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Abstract 

In this paper, we have introduced the basic concepts of intuitionistic fuzzy semi   

generalized connected space, intuitionistic fuzzy semi   generalized super connected space and 

intuitionistic fuzzy semi   generalized extremally disconnected space and discussed some of 

their properties.    

1. Introduction 

The concept of fuzzy sets was introduced by Zadeh [10] in 1965 and later 

Atanassov [3] generalized this idea to intuitionistic fuzzy sets. On the other 

hand Coker [4] has introduced intuitionistic fuzzy topological spaces. 

Connectedness in intuitionistic fuzzy topological spaces was introduced by 

Ozcag and Coker [6]. Several types of fuzzy connectedness in intuitionistic 

fuzzy topological spaces were defined by Turnali and coker [9]. Later Riya 

and Jayanthi [7] introduced intuitionistic fuzzy   generalized connected 
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space in 2018. In this paper, we have introduced intuitionistic fuzzy semi   

generalized connected space, intuitionistic fuzzy semi   generalized super 

connected space and intuitionistic fuzzy semi   generalized extremally 

disconnected space and discussed some of their properties. 

2. Preliminaries 

Definition 2.1 [3]. An intuitionistic fuzzy set (IFS) A is an object having 

the form   

     XxxvxxA AA  ,,  

where the function  1,0:  XA  and  1,0: XvA  denote the degree of 

membership and degree of non membership of each element Xx   to the set 

A respectively, and     10  xvx AA  for each .Xx   Denote by IFS(X), 

the set of all intuitionistic fuzzy sets in X. An intuitionistic fuzzy set A in X is 

simply denoted by AA vxA ,,   instead of denoting  

     .:,, XxxvxxA AA   

 Definition 2.2 [3]. Let A and B be two IFSs of the form 

     XxxvxxA AA  :,,  and      .:,, XxxvxxB BB   Then,  

(a) BA   if and only if    xx BA   and    xvxv BA   for all ,Xx     

(b) BA   if and only if BA   and ,BA     

(c)      ,:,, XxxxvxA AA
c     

(d)        ,:, XxxvxxxBA BBA     

(e)        .:, XxxvxxxBA BBA     

The intuitionistic fuzzy sets 1,0,0~ x  and 0,1,1~ x  are 

respectively the empty set and the whole set of X.  

Definition 2.3 [4]. An intuitionistic fuzzy topology (IFT) on X is a family 

 of IFSs in X satisfying the following axioms:    
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(i) ,1,0 ~~    

(ii) 21 GG   for any ,, 21 GG   

(iii) iG  for any family   ,:  JiGi     

In this case the pair  ,X  is called the intuitionistic fuzzy topological 

space (IFTS) and any IFS in  is known as an intuitionistic fuzzy open set 

(IFOS) in X. The complement cA  of an IFOS A in an IFTS  ,X  is called an 

intuitionistic fuzzy closed set (IFCS) in X.  

Definition 2.4 [5]. An IFS AvxA ,,   in an IFTS  ,X  is said to be 

an   

(i) intuitionistic fuzzy  closed set  CSIF  if       ,intint AAclAcl     

(ii) intuitionistic fuzzy  open set  OSIF  if      .intint AclAclA      

Definition 2.5 [1]. An IFS A of an IFTS  ,X  is said to be an 

intuitionistic fuzzy semi   generalized closed set (IF semi GCS ) if 

      UAclAcl intint   whenever UA   and U is an IFSOS in  ., X   

Definition 2.6 [2]. A mapping     ,,: YXf  is called an 

intuitionistic fuzzy semi   generalized (IF semi G ) continuous mapping if 

 Vf 1  is an IF semi GCS  in  ,X  for every IFCS V of  ., X   

Definition 2.7 [1]. An IFTS  ,X  is an intuitionistic fuzzy semi 21Tc
  

(IF semi 21Tc
 ) space if every IF semi GCS  is an IFCS in X.  

Definition 2.8 [8]. Two IFSs A and B are said to be q-coincident  BAq  if 

and only if there exits an element Xx   such that    xvx BA   or 

   .xxv BA    

Definition 2.9 [8]. Two IFSs A and B are said to be not q-coincident 

 BA cq
 if and only if   .cBA    
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Definition 2.10 [9]. An IFTS  ,X  is said to be an intuitionistic fuzzy 

-5C connected space if the only IFSs which are both an IFOS and an IFCS are 

~0  and .1~    

Definition 2.11 [9]. An IFTS  ,X  is said to be an intuitionistic fuzzy 

GO-connected space if the only IFSs which are both an IFGOS and an IFGCS 

are ~0  and .1~  

Definition 2.12 [6]. An IFTS  ,X  is an intuitionistic fuzzy 

-5C connected between two IFSs A and B if there is no IFOS E in  ,X  such 

that EA   and .BE cq
  

3. Intuitionistic Fuzzy Semi   Generalized Connected Spaces  

In this section we introduce intuitionistic fuzzy semi   generalized 

connected space and investigate some of their properties.  

Definition 3.1. An IFTS  ,X  is said to be an intuitionistic fuzzy semi 

  generalized (IF semi G ) connected space if the only IFSs which are both 

IF semi  GOS and IF semi GCS  are ~0  and .1~   

Theorem 3.2. Every IF semi G  connected space is an -5IFC connected 

space but not conversely in general.  

Proof. Let  ,X  be an IF semi G  connected space. Suppose  ,X  is 

not an -5IFC connected space, then there exists a proper IFS A which is both 

an IFOS and an IFCS in  ., X  That is A is both an IF semi GOS  and an 

IF semi GCS  in  ., X  This implies that  ,X  is not an IF semi G  

connected space. This is a contradiction. Therefore  ,X  must be an 

-5IFC connected space.  

Example 3.3. Let  baX ,  and  ~21~ 1,,,0 GG  be an IFT on X, 

where    babaxG 8.0,7.0,2.0,3.0,1   and     .4.0,4.0,5.0,6.0,2 babaxG   
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Here,  

         /1,0,1,0,1,0,1,0 ~~  bba vXIFSO  whenever a3.0  

4.02.0,4.0  b  and ,8.05.0,7.06.0  ba vv  whenever   a6.0  

,8.05.0,7.0  b  and 4.02.0,4.03.0  ba vv  and 10  aa v  

and .10  bb v   

Then  ,X  is an -5IFC connected space but not an IF semi G  

connected space, since the IFS    babaxA 4.0,5.0,4.0,5.0,  is both an 

IF semi G  open and an IF semi G closed set in  ., X   

Theorem 3.4.  Every IF semi G  connected space is an IFGO connected 

space but not conversely in general.  

Proof. Let  ,X  be an IF semi G  connected space. Suppose  ,X  is 

not an IFGO-connected space, then there exists a proper IFS A which is both 

an IFGOS and an IFGCS in  ., X  That is A is both an IF semi GOS  and 

an IF semi GCS  in  ., X  This implies that  ,X  is not an IF semi G  

connected space, a contradiction. Therefore  ,X  must be an IFGO-

connected space.  

Example 3.5.  In Example 3.3,2  ,X  is an IFGO connected space but 

not an IF semi G  connected space, since the IFS  ,3.0,4.0, baxA   

 ba 7.0,6.0  is both IF semi G  open and IF semi G  closed in  ., X   

The relation between various types of intuitionistic fuzzy connectedness 

is given in the following diagram.  
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 In the above diagram the reverse implications are not true in general. 

 Theorem 3.6. The IFTS  ,X  is an IF semi G  connected space if and 

only if there exists no non-zero IF semi G  open sets A and B in  ,X  such 

that .cBA    

Proof.  Necessity: Let A and B be two IF semi GOSs  in  ,X  such 

that ~~ 0,0  BA  and .cBA   Therefore cBA   is an IF semi .GCS  

Since .1,0 ~~  cBAB  Hence A is a proper IFS which is both IF semi 

GOS  and IF semi GCS  in  ., X  Hence  ,X  is not an IF semi G  

connected space. But this is a contradiction to our hypothesis. Hence there 

exists no non-zero IF semi GOSs  A and B in  ,X  such that .cBA     

Sufficiency. Suppose  ,X  is not an IF semi G  connected space. 

Then there exists an IFS A which is both an IF semi GOS  and an IF semi 

GCS  with .10 ~~  A  Now let .cAB   Then B is an IF semi GOS  

and .cAB   This implies ,0~ ABc  which is a contradiction to our 

hypothesis. Hence  ,X  is an IF semi G  connected space.  

Theorem 3.7. Let  ,X  be an IF semi 21Tc
  space, then the following 

are equivalent:  

(i)   ,X  is an IF semi G  connected space,  

(ii)   ,X  is an IFGO connected space,  
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(iii)  ,X  is an -5IFC connected space.  

Proof. (i)   (ii) is obvious from the Theorem 3.4.   

(ii)   (iii) is obvious.   

(iii)   (i) Let  ,X  be an -5IFC connected space. Suppose  ,X  is not 

an IF semi G  connected space, then there exists a proper IFS A in  ,X ) 

which is both an IF semi GOS  and an IF semi GCS  in  ., X  But since 

 ,X  is an IF semi 21Tc
  space, A is both an IFOS and an IFCS in  ., X  

This implies that  ,X  is not an -5IFC connected space, which is a 

contradiction to our hypothesis. Therefore  ,X  must be an IF semi G  

connected space.  

Theorem 3.8. If     ,,: YXf  is an IF semi G  continuous 

mapping and  ,X  is an IF semi G  connected space, then  ,Y  is an 

-5IFC connected space.  

Proof. Let  ,X  be an IF semi G  connected space. Suppose  ,Y  is 

not an IFC5-connected space, then there exists a proper IFS A which is both 

an IFOS and an IFCS in  ., Y  Since f is an IF semi G  continuous  IF 

semi G  connected space IFGO-connected space -5IFC connected space  

mapping,  Af 1  is both a proper IF semi GOS  and an IF semi GCS  in 

 ., X  But it is a contradiction to our hypothesis. Hence  ,Y  must be an 

-5IFC connected space.  

Definition 3.9. An IFTS  ,X  is an IF semi G  connected between 

two IFSs A and B if there is no IF semi GOS  E in  ,X  such that EA   

and .BE cq
  

Example 3.10. Let  baX ,  and  ~~ 1,,0 G  be an IFT on X, 

where     .4.0,4.0,5.0,6.0, babaxG   Then, the IFTS  ,X  is an IF semi 



M. ABINAYA and D. JAYANTHI 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 2, December 2021 

858 

G  connected between the two IFSs    babaxA 6.0,5.0,4.0,5.0,  and 

   babaxB 2.0,3.0,8.0,7.0,  as there exists no IF semi GO  E such 

that EA   and .BE cq
  

Theorem 3.11. If an IFTS  ,X  is an IF semi G  connected between 

two IFSs A and B, then it is -5IFC connected between A and B but the 

converse may not be true in general.  

Proof. Suppose  ,X  is not -5IFC connected between A and B, then 

there exists an IFOS E in  ,X  such that EA   and .BE cq
 Since every 

IFOS is an IF semi ,GOS  there exists an IF semi GOS  E in  ,X  such 

that A ⊆ E and .BE cq
 This implies  ,X  is not IF semi G  connected 

between A and B. Thus we get a contradiction to our hypothesis. Therefore 

the IFTS  ,X  must be -5IFC connected between A and B.  

Example 3.12. Let  baX ,  and  ~~ 1,,0 G  be an IFT on X, 

where     .7.0,6.0,3.0,4.0, babaxG   Then  ,X  is IFC5-connected 

between the IFSs    babaxA 7.0,7.0,2.0,1.0,  and  ,7.0,7.0, baxB   

  .3.0,3.0 ba  Here,  

         ,6.04.01,0,1,0,1,0,1,0 ~~  aaba vXIFSO

3.0,4.0,7.03.0  bab vv  and 10  ba v  and ,10  bb v  

and  ,X  is not IF semi G  connected between A and B, since the IFS 

   babaxE 7.0,7.0,2.0,3.0,  is an IF semi GOS such that EA   and 

.cBE    

Theorem 3.13. An IFTS  ,X  is IF semi G  connected between two 

IFSs A and B if and only if there is no IF semi GOS  and IF semi GCS  E 

in  ,X  such that .cBEA    

Proof.  Necessity: Let  ,X  be IF semi G  connected between two 
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IFSs A and B. Suppose that there exists an IF semi GOS  and IF semi 

GCS  E in  ,X  such that ,cBEA   then BE cq
 and .EA   This 

implies  ,X  is not IF semi G  connected between A and B, a contradiction 

to our hypothesis. Therefore there is no IF semi GOS  and an IF semi 

GCS  E in  ,X  such that .cBEA     

Sufficiency: Suppose that  ,X  is not IF semi G  connected between 

A and B. Then there exists an IF semi GOS  E in  ,X  such that EA   

and E qc B. This implies that there is an IF semi GOS  E in  ,X  such 

that .cBEA   Hence  ,X  is IF semi G  connected between A and B.  

Theorem 3.14. If an IFTS  ,X  is IF semi G  connected between A 

and B and ,, 11 BBAA   then  ,X  is an IF semi G  connected 

between 1A  and .1B   

Proof. Suppose that  ,X  is not IF semi G  connected between 1A  

and ,1B  then by Definition 3.9, there exists an IF semi GOS  E in  ,X  

such that EA 1  and .1BEqc  This implies cBE 1  and .1 EA   That is 

.1 EAA   Hence .EA   Since .1
cc EBE   That is .1

cEBB   

Hence .cBE   Therefore  ,X  is not IF semi G  connected between A 

and B, which is a contradiction to our hypothesis. Hence  ,X  must be IF 

semi G  connected between 1A  and .1B   

Theorem 3.15. Let  ,X  be an IFTS and A and B be IFSs in  ., X  If 

.cBAq  then  ,X  is IF semi G  connected between A and B.  

Proof. Suppose  ,X  is not an IF semi G  connected between A and B. 

Then there exists an IF semi GOS  E in  ,X  such that EA   and E 

.cBE   This implies that .cBA   That is .cBAq  But this is a 
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contradiction to our hypothesis. Hence  ,X  must be IF semi G  connected 

between A and B.  

Theorem 3.16. An IFTS  ,X  is an IF semi G  connected space if and 

only if there exists no non-zero IF semi G  open sets A and B in  ,X  such 

that       .,,
ccc BclAAclBAB    

Proof. Necessity: Assume that there exist IFSs A and B such that 

      .,,,0~
ccc BclAAclBABBA   Since   cAcl  and 

  cBcl  are IF  open sets in  ,, X  A and B are IF semi G  open sets in 

 ., X  This implies  ,X  is not an IF semi G  connected space, which is a 

contradiction. Therefore there exists no non-zero IF semi G  open sets A 

and B in  ,X  such that       .,,
ccc BclAAclBAB     

Sufficiency: Let A be both an IF semi GOS  and an IF semi GCS  in 

 ,X  such that .01 ~~  A  Now by taking cAB   we obtain a 

contradiction to our hypothesis. Hence  ,X  is an IF semi G  connected 

space.  

Definition 3.17. An IFS A in  ,X  is called an intuitionistic fuzzy 

regular semi   generalized open set (IFR semi GOS ) if 

  .gint AgclssA    The complement of an IFR semi GOS  is called an 

intuitionistic fuzzy regular semi   generalized closed set (IFR semi GCS ) 

in  ., X   

Definition 3.18. An IFTS  ,X  is called an intuitionistic fuzzy semi   

generalized (IF semi G ) super connected space if there exists no proper IFR 

semi GOS  in  ., X   

Theorem 3.19. Let  ,X  be an IFTS, then the following are equivalent:  
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(1)  ,X  is an IF semi G  super connected space,  

(2) For every non-zero IFR semi   .1, ~  AgclsAGOS   

(3) For every IFR semi AGCS  with   .1,1 ~~   AgclsA    

(4) There exists no IFR semi GCSs  A and B in  ,X  such that 

.,0~
cBABA     

(5) There exists no IFR semi GCSs  A and B in  ,X  such that 

      .,,0~
cc

BgclsAAgclsBBA    

(6) There exists no IFR semi GCSs  A and B in  ,X  such that 

      .,int,1~
cc

BgclsAAgsBBA      

Proof. (1)   (2) Let ~0A  be an IFR semi GOS  in X and 

   .int
c

AgclsgsB    Now let    .gint
c

AgclssB    Then B is a 

proper IFR semi GOS  in  ., X  But this is a contradiction to the fact that 

 ,X  is an IF semi G  super connected space. Therefore   .1~ Agcls   

(2)   (3) Let ~1A  be an IFR semi GCS  in  ., X  If ,cAB   then 

B is an IFR semi GOS  in  ,X  with .0~B  Hence   ,1~ Bgcls  by 

hypothesis. This implies    .0~
c

Bgcls  That is   .0gint ~ cBs  Hence 

  .0gint ~ As   

(3)   (4) Suppose A and B be two IFR semi GCSs  in  ,X  such that 

.,0~
cBABA   Since cB  is an IFR semi GCS  in  ,X  and 

~0B  implies   ccc BsgclsBB gint,1~
   and we have 

  .0gint ~ cBs  But .cBA   Therefore   AgclssA   gint0~  

         gclssBsgclsgclssBss cc   gintgintgintgintgint  

     .0gintgint ~  cc BsBs  Hence it is a contradiction. Therefore (4) is 



M. ABINAYA and D. JAYANTHI 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 2, December 2021 

862 

true. 

(4)   (1) Suppose ~~ 10  A  be an IFR semi GCSs  in  ., X  If we 

take    ,
c

AgclsB   then B is an IFR semi GOS  since 

          cc
ssAgclsgclsgclsBgclss Agclgintgint    

 cAs gint     .BAgcls
c
   Also we get ,0~B  since otherwise, if 

,0~B  this implies    .0~
c

Agcls  That is   .1~ Agcls  Hence 

     ,11gintgint ~~   sAgclssA  which is a contradiction. 

Therefore ,0~B  and .cBA   But this is a contradiction to (4). Therefore 

 ,X  is an IF semi G  super connected space.   

(1)   (5) Suppose A and B are any two IFR semi GCSs  in  ,X  such 

that   cAgclsBBA  ,0~  and    .
c

BgclsA   Now we have 

        ~0,gintgint   AABgclsBsAgclss
cc  and ,1~A  

since if ,1~A  then    .1~
c

Bgcls   This implies  Bgcls   

.00 ~~  B  But ,0~B  Therefore .1~A  Hence A is a proper IFR 

semi GOS  in  ,, X  which is a contradiction to (1). Hence (5) is true.   

(5)   (1) Suppose A is an IFR semi GOS  in  ,X  such that 

.10 ~~  A  Now take    .
c

AgclsB   In this case we get ~0B  and B 

is an IFR semi GOS  in     cAgclsBX  ,,  and   cBgcls   

        .gint AAgclssAgclsgcls
c

   But this is a contradiction to 

(5). Therefore  ,X  is an IF semi G  super connected space.   

(5)   (6) Suppose A and B be two IFR semi GCSs  in  ,X  such that 

  cAsBBA gint,1~
  and    .gint

c
BsA   Taking cAC   and 

CBD c ,  and D become IFR semi GCSs  in  ,X  with ,0~ DC   

      ,
cc

DgclsCgclsD    which is a contradiction to (5). Hence (6) is 
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true.   

(6)   (5) It can be proved easily by the similar way as in (5)   (6).  
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