SOLUTIONS FOR AN EXPONENTIAL DIOPHANTINE EQUATION CONCERNING DEFINITE PRIME NUMBERS $(2 P+1)^{u}+(P-1)^{v}-2=w^{2}$

S. SARANYA and V. PANDICHELVI

${ }^{1}$ Research Scholar
${ }^{2}$ Assistant Professor
PG and Research Department of Mathematics
Urumu Dhanalakshmi College, Trichy, India
Affiliated to Bharathidasan University, India
E-mail: srsaranya1995@gmail.com
mvpmahesh2017@gmail.com

Abstract

In this calligraphy, an exponential Diophantine equation $(2 P+1)^{u}+(P-1)^{v}-2=w^{2}$ where P is a prime number of the form $6 n+1, n \in N$, the set of all-natural numbers and n is not a multiple of prime numbers $2,3,5,7$ etc. and u, v, w are non-negative integers is studied for all the choices of $u+v=1,2,3$. Also, it is evinced that the crucial solutions are $(u, v, w)=(1,2, P)$ and there is no solution for all other choices of u, v by retaining elementary concepts of congruencies.

Introduction

A Diophantine equation is an equation generally connecting two or more variables such that its solutions are integers. A Diophantine equation has further a variable or variables as exponents, it is recognized as an exponential Diophantine equation [1-4]. In [5-7], the authors clarify the solution of different types of exponential Diophantine equations involving prime numbers. In provision of comprehensive study one can relegate [8-11]. In this paper, an exponential Diophantine equation $(2 P+1)^{u}+(P-1)^{v}-2$
$=w^{2}$ where P is a prime number of the category $6 n+1, n \in N$, the set of all-natural numbers and n is not a multiple of prime numbers $2,3,5,7$ etc. and u, v, w are non-negative integers is considered for all the preferences of $u+v=1,2,3$. Also, it is revealed that all possible solutions are $(u, v, w)=(1,2, P)$ and there is no other solution by employing basic perceptions of congruences.

Lemma 1. If $P \geq 7$ is a prime number of the form $6 n+1$ where $n \in N$ and n is not a manifold of prime numbers 2, 3, 5, 7 etc, then the non-linear Diophantine equation $(2 P+1)^{u}-1=w^{2}$ has no solution where u and w are non-negative integers.

Proof. It is clear that any square number is congruence to either 0 $(\bmod 3)$ or $1(\bmod 3)$.

On the other hand, for any prime number $P \geq 7$ is of the form $P=6 n+1$ where $n \in N$ and n is not a multiple of prime numbers $2,3,5,7$ etc, $P \equiv 1(\bmod 3)$

Consequently

$$
\begin{gathered}
2 P+1 \equiv 0(\bmod 3) \\
\Rightarrow(2 P+1)^{u} \equiv 0(\bmod 3) \\
\Rightarrow(2 P+1)^{u}-1 \equiv 2(\bmod 3) .
\end{gathered}
$$

This contradiction shows that, there is no solution to the desired equation.

Lemma 2. If $P>3$ is a prime number of the form $6 n+1$ where $n \in N$ and n is not a multiple of prime numbers 2, 3, 5, 7 etc, then the equation $(P-1)^{v}-1=w^{2}$ has no integer solution where v and w are non-negative integers.

Proof. As the explanation given in lemma $1, P \equiv 1(\bmod 3)$
Thus,

$$
\begin{gathered}
P-1 \equiv 0(\bmod 3) \\
\Rightarrow(P-1)^{u} \equiv 0(\bmod 3) \\
\Rightarrow(P-1)^{u}-1 \equiv 2(\bmod 3) .
\end{gathered}
$$

Note that, the left-hand side expression of the original equation is congruence to $2(\bmod 3)$ where as the right side is congruence to either $0(\bmod 3)$ or $1(\bmod 3)$.

This inconsistency indicates that there exists no integer solution to an equation.

Theorem. Let $P=6 n+1$ be a prime number where $n \in N$, the set of allnatural numbers and n is not a multiple of prime numbers $2,3,5,7$ etc. If $u+v=1,2,3, \quad$ then an exponential Diophantine equation $(2 P+1)^{u}$ $+(P-1)^{v}-2=w^{2}$ has solutions $(u, v, w)=(1,2, P)$ where u, v, w are whole numbers.

Proof. The rule that, any square number satisfies the succeeding conditions.

$$
w^{2} \equiv\left\{\begin{array} { l }
{ 0 (\operatorname { m o d } 3) \text { if } n \text { is odd } } \tag{1}\\
{ 1 (\operatorname { m o d } 3) \text { if } n \text { is even } }
\end{array} \text { and } w ^ { 2 } \equiv \left\{\begin{array}{l}
1(\bmod 4) \text { if } n \text { is odd } \\
0(\bmod 4) \text { if } n \text { is even }
\end{array}\right.\right.
$$

Since $P=6 n+1$ where $n \in N$ and n is not a multiple of prime numbers $2,3,5,7$ etc, $P \equiv 1(\bmod 3)$

Also, $P \equiv\left\{\begin{array}{l}3(\bmod 4) \text { if } n \text { is odd } \\ 1(\bmod 4) \text { if } n \text { is even }\end{array}\right.$
Let us analyse the theorem for the following three cases
Case 1. $u+v=1$
Sub case 1(i). $u=0, v=1$
Then, the inventive solutions to an equation can be reduced into P-2 $=w^{2}$

Since, $P \equiv 1(\bmod 3), P-2 \equiv 2(\bmod 3)$

Sub case 1 (ii). $u=1, v=0$
These options modify an equation to $2 P=w^{2}$
Here, $2 P \equiv 2(\bmod 3)$
Case 2. $u+v=2$
Sub case 2(i). $u=0, v=2$
The corresponding equation becomes for these values of u and v as

$$
(P-1)^{2}-1=w^{2}
$$

It is identified that $(P-1)^{2} \equiv 0(\bmod 3)$

$$
\begin{equation*}
\Rightarrow(P-1)^{2}-1 \equiv 2(\bmod 3) \tag{4}
\end{equation*}
$$

Sub case 2(ii). $u=1, v=1$
The equation for examining solution is customized into $3 P-2=w^{2}$
It is profoundly scrutinized that for all prime number P sustaining our hypothesis

$$
\begin{gather*}
3 P \equiv\left\{\begin{array}{l}
1(\bmod 4) \text { if } n \text { is odd } \\
3(\bmod 4) \text { if } n \text { is even }
\end{array}\right. \\
\Rightarrow 3 P-2 \equiv\left\{\begin{array}{l}
3(\bmod 4) \text { if } n \text { is odd } \\
1(\bmod 4) \text { if } n \text { is even }
\end{array}\right. \tag{5}
\end{gather*}
$$

Sub case 2(iii). $u=2, v=0$
The deliberated equation for these choices can be condensed to $(2 P+1)^{2}-1=w^{2}$

Since $2 P+1 \equiv 0(\bmod 3),(2 P+1)^{2}-1 \equiv 2(\bmod 3)$
Case 3. $u+v=3$
Sub case 3(i). $u=0, v=3$
The preferred equation is revised into $(P-1)^{3}-1=w^{2}$

But, $(P-1)^{3} \equiv 0(\bmod 3)$ provides the following condition

$$
\begin{equation*}
(P-1)^{3}-1 \equiv 2(\bmod 3) \tag{7}
\end{equation*}
$$

Sub case 3(ii). $u=2, v=1$
The equivalent form of the chosen equation can be simplified by $(2 P+1)^{2}+P-3=w^{2}$

The two already analysed conditions

$$
(2 P+1)^{2} \equiv\left\{\begin{array} { l }
{ 1 (\operatorname { m o d } 4) \text { if } n \text { is odd } } \\
{ 1 (\operatorname { m o d } 4) \text { if } n \text { is even } }
\end{array} \text { and } P \equiv \left\{\begin{array}{l}
3(\bmod 4) \text { if } n \text { is odd } \\
1(\bmod 4) \text { if } n \text { is even }
\end{array}\right.\right.
$$

together gives the succeeding declaration

$$
(2 P+1)^{2}+P-3 \equiv\left\{\begin{array}{c}
1(\bmod 4) \text { if } n \text { is odd } \tag{8}\\
3(\bmod 4) \text { if } n \text { is even }
\end{array}\right.
$$

Sub case 3(iii). $u=3, v=0$
These constraints condense the equation that the solution to be discovered as

$$
(2 P+1)^{3}-1=w^{2}
$$

It is deeply observed that $2 P+1 \equiv 0(\bmod 3)$ and subsequently

$$
\begin{equation*}
(2 P+1)^{3}-1 \equiv 2(\bmod 3) \tag{9}
\end{equation*}
$$

It is noticed that all the conclusions exposed from (2) to (9) for various selections of u and v are the left-hand side expressions for the inspected equation which contradicts the conditions of the right-hand side of the same equation specified in (1).

Hence, there is no solution in integer for all above choices of u an v.
Sub case 3(iv). $u=1, v=2$
Then, the original equation is converted into $P^{2}=w^{2} \Rightarrow P=w$
Hence, the required solutions to the equation are $(u, v, w)=(1,2, P)$.

Corollary 1. The Diophantine equation $(2 P+1)^{u}+(P-1)^{v}+2=w^{2}$ has no integer solution where the exponents u, v are non-negative integers.

Corollary 2. The Diophantine equation $(2 P-1)^{u}+(P-1)^{v}+2=w^{2}$ has no solution in integer where u, v are whole numbers.

Corollary 3. The exponential Diophantine equation $(2 P+1)^{u}+(P+1)^{v}$ $+2=w^{2}$ has solutions $(u, v, w)=(1,2, P+2)$.

Corollary 4. The solutions of the exponential Diophantine equation $(P-1)^{u}+(2 P+1)^{v}-2=w^{2}$ are $(u, v, w)=(2,1, P)$.

Conclusion

In this inscription, especially integer solutions to a particular exponential equation $(2 P+1)^{u}+(P-1)^{v}-2=w^{2}$ where P is a prime number of the form $6 n+1, n \in N$ and n is not a manifold of prime numbers 2, 3, 5, 7 etc. and u, v, w are whole numbers are calculated for all the picks of $u+v=1,2,3$. In this way, one may also explore solutions of assumed equation for $u=v>3$.

References

[1] Ivan Niven, S. Hibert, Zuckerman and L. Huge, Montgomery, An Introduction to the Theory of Numbers, Fifth Edition, John Wiley and Sons Inc., (2004).
[2] R. D. Carmichael, The theory of numbers and diophantine analysis, Dover Publication, New York, (1959).
[3] L. J. Mordell, Diophantine Equations, Academic Press, London (1969).
[4] H. John, Conway and Richard K. Guy, The Book of Numbers, Springer Verlag, New York, (1995).
[5] N. Burshtein, On the infinitude of solution to the Diophantine equation $p^{x}+q^{x}=z^{2}$ when $p=2$ and $p=3$, Annals of Pure and Applied Mathematics 13(2) (2017), 207-210.
[6] N. Burshtein, All the solution of the Diophantine equation $p^{x}+(p+4)^{y}=z^{2}$, when $p,(p+4)$ are prime and $x+y=2,3,4$, Annals of Pure and Applied Mathematics 16(1) (2018), 241-244.
[7] N. Burshtein, On the Diophantine equation $p^{x}+(p+6)^{y}=z^{2}$, Annals of Pure and Applied Mathematics 17(1) (2018), 101-106.
[8] B. Poonen, Some Diophantine equation of the form $x^{n}+y^{n}=z^{m}$, Acta Arith. 86 (1998), 193-205.
[9] B. Sroysang, On the Diophantine equation $5^{x}+7^{x}=z^{2}$, International Journal of Pure and Applied Mathematics 89 (2013), 115-118.
[10] A. Suvarnamani, On the Diophantine equation $p^{x}+(p+1)^{y}=z^{2}$, International Journal of Pure and Applied Mathematics 94(5) (2014), 689-692.
[11] S. Saranya and V. Pandichelvi, Frustrating solutions for two exponential Diophantine equations $\mathbb{P}^{a}+(\mathbb{P}+3)^{b}-1=c^{2}$ and $(\mathbb{P}+1)^{a}-\mathbb{P}^{b}+1=c^{2}$, Journal of Xian Shiyou University, Natural Science Edition $17(05)$ 147-156.

