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Abstract 

Consider  EVG ,  be a simple, finite, undirected and connected graph as having  edges 

and  vertices. The vertices s and w are connected by the edge sw. The degree of a vertex 

 ,GVs   denoted by  SdG  is the number of vertices that are adjacent to s and  wN  is the 

closed neighbourhood set of a vertex w that includes w and its neighbours. Using this concept, 

we derived the lower and upper bounds for some closed neighbourhood topological indices in this 

paper.  

1. Introduction 

Topological indices are significant mathematical tools offered by graph 

theory to predict the physicochemical properties of molecular compounds [15, 

16]. The degree-based index is the most studied topological index in 

structure-property relationships and bio-activity of chemical compounds [6].  

In 1975, Milan Randić introduced the first degree-based index termed as 

Randić index   ,GR  which is applied in drug designing [11]. 
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The first   GM1  and second Zagreb   GM2  indices were proposed by 

Gutman et al. [7] to predict the π electron energy of compounds.  
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Furtula et al. [5] proposed the Forgotten index   GF  for predicting the 

physicochemical properties of molecular compounds, which is another notable 

degree-based index.  
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The first   GHM1  and second hyper Zagreb   GHM2  indices were 

established by Shirdel et al. [12].   
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For some latest reports on topological indices, we recommend the 

literatures [3, 4, 13, 14] to the enthusiastic readers.  

2. Preliminaries 

Below we enumerate the closed neighbourhood topological indices 

(neighbourhood Dakshayani indices [9]) that are needed to consider in the 

next section. Closed Neighbourhood degree-sum of a vertex  GVs   is 

defined as 
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Closed neighbourhood first Zagreb index:  
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Modified closed neighbourhood first Zagreb index:  
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Closed neighbourhood second Zagreb index:  
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Closed neighbourhood Forgotten index:  
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Modified closed neighbourhood Forgotten index:  
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Closed neighbourhood first hyper Zagreb index: 
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Closed neighbourhood second hyper Zagreb index: 
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The topological indices mentioned above are chemically beneficial as they 

have a significant correlation with the entropy, a centric factor, critical 

pressure, density, heats of vaporization, mean radius and standard enthalpy 

of vaporization of the octane isomers. Interestingly, these indices reveal 
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exceptional degeneracy values (exactly 1) for various octane isomer structural 

formulae, demonstrating their superior discriminating behavior. At this 

juncture of the research, we primarily focus to reveal the mathematical 

behaviour of the closed neighbourhood indices reported in [9] by means of 

lower and upper bounds, which is exactly the contribution of this paper.  

3. Main Results 

In what follows, we obtain some lower and upper bounds of the closed 

neighbourhood topological indices using some well known inequalities.                                                                                                                                          

Lemma 3.1. For a graph G, we have, 

(i)    
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1 .2

i

iG GMs  

(ii)         
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(iii)           
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Lemma 3.2 (Quadratic mean  Arithmetic mean) [8]. For n positive 

numbers ,,,, 21 nzzz   we have  

,21
22

2
2
1

n

zzz

n

zzz nn 


 
 (15) 

where equality holds iff .21 nzzz    

Theorem 3.3. For a graph G with  vertices, we obtain 

 
   






2
1

2
1

1
44 GMGM

GCM   (16)  

where equality holds iff G is regular. 

Proof. Assuming  iGi sz   for ,,,2,1  i  from Equation (15), we 

have  
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Using Lemma 3.1 and the definition of  GCM
1  index, Equation (17) 

becomes 

     







 211 GMGCM
  (18) 

On squaring Equation (18) and simplifying, we get the desired result. 

The equality holds iff      .21  sss GGG   Therefore, equality 

in (16) holds iff G is regular. 

Lemma 3.4 (Bhatia and Davis’ bound on variance) [1]. Let nzzz ,,, 21    

be real numbers such that Mzm i   for all ni 1  and .
1

n

z
n

i i 
  

Then   

 
   ,

1

2

mM
n

z
n

i
i



 
  (19) 

where equality holds iff each iz  is either M or m.     

Theorem 3.5. For a graph G with  vertices, we have 

        CNCNCNCN GMGCM  211   (20) 

and equality holds iff each     ,,2,1 isiG  is either CN  or ,CN  

where     GVssGCN  :min  and     .:max GVssGCN   

Proof. If we take  ,iGi sz   for CNmi  ,1  and ,CNM   

then 
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and then becomes         ,211 CNCNCNCN GMGCM   where 

the equality in Equation (20) holds iff each     ,,2,1 isiG  is either 

CN  or .CN  

Lemma 3.6 [8]. Let  nzzz ,,, 21   be positive n-tuple such that there 

exists positive numbers A, a satisfying ,0 Aza i   then we get 
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  (21) 

where equality holds iff Aa   or n

a

A
a

A

q

1

  is an integer and q of the 

numbers ,iz  coincide with a and remaining  qn   of the iz ’s coincide with 

 .aA   

Theorem 3.7. Let G be a graph with  vertices. If 

    ,:min GVssGCN   and     ,:max GVssGCN   then    
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   (22) 

where equality holds iff CNCN   or 
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CN

CN

CN

CN

q  is an integer and q of 

the numbers  iG s  coincide with CN  and remaining  q  of the 

 iG s ’s coincide with  .CNCN   

Proof. Applying     CNiGi aisz  ,1  and CNA   in 

Equation (21), we attain 
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and simplifying, we have arrived the required result. 

Also equality holds iff CNCN   or 
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q  is an integer and q 

of the numbers  iG s  coincide with CN  and remaining  q  of the 

 iG s ’s coincide with  .CNCN   

Lemma 3.8 (Diaz-Metcalf inequality) [2]. Let ic  and id  be two sequences 

of real numbers with  nici  10  such that ,iii Mddmc   then  

   
  



n

i

n

i

n

i

iiii dcmMcmMd

1 1 1

22 ,   (23) 

where equality holds iff either ii mcd   or .,,2,1 niMcd ii    

Theorem 3.9. For a graph G of  vertices with 

    ,:max GVssGCN   we have 

       ,12 211 GMGMGCM CN    (24) 

where equality holds iff either    iGiG sds   or  iG s  

  .,,2,1  isd iGCN  

Proof. Putting     CNiGiiGi Mmsdsdc  ,1,,  in inequality 

(23) of Lemma 3.8, we obtain  

           














1 1 1

22
1

i i i

iGiGCNiGCNiG sdssds  

After simplifying, we attain the required proof. 

Lemma 3.10 [10]. Let  naaaa ,,, 21 

  and  nbbbb ,,, 21 


  be 
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sequences of real numbers. If  ncccc ,,, 21 

  and  ndddd ,,, 21 


  are 

non-negative sequences, then  

     
     



n

i

n

i

n

i

n

i

n

i

n

i

iiiiiiiiii bdacbdcacd

1 1 1 1 1 1
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In particular, if ic  and id  are positive, then equality holds iff ,kba


  

where  ,,,, kkkk 

  a constant sequence.  

Theorem 3.11. If G is a graph with  vertices and  edges, then  
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48

11 GMGCM








   (26) 

Proof. Assuming     1,,  iiGiiGi csdbsa  and 1id  in inequality 

(25), we have   
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Using the result  
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It is obvious from lemma 3.10 that equality in (28) is impossible.  

Lemma 3.12 (Cauchy-Schwartz inequality) [1]. If ic  and id  are real 

numbers for ,,,2,1 ni   then  
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Equality holds iff ii kdc   for some constant k and for .,,2,1 ni     

Theorem 3.13. For a graph G, 
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Equality holds iff    iGiG skds   for some constant k and for 

.,,2,1 ni   

Proof. For ,,,2,1  i  considering    iGiiGi sddsc  ,  in 

Equation (29), we obtain 
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Applying lemma 3.1, we rewrite the Equation (31) as  

        GMGCMGMGM 11
2

122   (32) 

which yields the inequality given in Equation (30). Equality holds iff 

   iGiG skds   for some constant k and for .,,2,1  i  

Theorem 3.14. Let G be a graph with  vertices and  edges. Then 
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Equality holds iff     kws GG   for some constant  ., GEswk    

Proof.  In Equation (29), putting    wsc GGi   and ,1id  we get 
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Applying Lemma 3.1, we obtain 

        .2 1
2

12  sCHMGMGM   (34) 

Hence the lower bound of  GCHM1  is 
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It is elucidate that equality holds iff     kws GG   for some 

constant  ., GEswk   
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Theorem 3.15. Let the graph G have  vertices and  edges. If 

    GVssGCN  :min  and     ,:max GVssGCN   then  
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Equality holds iff CNCN   or 
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   ws GG   coincide with  .22 CNCN   

Proof. Substituting CNCN Aa  2,2  and    wsz GGi   in 

Equation (21), we attain 
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Applying Lemma 3.1, we obtained the result. 
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Also equality obtains iff CNCN   or 
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q  is an integer and 

q of the numbers    ws GG   coincide with CN2  and remaining  q    

of the    ws GG   coincide with  .22 CNCN   Hence the proof. 

Theorem 3.16. For any graph G with  edges, 

        22 11 GMGCMGCF  (37) 

Proof.  Putting    scbsa GiiGi  ,1,  and 1id  in inequality 

(25), we obtain 
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Using Lemma 3.1, we get      ,22 11 GCMGMGCF    and hence   

      .22 11   GMGCMGCF    (39) 

Equality in Equation (39) is not possible. Hence the theorem is proved. 

Lemma 3.17 (Radon’s Inequality) [2, 10]. If ,,,2,1,0, nidc ii   

,0h  then  
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where equality holds iff ii kdc   for some constant .,,2,1, nik    

Theorem 3.18.  Let the graph G have  vertices and  edges. We attain 
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Equality attains iff G is complete bipartite or regular graph. 

Proof. Considering for   ,1,,,,2,1  iiGi dsci   and 2h   in 

Equation (40) of Lemma 3.17, we attain 
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GCF  Equality attains iff   ksiG   for some 

constant k. i.e., equality attains iff G is complete bipartite or regular graph. 
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Theorem 3.19. For graph G with  edges,  
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Proof. If G is a graph and  ,GVs   then weighted arithmetic means of 

 sG  and that of  2sG  are 
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where sW  is the weight of the vertex  .GVs    

For non-negative weight ,sW  
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dd    (43) 

Choosing  ,sW Gs   inequality in Equation (43) has the form 
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After making simplification, Equation (44) yields  
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4. Conclusion 

We successfully obtained the lower and upper bounds for some closed 

neighbourhood topological indices using certain standard inequalities.         
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