

INTUITIONISTIC FUZZY SEMI γ^* GENERALIZED CONNECTEDNESS

M. ABINAYA¹ and D. JAYANTHI²

¹Research scholar of Mathematics
²Assistant Professor of Mathematics
Avinashilingam Institute for Home Science
and Higher Education for Women
Coimbatore, India
E-mail: abisugan84@gmail.com
jayanthimathss@gmail.com

Abstract

In this paper, we have introduced the basic concepts of intuitionistic fuzzy semi γ^* generalized connected space, intuitionistic fuzzy semi γ^* generalized super connected space and intuitionistic fuzzy semi γ^* generalized extremally disconnected space and discussed some of their properties.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [10] in 1965 and later Atanassov [3] generalized this idea to intuitionistic fuzzy sets. On the other hand Coker [4] has introduced intuitionistic fuzzy topological spaces. Connectedness in intuitionistic fuzzy topological spaces was introduced by Ozcag and Coker [6]. Several types of fuzzy connectedness in intuitionistic fuzzy topological spaces were defined by Turnali and coker [9]. Later Riya and Jayanthi [7] introduced intuitionistic fuzzy γ^* generalized connected

generalized connected space, intuitionistic fuzzy semi γ^* generalized super connected space. Received October 2, 2021; Accepted November 15, 2021

²⁰²⁰ Mathematics Subject Classification: 06D99, 06D72, 06D15, 08A72. Keywords: Intuitionistic fuzzy topology, intuitionistic fuzzy semi γ^* generalized closed set, intuitionistic fuzzy semi γ^* generalized continuous mapping, intuitionistic fuzzy semi γ^*

space in 2018. In this paper, we have introduced intuitionistic fuzzy semi γ^* generalized connected space, intuitionistic fuzzy semi γ^* generalized super connected space and intuitionistic fuzzy semi γ^* generalized extremally disconnected space and discussed some of their properties.

2. Preliminaries

Definition 2.1 [3]. An intuitionistic fuzzy set (IFS) A is an object having the form

$$A = \{ \langle x, \mu_A(x), v_A(x) \rangle x \in X \}$$

where the function $\mu_A : X \to [0, 1]$ and $v_A : X \to [0, 1]$ denote the degree of membership and degree of non membership of each element $x \in X$ to the set A respectively, and $0 \le \mu_A(x) + v_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X. An intuitionistic fuzzy set A in X is simply denoted by $A = \langle x, \mu_A, v_A \rangle$ instead of denoting

$$A = \{ \langle x, \mu_A(x), v_A(x) \rangle : x \in X \}.$$

Definition 2.2 [3]. Let A and B be two IFSs of the form $A = \{\langle x, \mu_A(x), v_A(x) \rangle : x \in X\}$ and $B = \{\langle x, \mu_B(x), v_B(x) \rangle : x \in X\}$. Then,

- (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $v_A(x) \ge v_B(x)$ for all $x \in X$,
- (b) A = B if and only if $A \subseteq B$ and $A \supseteq B$,
- (c) $A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle : x \in X \},\$
- (d) $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x) \land v_B(x) \rangle : x \in X \},$
- (e) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x) \lor v_B(x) \rangle : x \in X \}.$

The intuitionistic fuzzy sets $0_{\sim} = \langle x, 0, 1 \rangle$ and $1_{\sim} = \langle x, 1, 0 \rangle$ are respectively the empty set and the whole set of *X*.

Definition 2.3 [4]. An intuitionistic fuzzy topology (IFT) on *X* is a family τ of IFSs in *X* satisfying the following axioms:

- (i) $0_{\sim}, 1_{\sim} \in \tau$,
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
- (iii) $\bigcup G_i \in \tau$ for any family $\{G_i : i \in J\} \subseteq \tau$,

In this case the pair (X, τ) is called the intuitionistic fuzzy topological space (IFTS) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS) in X.

Definition 2.4 [5]. An IFS $A = \langle x, \mu, v_A \rangle$ in an IFTS (X, τ) is said to be an

(i) intuitionistic fuzzy γ closed set $(IF_{\gamma}CS)$ if $cl(int(A)) \cap int(cl(A)) \subseteq A$,

(ii) intuitionistic fuzzy γ open set $(IF_{\gamma}OS)$ if $A \subseteq cl(int(A)) \cup int(cl(A))$.

Definition 2.5 [1]. An IFS A of an IFTS (X, τ) is said to be an *intuitionistic fuzzy semi* γ^* generalized closed set (IF semi γ^*GCS) if $\operatorname{int}(cl(A)) \cap cl(\operatorname{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is an IFSOS in (X, τ) .

Definition 2.6 [2]. A mapping $f : (X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy semi γ^* generalized (IF semi γ^*G) continuous mapping if $f^{-1}(V)$ is an IF semi γ^*GCS in (X, τ) for every IFCS V of (X, σ) .

Definition 2.7 [1]. An IFTS (X, τ) is an intuitionistic fuzzy semi $\gamma_c^* T_{1/2}$ (IF semi $\gamma_c^* T_{1/2}$) space if every IF semi $\gamma^* GCS$ is an IFCS in X.

Definition 2.8 [8]. Two IFSs A and B are said to be q-coincident (A_qB) if and only if there exits an element $x \in X$ such that $\mu_A(x) > v_B(x)$ or $v_A(x) < \mu_B(x)$.

Definition 2.9 [8]. Two IFSs A and B are said to be not *q*-coincident $(A_{\alpha^c}B)$ if and only if $A \subseteq B^c$.

Definition 2.10 [9]. An IFTS (X, τ) is said to be an *intuitionistic fuzzy* C_5 -connected space if the only IFSs which are both an IFOS and an IFCS are 0_{\sim} and 1_{\sim} .

Definition 2.11 [9]. An IFTS (X, τ) is said to be an *intuitionistic fuzzy GO-connected* space if the only IFSs which are both an IFGOS and an IFGCS are 0_{\sim} and 1_{\sim} .

Definition 2.12 [6]. An IFTS (X, τ) is an intuitionistic fuzzy C_5 -connected between two IFSs A and B if there is no IFOS E in (X, τ) such that $A \subseteq E$ and $E_{\alpha} B$.

3. Intuitionistic Fuzzy Semi γ^* Generalized Connected Spaces

In this section we introduce intuitionistic fuzzy semi γ^* generalized connected space and investigate some of their properties.

Definition 3.1. An IFTS (X, τ) is said to be an *intuitionistic fuzzy semi* γ^* generalized (IF semi γ^*G) connected space if the only IFSs which are both IF semi γ^* GOS and IF semi γ^*GCS are 0_{\sim} and 1_{\sim} .

Theorem 3.2. Every IF semi γ^*G connected space is an IFC₅-connected space but not conversely in general.

Proof. Let (X, τ) be an IF semi γ^*G connected space. Suppose (X, τ) is not an *IFC*₅-connected space, then there exists a proper IFS *A* which is both an IFOS and an IFCS in (X, τ) . That is *A* is both an IF semi γ^*GOS and an IF semi γ^*GCS in (X, τ) . This implies that (X, τ) is not an IF semi γ^*G connected space. This is a contradiction. Therefore (X, τ) must be an *IFC*₅-connected space.

Example 3.3. Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.3_a, 0.2_b), (0.7_a, 0.8_b) \rangle$ and $G_2 = \langle x, (0.6_a, 0.5_b), (0.4_a, 0.4_b) \rangle$.

Here,

 $IFSO(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0, 1], \mu_b \in [0, 1], v_b \in [0, 1]/ \text{ whenever } 0.3 \le \mu_a \le 0.4, 0.2 \le \mu_b \le 0.4 \text{ and } 0.6 \le v_a \le 0.7, 0.5 \le v_b \le 0.8, \text{ whenever } 0.6 \le \mu_a \le 0.7, 0.5 \le \mu_b \le 0.8, \text{ and } 0.3 \le v_a \le 0.4, 0.2 \le v_b \le 0.4 \text{ and } 0 \le \mu_a + v_a \le 1 \text{ and } 0 \le \mu_b + v_b \le 1\}.$

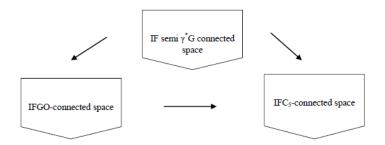
Then (X, τ) is an IFC_5 -connected space but not an IF semi γ^*G connected space, since the IFS $A = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.4_b) \rangle$ is both an IF semi γ^*G open and an IF semi γ^*G closed set in (X, τ) .

Theorem 3.4. Every IF semi γ^*G connected space is an IFGO connected space but not conversely in general.

Proof. Let (X, τ) be an IF semi γ^*G connected space. Suppose (X, τ) is not an IFGO-connected space, then there exists a proper IFS A which is both an IFGOS and an IFGCS in (X, τ) . That is A is both an IF semi γ^*GOS and an IF semi γ^*GCS in (X, τ) . This implies that (X, τ) is not an IF semi γ^*G connected space, a contradiction. Therefore (X, τ) must be an IFGOconnected space.

Example 3.5. In Example 3.3,2 (X, τ) is an IFGO connected space but not an IF semi γ^*G connected space, since the IFS $A = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ is both IF semi γ^*G open and IF semi γ^*G closed in (X, τ) .

The relation between various types of intuitionistic fuzzy connectedness is given in the following diagram.



In the above diagram the reverse implications are not true in general.

Theorem 3.6. The IFTS (X, τ) is an IF semi γ^*G connected space if and only if there exists no non-zero IF semi γ^*G open sets A and B in (X, τ) such that $A = B^c$.

Proof. Necessity: Let A and B be two IF semi γ^*GOSs in (X, τ) such that $A \neq 0_{\sim}, B \neq 0_{\sim}$ and $A = B^c$. Therefore $A = B^c$ is an IF semi γ^*GCS . Since $B \neq 0_{\sim}, A = B^c \neq 1_{\sim}$. Hence A is a proper IFS which is both IF semi γ^*GOS and IF semi γ^*GCS in (X, τ) . Hence (X, τ) is not an IF semi γ^*G connected space. But this is a contradiction to our hypothesis. Hence there exists no non-zero IF semi γ^*GOSs A and B in (X, τ) such that $A = B^c$.

Sufficiency. Suppose (X, τ) is not an IF semi γ^*G connected space. Then there exists an IFS A which is both an IF semi γ^*GOS and an IF semi γ^*GCS with $0_{\sim} \neq A \neq 1_{\sim}$. Now let $B = A^c$. Then B is an IF semi γ^*GOS and $B \neq A^c$. This implies $B^c = A \neq 0_{\sim}$, which is a contradiction to our hypothesis. Hence (X, τ) is an IF semi γ^*G connected space.

Theorem 3.7. Let (X, τ) be an IF semi $\gamma_c^* T_{1/2}$ space, then the following are equivalent:

- (i) (X, τ) is an IF semi γ^*G connected space,
- (ii) (X, τ) is an IFGO connected space,

(iii) (X, τ) is an IFC₅-connected space.

Proof. (i) \Rightarrow (ii) is obvious from the Theorem 3.4.

(ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i) Let (X, τ) be an IFC_5 -connected space. Suppose (X, τ) is not an IF semi γ^*G connected space, then there exists a proper IFS A in (X, τ)) which is both an IF semi γ^*GOS and an IF semi γ^*GCS in (X, τ) . But since (X, τ) is an IF semi $\gamma_c^*T_{1/2}$ space, A is both an IFOS and an IFCS in (X, τ) . This implies that (X, τ) is not an IFC_5 -connected space, which is a contradiction to our hypothesis. Therefore (X, τ) must be an IF semi γ^*G connected space.

Theorem 3.8. If $f:(X, \tau) \to (Y, \sigma)$ is an IF semi γ^*G continuous mapping and (X, τ) is an IF semi γ^*G connected space, then (Y, σ) is an IFC₅-connected space.

Proof. Let (X, τ) be an IF semi γ^*G connected space. Suppose (Y, σ) is not an IFC5-connected space, then there exists a proper IFS A which is both an IFOS and an IFCS in (Y, σ) . Since f is an IF semi γ^*G continuous IF semi γ^*G connected space IFGO-connected space IFC_5 -connected space mapping, $f^{-1}(A)$ is both a proper IF semi γ^*GOS and an IF semi γ^*GCS in (X, τ) . But it is a contradiction to our hypothesis. Hence (Y, σ) must be an IFC_5 -connected space.

Definition 3.9. An IFTS (X, τ) is an IF semi γ^*G connected between two IFSs A and B if there is no IF semi $\gamma^*GOS \ E$ in (X, τ) such that $A \subseteq E$ and $E_{g^c}B$.

Example 3.10. Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.6_a, 0.5_b), (0.4_a, 0.4_b) \rangle$. Then, the IFTS (X, τ) is an IF semi

 γ^*G connected between the two IFSs $A = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ and $B = \langle x, (0.7_a, 0.8_b), (0.3_a, 0.2_b) \rangle$ as there exists no IF semi $\gamma^*GO \ E$ such that $A \subseteq E$ and $E_{a^c}B$.

Theorem 3.11. If an IFTS (X, τ) is an IF semi γ^*G connected between two IFSs A and B, then it is IFC₅-connected between A and B but the converse may not be true in general.

Proof. Suppose (X, τ) is not IFC_5 -connected between A and B, then there exists an IFOS E in (X, τ) such that $A \subseteq E$ and $E_{q^c}B$. Since every IFOS is an IF semi γ^*GOS , there exists an IF semi γ^*GOS E in (X, τ) such that $A \subseteq E$ and $E_{q^c}B$. This implies (X, τ) is not IF semi γ^*G connected between A and B. Thus we get a contradiction to our hypothesis. Therefore the IFTS (X, τ) must be IFC_5 -connected between A and B.

Example 3.12. Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$. Then (X, τ) is IFC5-connected between the IFSs $A = \langle x, (0.1_a, 0.2_b), (0.7_a, 0.7_b) \rangle$ and $B = \langle x, (0.7_a, 0.7_b), (0.3_a, 0.3_b) \rangle$. Here,

 $IFSO(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0, 1], \mu_b \in [0, 1], v_a \in [0, 1]/0.4 \le \mu_a \le 0.6, \\ 0.3 \le \mu_b \le 0.7, v_a \le 0.4, v_b \le 0.3 \text{ and } 0 \le \mu_a + v_b \le 1 \text{ and } 0 \le \mu_b + v_b \le 1\}, \\ \text{and } (X, \tau) \text{ is not IF semi } \gamma^*G \text{ connected between } A \text{ and } B, \text{ since the IFS} \\ E = \langle x, (0.3_a, 0.2_b), (0.7_a, 0.7_b) \rangle \text{ is an IF semi } \gamma^*GOS \text{ such that } A \subseteq E \text{ and} \\ E \subseteq B^c.$

Theorem 3.13. An IFTS (X, τ) is IF semi γ^*G connected between two IFSs A and B if and only if there is no IF semi γ^*GOS and IF semi $\gamma^*GCS \in$ in (X, τ) such that $A \subseteq E \subseteq B^c$.

Proof. Necessity: Let (X, τ) be IF semi $\gamma^* G$ connected between two

IFSs A and B. Suppose that there exists an IF semi γ^*GOS and IF semi $\gamma^*GCS \ E$ in (X, τ) such that $A \subseteq E \subseteq B^c$, then $E_{q^c}B$ and $A \subseteq E$. This implies (X, τ) is not IF semi γ^*G connected between A and B, a contradiction to our hypothesis. Therefore there is no IF semi γ^*GOS and an IF semi $\gamma^*GCS \ E$ in (X, τ) such that $A \subseteq E \subseteq B^c$.

Sufficiency: Suppose that (X, τ) is not IF semi γ^*G connected between A and B. Then there exists an IF semi $\gamma^*GOS \ E$ in (X, τ) such that $A \subseteq E$ and E qc B. This implies that there is an IF semi $\gamma^*GOS \ E$ in (X, τ) such that $A \subseteq E \subseteq B^c$. Hence (X, τ) is IF semi γ^*G connected between A and B.

Theorem 3.14. If an IFTS (X, τ) is IF semi γ^*G connected between A and B and $A \subseteq A_1, B \subseteq B_1$, then (X, τ) is an IF semi γ^*G connected between A_1 and B_1 .

Proof. Suppose that (X, τ) is not IF semi γ^*G connected between A_1 and B_1 , then by Definition 3.9, there exists an IF semi $\gamma^*GOS \ E$ in (X, τ) such that $A_1 \subseteq E$ and $Eq^c B_1$. This implies $E \subseteq B_1^c$ and $A_1 \subseteq E$. That is $A \subseteq A_1 \subseteq E$. Hence $A \subseteq E$. Since $E \subseteq B_1^c \subseteq E^c$. That is $B \subseteq B_1 \subseteq E^c$. Hence $E \subseteq B^c$. Therefore (X, τ) is not IF semi γ^*G connected between Aand B, which is a contradiction to our hypothesis. Hence (X, τ) must be IF semi γ^*G connected between A_1 and B_1 .

Theorem 3.15. Let (X, τ) be an IFTS and A and B be IFSs in (X, τ) . If A_acB . then (X, τ) is IF semi γ^*G connected between A and B.

Proof. Suppose (X, τ) is not an IF semi γ^*G connected between A and B. Then there exists an IF semi $\gamma^*GOS \ E$ in (X, τ) such that $A \subseteq E$ and $E \subseteq B^c$. This implies that $A \subseteq B^c$. That is $A_q cB$. But this is a

contradiction to our hypothesis. Hence (X, τ) must be IF semi γ^*G connected between A and B.

Theorem 3.16. An IFTS (X, τ) is an IF semi γ^*G connected space if and only if there exists no non-zero IF semi γ^*G open sets A and B in (X, τ) such that $B = A^c$, $B = (\gamma cl(A))^c$, $A = (\gamma cl(B))^c$.

Proof. Necessity: Assume that there exist IFSs A and B such that $A \neq 0_{\sim} \neq B$, $B = A^c$, $B = (\gamma cl(A))^c$, $A = (\gamma cl(B))^c$. Since $(\gamma cl(A))^c$ and $(\gamma cl(B))^c$ are IF γ open sets in (X, τ) , A and B are IF semi γ^*G open sets in (X, τ) . This implies (X, τ) is not an IF semi γ^*G connected space, which is a contradiction. Therefore there exists no non-zero IF semi γ^*G open sets A and B in (X, τ) such that $B = A^c$, $B = (\gamma cl(A))^c$, $A = (\gamma cl(B))^c$.

Sufficiency: Let A be both an IF semi γ^*GOS and an IF semi γ^*GCS in (X, τ) such that $1_{\sim} \neq A \neq 0_{\sim}$. Now by taking $B = A^c$ we obtain a contradiction to our hypothesis. Hence (X, τ) is an IF semi γ^*G connected space.

Definition 3.17. An IFS A in (X, τ) is called an intuitionistic fuzzy regular semi γ^* generalized open set (IFR semi γ^*GOS) if $A = s\gamma^* \text{gint}(s\gamma^* gcl(A))$. The complement of an IFR semi γ^*GOS is called an intuitionistic fuzzy regular semi γ^* generalized closed set (IFR semi γ^*GCS) in (X, τ) .

Definition 3.18. An IFTS (X, τ) is called an intuitionistic fuzzy semi γ^* generalized (IF semi γ^*G) super connected space if there exists no proper IFR semi γ^*GOS in (X, τ) .

Theorem 3.19. Let (X, τ) be an IFTS, then the following are equivalent:

(1) (X, τ) is an IF semi γ^*G super connected space,

(2) For every non-zero IFR semi $\gamma^* GOS A$, $s\gamma^* gcl(A) = 1_{\sim}$.

(3) For every IFR semi γ^*GCSA with $A \neq 1_{\sim}$, $s\gamma^*gcl(A) = 1_{\sim}$.

(4) There exists no IFR semi γ^*GCSs A and B in (X, τ) such that $A \neq 0_{\sim} \neq B, A \subseteq B^c$.

(5) There exists no IFR semi $\gamma^*GCSs \ A \ and \ B \ in \ (X, \tau)$ such that $A \neq 0_{\sim} \neq B, B = (s\gamma^*gcl(A))^c, A = (s\gamma^*gcl(B))^c.$

(6) There exists no IFR semi $\gamma^*GCSs \ A \ and \ B \ in \ (X, \tau)$ such that $A \neq 1_{\sim} \neq B, \ B = (s\gamma^*g \ int(A))^c, \ A = (s\gamma^*gcl(B))^c.$

Proof. (1) \Rightarrow (2) Let $A \neq 0_{\sim}$ be an IFR semi $\gamma^* GOS$ in X and $B = s\gamma^* g \operatorname{int} (s\gamma^* gcl(A))^c$. Now let $B = s\gamma^* \operatorname{gint} (s\gamma^* gcl(A))^c$. Then B is a proper IFR semi $\gamma^* GOS$ in (X, τ) . But this is a contradiction to the fact that (X, τ) is an IF semi $\gamma^* G$ super connected space. Therefore $s\gamma^* gcl(A) = 1_{\sim}$.

(2) \Rightarrow (3) Let $A \neq 1_{\sim}$ be an IFR semi γ^*GCS in (X, τ) . If $B = A^c$, then B is an IFR semi γ^*GOS in (X, τ) with $B \neq 0_{\sim}$. Hence $s\gamma^*gcl(B) = 1_{\sim}$, by hypothesis. This implies $(s\gamma^*gcl(B))^c = 0_{\sim}$. That is $s\gamma^*gint(B^c) = 0_{\sim}$. Hence $s\gamma^*gint(A) = 0_{\sim}$.

(3) \Rightarrow (4) Suppose A and B be two IFR semi γ^*GCSs in (X, τ) such that $A \neq 0_{\sim} \neq B, A \subseteq B^c$. Since B^c is an IFR semi γ^*GCS in (X, τ) and $B \neq 0_{\sim}$ implies $B^c \neq 1_{\sim}, B^c = s\gamma^*gcl(s\gamma^*gint(B^c))$ and we have $s\gamma^*gint(B^c) = 0_{\sim}$. But $A \subseteq B^c$. Therefore $0_{\sim} \neq A = s\gamma^*gint(s\gamma^*gcl(A))$ $\subseteq s\gamma^*gint(s\gamma^*gint(B^c)) = s\gamma^*gint(s\gamma^*gcl(s\gamma^*gcl(s\gamma^*gint(B^c))))) = s\gamma^*gint(s\gamma^*gcl(A))$ $(s\gamma^*gint(B^c))) = s\gamma^*gint(B^c) = 0_{\sim}$. Hence it is a contradiction. Therefore (4) is

true.

(4) \Rightarrow (1) Suppose $0_{\sim} \neq A \neq 1_{\sim}$ be an IFR semi γ^*GCSs in (X, τ) . If we take $B = (s\gamma^*gcl(A))^c$, then B is an IFR semi γ^*GOS since $s\gamma^*gint(s\gamma^*gcl(B)) = s\gamma^*gcl(s\gamma^*gcl(s\gamma^*gcl(A))^c) = s\gamma^*gint(s\gamma^*gcl(A)))^c$ $= s\gamma^*gint(A^c) = (s\gamma^*gcl(A))^c = B$. Also we get $B \neq 0_{\sim}$, since otherwise, if $B = 0_{\sim}$, this implies $(s\gamma^*gcl(A))^c = 0_{\sim}$. That is $s\gamma^*gcl(A) = 1_{\sim}$. Hence $A = s\gamma^*gint(s\gamma^*gcl(A)) = s\gamma^*gint(1_{\sim}) = 1_{\sim}$, which is a contradiction. Therefore $B = 0_{\sim}$, and $A \subseteq B^c$. But this is a contradiction to (4). Therefore (X, τ) is an IF semi γ^*G super connected space.

(1) \Rightarrow (5) Suppose A and B are any two IFR semi γ^*GCSs in (X, τ) such that $A \neq 0_{\sim} \neq B$, $B = (s\gamma^*gcl(A))^c$ and $A = (s\gamma^*gcl(B))^c$. Now we have $s\gamma^*gint(s\gamma^*gcl(A)) = s\gamma^*gint(B^c) = (s\gamma^*gcl(B))^c = A$, $A \neq 0_{\sim}$ and $A \neq 1_{\sim}$, since if $A \neq 1_{\sim}$, then $1_{\sim} = (s\gamma^*gcl(B))^c$. This implies $s\gamma^*gcl(B)$ $= 0_{\sim} \Rightarrow B = 0_{\sim}$. But $B = 0_{\sim}$, Therefore $A \neq 1_{\sim}$. Hence A is a proper IFR semi γ^*GOS in (X, τ) , which is a contradiction to (1). Hence (5) is true.

(5) \Rightarrow (1) Suppose A is an IFR semi $\gamma^* GOS$ in (X, τ) such that $0_{\sim} \neq A \neq 1_{\sim}$. Now take $B = (s\gamma^* gcl(A))^c$. In this case we get $B = 0_{\sim}$ and B is an IFR semi $\gamma^* GOS$ in (X, τ) , $B = (s\gamma^* gcl(A))^c$ and $(s\gamma^* gcl(B))^c$ $= (s\gamma^* gcl(s\gamma^* gcl(A)^c) = s\gamma^* gint(s\gamma^* gcl(A)) = A$. But this is a contradiction to (5). Therefore (X, τ) is an IF semi $\gamma^* G$ super connected space.

(5) \Rightarrow (6) Suppose A and B be two IFR semi γ^*GCSs in (X, τ) such that $A \neq 1_{\sim} \neq B$, $B = (s\gamma^*gint(A))^c$ and $A = (s\gamma^*gint(B))^c$. Taking $C = A^c$ and $D = B^c$, C and D become IFR semi γ^*GCSs in (X, τ) with $C \neq 0_{\sim} \neq D$, $D = (s\gamma^*gcl(C))^c = (s\gamma^*gcl(D))^c$, which is a contradiction to (5). Hence (6) is

true.

(6) \Rightarrow (5) It can be proved easily by the similar way as in (5) \Rightarrow (6).

References

- [1] M. Abinaya and D. Jayanthi, Intuitionistic Fuzzy Semi γ^* Generalized Closed Sets, Journal of Shanghai Jiaotong University (2020), 373-387.
- [2] M. Abinaya and D. Jayanthi, Intuitionistic fuzzy semi γ^{*} generalized continuous mappings, Advances in Fuzzy Mathematics (2021), 17-26.
- [3] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 12 (1986), 87-96.
- [4] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89.
- [5] I. M. Hanafy, Intuitionistic fuzzy γ-continuity, Canad. Math. Bull. 52 (2009), 544-554.
- [6] S. Ozcag and D. Coker, On connectedness in intuitionistic fuzzy special topological spaces, Inter. J. Math. Math. Sci. 21 (1998), 33-40.
- [7] V. M. Riya and D. Jayanthi, On intuitionistic fuzzy γ^* generalized connectedness, International Journal of Mathematics and its Applications 5 (2017), 353-360.
- [8] S. S. Thakur and Rekha Chaturvedi, Regular generalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau, Studii Si Cercetari Stiintifice, Seria Mathematica 16 (2006), 257-272.
- [9] N. Turnali and D. Coker, Fuzzy connectedness in intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 116 (2000), 369-375.
- [10] L. A. Zadeh, Fuzzy sets, Information and Control (1965), 338-353.