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Abstract 

The aim of this paper is to establish some fixed point theorems for mappings involving 

rational expressions in a complete dualistic partial metric space using a class of pairs of functions 

satisfying certain assumptions. Our result extends and generalizes some well-known results of 

[8], [9], [26] and [33]. We also provide examples which show the usefulness of these results.  

1. Introduction 

Matthews [17] introduced a new generalized metric space called partial 

metric space. He established the precise relationship between partial metric 
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spaces and the so-called weightable quasi-metric spaces. After this 

contribution, many researchers focused on partial metric spaces (see [1], 

[11], [12], [13], [14], [15], [22], [28]).  

The concept of dualistic partial metric, which is more general than 

partial metric, was studied by O’Neill [29] and established a robust 

relationship between dualistic partial metric and quasi metric. For the more 

details of fixed point results on dualistic partial metric spaces, the readers 

may refer to [4], [16], [19] [20], [23], [25], [27], [28].  

Das and Gupta [8] established first fixed point theorem for rational 

contractive type conditions in metric space. 

Theorem 1.1 (see [8]). Let  dX ,  be a complete metric space, and let 

XX :  be a self-mapping. If there exist  1,0,   with 1   such 

that  

   
    

 yxd

yydxxd
yxdyxd

,1

,,1
,,







  (1.1) 

for all ,, Xyx   then   has a unique fixed point .Xx    

Nazam et al. [26] proved a real generalization of Das-Gupta fixed point 

theorem in the frame work of dualistic partial metric spaces. The main 

purpose of this paper is to present some fixed point theorems for mappings 

involving rational expressions in the context of complete dualistic partial 

metric spaces using a class of pairs of functions satisfying certain 

assumptions. Our result extends and generalizes some well-known results of 

[8], [9], [26] and [33]. We also provide examples to show significance of the 

obtained results involving rational type dualistic contractive conditions.  

2. Preliminaries 

We recall some mathematical basics and definitions to make this paper 

self-sufficient.  

Definition 2.1 (see [17]). Let X be a non-empty set. A partial metric on 

X is a function   ,0: XXp  complying with following axioms, for all 

Xzyx ,,  
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       ;,,,1 yypxxpyxpyxp   

     ;,,2 yxpxxpp   

     ;,,3 xypyxpp   

         .,,,,4 zzpyvpzxpyxpp   

The pair  pX ,  is called a partial metric space. 

Definition 2.2 (see [29]). Let X be a non-empty set. A dualistic partial 

metric on X is a function   ,: XXp  satisfying the following 

axioms, for all Xzyx ,,  

       ;,,,1 yypxxpyxpyxp    

     ;,,2 yxpxxpp    

     ;,,3 xypyxpp    

         .,,,,4 zypyxpyypzxpp    

The pair  pX ,  is called a dualistic partial metric space.  

Remark 2.3. Noting that each partial metric is a dualistic partial metric 

but the converse is false. Indeed, define a function p  on   ,  as 

     .,,,,max,  yxyxyxp  Obviously, p  is a dualistic partial 

metric on  .,   Since      0,,,,00,  yxyxp  and then p  

is not a partial metric on  .,   This confirms our remark. Unlike other 

metrics, in dualistic partial metric   0,  yxp  does not imply .yx   

Indeed, for all   00,,0   kpk  and .0k  The self-distance  xxp ,  

is a feature utilized to describe the amount of information contained in x. 

The restriction of p  to  ,0  is a partial metric. This situation creates a 

problem in obtaining a fixed point of a self-mapping in dualistic partial 

metric space. For the solution of this problem, Nazam et al. [21] introduced 

concept of convergence comparison property (CCP) and established some 

fixed point by using (CCP) along with axioms  1p  and  .2
p  
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Definition 2.4 (see [21]). Let  pX ,  be a dualistic partial metric space 

and   be a self-mapping on X. We say that   has a convergence 

comparison property (CCP) if for each sequence  nx  in X such that 

,xxn   satisfies 

   xxpxxp  ,,    (2.1) 

Example 2.5. Let      .4,,0,4,0, 21  XXX  Define a 

mapping   ,: XXp  by   yxyxp  ,  if yx   and 

  yxyxp  ,  if .yx   Clearly,  pX ,  is a complete dualistic partial 

metric space. Consider .1,2
1

Xn
n

x
n

n 






 


 Here 

    2lim2,22,lim  


 nnnn xpxp  in  ., pX  Define 

XX :  by 1x  if 2Xx   and 0x  if .1Xx   For such ,2x  

observe that         .2,20,002,   ppxxxxxp  

So   has the (CCP). 

Example 2.6 (see [21], [29]). (1) Define   ,: XXpd  by 

    ,,, byxdyxpd   where d is a metric on a nonempty set X and 

  ,b  is arbitrary constant, then it is easy to check that 
dp  verifies 

axioms      41 pp  and hence  pX ,  is a dualistic partial metric space. 

(2) Let p be a partial metric defined on a non empty set X. The function 

  ,: XXp  defined by        yypxxpyxpyxp ,,,,   

satisfies the axioms      41 pp  and so it defines a dualistic partial metric on 

X. Note that  yxp ,  may have negative values. 

(3) Let  ., X  Define   ,: XXp  by   yxyxp  ,  

if yx   and    yxp ,  if yx   and .0  We can easily see that p  is 

a dualistic partial metric on X. 

O’Neill [29] established that each dualistic partial metric p  on X 

generates a 0T  topology   p  on X having a base, the family of -p balls 
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   ,0,|,   Xxx
p

 where 

        .,,|,   
 xxpyxpXyx

p
 

If  pX ,  is a dualistic partial metric space, then the function 

  ,0: XXd
p

 defined by 

     xxpyxpyxd
p

,,,    (2.2) 

defines a quasi-metric on X such that      dpp  and 

      xydyxdyxd
pp

s

p
,,,max, 

  (2.3) 

defines a metric on X. 

Definition 2.7 (see [28]). Let  pX ,  be a dualistic partial metric space.  

1. A sequence  nx  in X is said to converge or to be convergent if there is 

a Xx   such that    .,,lim xxpxxp nn


   x is called the limit of  nx  

and we write .xxn   

2. A sequence  nx  in X is said to be Cauchy sequence if 

 mnmn xxp ,lim ,


  exists and is finite. 

3. A dualistic partial metric space   pXX ,  is said to be complete if 

every Cauchy sequence  nx  in X converges, with respect to  , p  to a point 

Xx   such that    .,lim, , mnmn xxpxxp 


   

Remark 2.8. For a sequence, convergence with respect to metric space 

may not imply convergence with respect to dualistic partial metric space. 

Indeed, if we take 1  and   Xn
n

n
x nn 


 1:

1
 as in Example 2.6 

(3). Mention that   11,lim  nn xd  and therefore, 1nx  with 

respect to d. On the other hand, we make a conclusion that 1nx  with 
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respect to p  because    1lim1,lim  



 nnnn xpxp  

01
1

lim 


  n

n
n  and   .11,1 p  

Lemma 2.9 (see [28]). Let  pX ,  be a dualistic partial metric space. 

(1) Every Cauchy sequence in  s

p
dX


,  is also a Cauchy sequence in 

 ., pX  

(2) A dualistic partial metric  pX ,  is complete if and only if the 

induced metric space  s

p
dX


,  is complete. 

(3) A sequence  nx  in X converges to a point Xx   with respect to 

 s

p
d


  if and only if      .,lim,lim, mnnnn xxpxxpxxp 





   

Definition 2.9 (see [26]). Let  pX ,  be a dualistic partial metric space. 

A mapping XX :  is said to be a dualistic Dass-Gupta contraction if 

there exist 0,   and 1  such that 

 
    

 
 yxp

yxp

xxpyyp
yxp ,

,1

,1,
, 




 







  (2.4) 

    .1,|,,   yxpXXyxyx  

Nazam et al. [26] studied the following fixed point theorems on dualistic 

contraction of rational type. 

Theorem 2.10. Let  pX ,  be a complete dualistic partial metric space. 

Let XX :  be a dualistic Das-Gupta contraction. If   satisfies (CCP). 

Then   has a unique fixed point in X and the Picard iterative sequence 

  0xn  with initial point ,0x  converges to the fixed point. 

One of the most important ingredients of a contractive condition is to 

study the kind of involved functions, like altering distance functions 

introduced by Khan et al. [16] as follows. 

Definition 2.11 (see [16]). A function     ,0,0:  is said to be 

altering distance function if  
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(a1)  is monotone increasing and continuous,  

(a2)    .,0,00  ttt  

Definition 2.12 (see [5]). The pair  ,,   where     ,0,0:,  is 

called a pair of generalized altering distance functions if  

(b1)  is continuous;  

(b2)  is non-decreasing; 

(b3)   .0lim0lim   nnnn tt   

The condition (b3) was introduced by Moradi and Farajzadeh [18]. The 

above conditions do not determine the values of  0  and  .0  

Definition 2.13 (see [2]). We will denote by   the family of all pairs 

 ,,   where     ,0,0:,  are functions satisfying the following 

conditions. 

(F1)  is non-decreasing;  

(F2) if   ,00t  such that   ,00  t  then 00 t  and    .001   

(F3). if       ,0, nn  such that   nnnn limlim  

satisfying  n  and       ,,  nnn  then .0  

Definition 2.14 (see [33]). A pair of functions  ,  is said to belong to 

the class F  if they satisfy the following conditions: 

(c1)    ;,0,0:,   

(c2) if      stst  ,,0,  then ;st   

(c3). if         nnnnnn stst limlim,,0,  and 

    ,,  nst nn  then .0  

If  ,  satisfies (F1) and (F2), then  ,  satisfies (c1) and (c2). 

Furthermore, if  ,  satisfies (c3), then  ,  satisfies (F3). 

Remark 2.15 (see [33]). If   F,  and    ,tt   then ,0t  since 
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we can take  ntst nn ,,  and by (c3), we deduce .0t  

Example 2.16. The conditions (c1)-(c3) of Definition 2.14 are fulfilled for 

the functions     ,0,0:,  defined by 

(1)   






 


12

15
ln

t
t  and    .,0,

12

13
ln 







 
 t

t
t   

(2)   






 


2

12
ln

t
t  and    .,0,

2

1
ln 







 
 t

t
t  

Example 2.17 (see [33]). Let        .01|,0,0:  nn tt  

Consider the pairs of functions       ,1,1 ,0,0    where   and    ,01  

is defined as 

          .,0,1 ,0  tttt   

It is easy to check that        .1,1 ,0,0 F   

Example 2.18 (see [33]). Let     ,0,0:  be a continuous and 

increasing function such that    .,0,00  ttt  Let 

    ,0,0:  be a non-decreasing function such that 

    ,0,00 ttt  and .  We make a conclusion that 

  ., F  

An interesting particular case is when  is the identity mapping, 

  ,01  and     ,0,0:  is a non-decreasing function such that 

  00  tt  and    .,0,  ttt  

Remark 2.19 (see [33]). Let     ,0,0:g  be an increasing 

function and   ., F  Then   ., F  gg  

3. Main Results 

In this section, using the class F  functions, we give generalizations of 

some fixed point theorems from the literature. 

Theorem 3.1. Let  pX ,  be a complete dualistic partial metric space. 
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Let XX :  be a mapping such that there exists a pair of functions 

  F,  satisfying 

         
    

 


yxp

xxpyyp
yxpyxp

,1

,1,
,,max,












  (3.1) 

.,  yx  If   satisfies (CCP). Then   has a unique fixed point in X and 

the Picard iterative sequence   0xTn  with initial point ,0x  converges to the 

fixed point. 

Proof. Let Xx 0  be an initial element and define Picard iterative 

sequence  nx  by .,1  nxx nn  If there is a positive integer 0n  such 

that ,100  nn xx  then .
000 1 nnn Txxx    So 

0nx  is a fixed point of .  In 

this case, the proof is finished. Now, we suppose that ,,1   nxx nn  

applying (3.1), we have  

       11 ,, 



  nnnn xxpxxp   

     
    

 


1

11
1

,1

,1,
,,max

















nn

nnnn
nn

xxp

xxpxxp
xxp


 

     
    

 
.

,1

,1,
,,max

1

11
1


















nn

nnnn
nn

xxp

xxpxxp
xxp  (3.2)  

Now, we can distinguish two cases.  

Case 1. Consider  

     
    

 


1

11
1

,1

,1,
,,max


















nn

nnnn
nn

xxp

xxpxxp
xxp  

   ., 1
 nn xxp  (3.3) 

Due to inequality (3.2), we have  

       .,, 11 



  nnnn xxpxxp  (3.4) 

Since   ,, F  we deduce that  
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    .,, 11 



  nnnn xxpxxp  

 

Case 2. If 

     
    

 


1

11
1

,1

,1,
,,max


















nn

nnnn
nn

xxp

xxpxxp
xxp  


    

 
.

,1

,1,

1

11

nn

nnnn

xxp

xxpxxp













  (3.5)  

Then from (3.3), we have  

    
    

 
.

,1

,1,
,

1

11
1

nn

nnnn
nn

xxp

xxpxxp
xxp
















  (3.6) 

Since   F,  we get 

 
    

 nn

nnnn
nn

xxp

xxpxxp
xxp

,1

,1,
,

1

11
1
















  

which implies that 

    .,, 11 



  nnnn xxpxxp  

From both cases, we conclude that the sequence    nn xxp ,1
  is a 

monotone and bounded below sequence of non-negative real numbers, it is 

convergent and converges to a point r, i.e.   .0,lim 1 


 rxxp nnn  If 

.0r  Then we have done. Let 0r  and denote  nnA |  satisfies 

(3.3)} and  nnB |  satisfies (3.5)}. Now, we make the following 

remark. 

(1) If Card ,A  then from (3.2), we can find infinitely natural 

numbers n satisfying inequality (3.4) and since  nnn xxp ,lim 1


  

  rxxp nnn  


 1,lim  and   ,, F  we deduce that .0r  

(2) If Card ,B  then from (3.2), we can find infinitely many n  

satisfying inequality (3.6). Since   F,  and using the similar argument 
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to the one used in case 2, we obtain 

 
    

 nn

nnnn
nn

xxp

xxpxxp
xxp

,1

,1,
,

1

11
1
















  

 

(3) for infinitely many .n  On letting the limit as n  and taking 

into account that   ,,lim 1 rxxp nnn 


  we deduce that 
 

r

rr
r






1

1
 

and consequently, we obtain .0r  

Therefore, in both cases we have  

  0,lim 1 


 nnn xxp  and then   .0,lim 1 


 nnn xxp  (3.7) 

We use (3.1) to find the self-distance  ,, 1


nn xxp  as follows: 

       11,, 
  nnnn xxpxxp   

    ,,max 11 
 nn xxp  


    

 


11

1111

,1

,1,















nn

nnnn

xxp

xxpxxp 
 

    ,,max 11 
 nn xxp  


    

 
.

,1

,1,

11

11















nn

nnnn

xxp

xxpxxp
 (3.8) 

Put  

        11,,| 
  nnnn xxpxxpnC   

     
    

 
.

,1

,1,
,|

11

111

















nn

nnnn
nn

xxp

xxpxxp
xxpnD   

By (3.8), we have Card C  or Card .D  If Card ,C  then there 

exists infinitely many n  satisfying 
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       11,, 
  nnnn xxpxxp  (3.9) 

and since   ,, F  we have 

    .,, 11 
  nnnn xxpxxp  

Thus,    nn xxp ,1
  is a non increasing sequence of positive real numbers 

and arguing like case of (3.7), we have   .0,lim 
 nnn xxp  On the 

other hand, if Card ,D  then we can find infinitely many n  

satisfying 

    
    

 


11

11

,1

,1,
,

















nn

nnnn
nn

xxp

xxpxxp
xxp  (3.10) 

and since   ,, F  we infer 

 
    

 11

11

,1

,1,
,

















nn

nnnn
nn

xxp

xxpxxp
xxp  (3.11) 

taking the nlim  on (3.11) and using (3.7), we obtain that 

  0,lim 
 nnn xxp  and then   .0,lim 

 nnn xxp  Thus, in both 

cases, we infer that   0,lim 
 nnn xxp  and then  

  .0,lim 


nn

n
xxp  (3.12) 

We deduce from (2.2) that  

     .,,, 11 nnnnnnp
xxpxxpxxd 




   

So using (3.7) and (3.12), we get  

  .0,lim 1 


 nnpn
xxd  (3.13) 

Next step is to show that  nx  is a Cauchy sequence in  ., s

p
dX


 For this we 

have to show that  
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       .0,,,maxlim,lim
,,

 


nmpmnpnm
mn

s

pnm
xxdxxdxxd  

Suppose on contrary that  nx  is not a Cauchy sequence, that is  

  .0,lim ,  mnpmn xxd  Then given ,0  we will construct a pair of 

subsequences  
knx  and  

kmx  of  nx  such that kn  is smallest index for 

which for all ,kmn kk   where k  

  .,  kk mnp
xxd  (3.14) 

It follows directly that  

  .,1  kk mnp
xxd  (3.15) 

By (3.14) and (3.15), we have  

 
kk mnp

xxd ,  

   
kkkk mnpnnp

xxdxxd ,, 11     

  ., 1   kk nnp
xxd  

Taking klim  on both sides in above inequality and from (3.13), we obtain 

  .,lim 
 kk mnpk

xxd  (3.16) 

Using triangle inequality, we have  

     
kkkkkk mnpnnpmnp

xxdxxdxxd ,,, 11     

     
kkkkkk mmpmnpnnp

xxdxxdxxd ,,, 1111     

and  

     1111 ,,,   
kkkkkk mnpnnpmnp

xxdxxdxxd  

     .,,, 11   
kkkkkk mmpmnpnnp

xxdxxdxxd  

Taking the limit as k  in the above two inequalities and using (3.13) 

and (3.16), we get 
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  .,lim 11 


 kk mnpk
xxd  (3.17) 

Now applying contractive condition (3.1), for ,
kk mn xx   we have 

       11,, 
 

kkkk mnmn xxpxxp   

    ,,max 11 


kk mn xxp  


    

 


11

1111

,1

,1,















kk

kkkk

mm

mmnn

xxp

xxpxxp




 

    ,,max 11 


kk mn xxp  


    

 


1,1

,1,

1

11















kk

kkkk

mm

mmnn

xxp

xxpxxp
 (3.18) 

Let us put 

        11,,| 
 

kkkk mnmn xxpxxpnE   

     
   

 
.

,1

,1,
,|

11

11

















kk

kkkk

kk
mn

mmnn
mn

xxp

xxpxxp
xxpnF   

By (3.18), we have Card E  or Card .F  Let us suppose that Card 

,E  then there exists infinitely many k  satisfying 

       11,, 
 

kkkk mnmn xxpxxp  (3.19) 

and since   ,, F  by letting the limit as ,k  we have  

    .,lim,lim 11 









kkkk mn
k

mn
k

xxpxxp  

In the view of (3.16) and (3.17), we get 0  a contradiction. On the other 

hand, if Card ,F  then we can find infinitely many k  satisfying 
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   
   

  





























11

11

,1

,1,
,

kk

kkkk

kk
mn

mmnn
mn

xxp

xxpxxp
xxp  (3.20) 

and since   ,, F  we infer 

 
   

 
.

,1

,1,
,

11

11

















kk

kkkk

kk
mn

mmnn
mn

xxp

xxpxxp
xxp  

Taking the limit as k  and in the view of (3.13) and (3.16), it follows that 

0  and we reach a contradiction. Therefore, in both the possibilities, we 

reach a contradiction and therefore   .0,lim ,  mnpnm xxd  Similarly we 

can prove that   .0,lim ,  nmpnm xxd  Hence   ,0,lim , 
 mn

s

p
nm xxd  

which ensures that  nx  is a Cauchy sequence in  ., s

p
dX


 Since  pX ,   is 

a complete dualistic partial metric space, by Lemma 2.9(2),  s

p
dX


,  is a 

complete metric space. Thus, there exists  s

p
dXv


 ,  such that vxn   as 

,n  that is   0,lim  vxd npn  and by Lemma 2.9 (3), we know that 

     .,lim,lim, mn
n

n
n

xxpvxpvvp 







   (3.21) 

Since,   ,0,lim  vxd npn  by (2.2), (3.7) and (3.12), we have 

      .0,lim,lim,  








mn

n
n

n
xxpvxpvvp  (3.22) 

This shows that  nx  is a Cauchy sequence converging to  .,  pXv  We 

are left to prove that v is a fixed point of .  Suppose that .vv   Now 

applying contractive condition (3.1) and Lemma 2.9(3), we have 

        
   

 
 .

,1

,1,
,,max,























vxp

vvpxxp
xvpxvp

n

nn
nn


  (3.23) 

Denote 
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        nn xvpxvpnG ,,|     

     
    

 
.

,1

,1,
,|

vxp

vvpxxp
xvpnH

n

nn
n 










  

We have Card G  or Card .H  If Card ,G  then there exists 

infinitely many n  such that 

       nn xvpxvp ,,     (3.24) 

and since   ,, F  by taking the limit as ,n  we have  

    .,lim,lim n
n

n
n

xvpxvp 






  

To simplify our consideration, we will denote the subsequence by the same 

symbol  nx  Since 1 nn xx  and ,Xvxn   this means that 

  0,suplim 
nxvp  and consequently .lim 1 vxnn   We infer 

  0,  vvp   and then   .0,  vvp   On the other hand, if Card 

,H  then we can find infinitely many ,n  such that 

   
    

 
.

,1

,1,
,

vxp

vvpxxp
xvp

n

nn
n 










  (3.25) 

Since   1,,  nn xxF  and ,lim vxnn   on letting limit as ,n  

we have 

 
    

 
.

,1

,1,
lim,lim 1

1
vxp

vvpxxp
xvp

n

nn

n
n

n 











 





  (3.26) 

In the view of (3.7), arguing like above, we conclude that   .0,  vvp   

Therefore, in both the cases, we obtain   0,  vvp   and then 

  .0,  vvp   Since   has (CCP), we get 

   vvpkvvp  ,,0    (3.27) 

On the other hand, by axiom  4p  we have 
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       vvpvvpvvpvvp  ,,,,    

which implies that  

  .0,  vvp   (3.28) 

The inequalities (3.27) and (3.28) imply that   .0,  vvp   Thus 

     .,,, vvpvvpvvp     (3.29) 

By using axiom  ,1
p  we have vv   and hence v is a fixed point of .  

Finally, we will prove the uniqueness of the fixed point. Suppose that 

Xv   is another fixed point of   such that . vv  Now using contractive 

condition (3.1), we get 

         vvpvvp  ,,  

    
    

 



















vvp

vvpvvp
vvp

,1

,1,
,,max


 

    
    

 



















vvp

vvpvvp
vvp

,1

,1,
,,max  

      .0,,max   vvp  (3.30) 

If           ,,0,,max   vvpvvp  in this case from (3.30), 

       .,,   vvpvvp  Since   F,  and by Remark 2.18, we 

deduce that   .0,  vvp  Similarly, if         ,00,,max   vvp  

then from (3.30),      .0,   vvp  We infer that   0,  vvp  and 

then   .0,  vvp  Hence in the both possibilities,   0,  vvp  and 

then   .0,  vvp  Thus      ,,,,   vvpvvpvvp  by using axiom 

 ,1
p  we have  vv  and hence v is a unique fixed point of .  This 

completes the proof. 

From Theorem 3.1 we obtain the following corollaries.  
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Corollary 3.2. Let  pX ,  be a complete dualistic partial metric space. 

Let XX :  be a mapping such that there exists a pair of functions 

  F,  satisfying 

       yxpyxp ,,     (3.31) 

., Xyx   If   satisfies (CCP). Then   has a unique fixed point in X and 

the Picard iterative sequence   0xn  with initial point ,0x  converges to 

the fixed point. 

Corollary 3.3. Let  pX ,  be a complete dualistic partial metric space. 

Let XX :  be a mapping such that there exists a pair of functions 

  F,  satisfying 

   
    

 


yxp

xxpyyp
yxp

,1

,1,
,












  (3.32) 

.,  yx  If   satisfies (CCP). Then   has a unique fixed point in X and 

the Picard iterative sequence   0xn  with initial point ,0x  converges to the 

fixed point. 

Taking into account Example 2.21, we have the following corollary. 

Corollary 3.4. Let  pX ,  be a complete dualistic partial metric space. 

Let XX :  be a mapping such that there exists two functions 

    ,0,0:,  satisfying 

          ,,,max, yxpyxpyxp     


    

 

    

 


yxp

xxpyyp

yxp

xxpyyp

,1

,1,

,1

,1,



















 (3.33) 

for all ,, Xyx   where  is an increasing function and  is a non-decreasing 

function and they satisfy     0 tt  if and only if 0t  and  is 

continuous with .,. Xyx   If   satisfies (CCP). Then   has a 

unique fixed point in X and the Picard iterative sequence   0xn  with 
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initial point ,0x  converges to the fixed point. 

Corollary 3.4 has the following consequences. 

Corollary 3.5. Let  pX ,  be a complete dualistic partial metric space. 

Let XX :  be a mapping such that there exists two functions 

    ,0,0:,  satisfying the same conditions as in Corollary 3.4  

         yxpyxpyxp ,,,     (3.34) 

for all ., Xyx   If   satisfies (CCP). Then   has a unique fixed point in X 

and the Picard iterative sequence   0xn  with initial point ,0x  converges 

to the fixed point. 

Corollary 3.6. Let  pX ,  be a complete dualistic partial metric space. 

Let XX :  be a mapping such that there exists two functions 

    ,0,0:,  satisfying the same conditions as in Corollary 3.4. 

    
    

 yxp

xxpyyp
yxp

,1

,1,
,












  

    

 


yxp

xxpyyp

,1

,1,










 (3.35) 

for all ., Xyx   If   satisfies (CCP). Then   has a unique fixed point in X 

and the Picard iterative sequence   0xn  with initial point ,0x  converges 

to the fixed point. 

Remark 3.8. The main result of [26] is Theorem 2.10. Notice that the 

rational contractive condition appearing in this theorem 

 
    

 
 yxp

yxp

xxpyyp
yxp ,

,1

,1,
, 




 







  

for any ,, yx  where 0,   and 1  implies that 

   
    

 
 












 




 yxp

yxp

xxpyyp
yxp ,,

,1

,1,
max,


  
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 
   

 
    .,,

,1

,1,
max













 





yxp
yxp

xxpyyp 
 

This condition is a particular case of the contractive condition appearing in 

Theorem 3.1 with the pair of functions   F,  given by   ,01  and 

   .1 ,0   Therefore, Theorem 2.10 is a particular case of the 

following corollary and considered as an extension and generalizations of 

Theorem 2.10 in the setting of complete dualistic partial metric spaces. 

Corollary 3.9. Let  pX ,  be a complete dualistic partial metric space. 

Let XX :  be a mapping such that 

   
   

 
   













 




 yxp

yxp

xxpyyp
yxp ,,

,1

,1,
max,


  (3.36) 

for any ,, Xyx   where 0,   and .1  If   satisfies (CCP). Then 

  has a unique fixed point in X and the Picard iterative sequence   0xn  

with initial point ,0x  converges to the fixed point. 

Observations 3.10. 

1. If in Corollary 3.9, we put c  and 

    

 
    ,,,,

,1

,1,
max yxpyxp

yxp

xxpyyp 
















 
 then we get 

Theorem 2.3 of Oltra and Valero [28]. 

2. In Corollary 3.9, if we replace the range of p  by  ,,0   put c  

and 
    

 
    ,,,,

,1

,1,
max yxpyxp

yxp

xxpyyp 
















 
 then we 

get fixed point theorem of Matthews [17]. 

3. If we set   Xxxxp  ,0,  and replace the range of p  by  ,,0   

in Theorems 3.1, we retrieve corresponding theorems in metric spaces (see 

[8]). 

4. If we set     Xyxxxp  ,,,0,  in Theorems 3.1, we retrieve 
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corresponding theorems in partial metric spaces (see [33]). 

Taking into account Example 2.20, we have the following corollary. 

Corollary 3.11. Let  pX ,  be a complete dualistic partial metric space. 

Let XX :  be a mapping such that there exist   (see Example 2.20) 

satisfying 

           ,,,max, yxpyxpyxp     

   

 

   

 


yxp

xxpyyp

yxp

xxpyyp

,1

,1,

,1

,1,



























 
  (3.37) 

for all ., yx  If   satisfies (CCP). Then   has a unique fixed point in X 

and the Picard iterative sequence   0xn  with initial point ,0x  converges 

to the fixed point. 

Following Corollary is a generalization of main result of Geraghty [9].  

Corollary 3.11. Let  pX ,  be a complete dualistic partial metric space. 

Let XX :  be a mapping such that there exist   (see Example 2.20) 

satisfying 

         yxpyxpyxp ,,,     (3.38) 

for all ., Xyx   If   satisfies (CCP). Then   has a unique fixed point in X 

and the Picard iterative sequence   0xn  with initial point ,0x  converges 

to the fixed point. 

4. Examples 

In this section, we give an example in support of our main result.  

Example 4.1. Let   .0,
2

X  Define   ,: XXp  by 

   11,max, yxyxp   where  11, yxx   and  ., 22 yxy   It is easy to 

check that    p,0,
2

 is a complete dualistic partial metric space. Define 

   22
0,0,:   by   .0,,

22  xxx  Since 
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        .0,,,,,
2

,
2

max,max
211

11 








  yxyxpyxp
yx

yx   

Hence   satisfies (CCP). Define     ,0,0:,  as follows: 

  






 


2

15
ln

t
t  and    .,0,

2

13
ln 







 
 t

t
t  Clearly,   ., F   We 

shall show (3.1) is satisfied. Without loss of generality, assume that .11 yx   

Then we have 

   
 













 





12

1,5
ln,

yxp
yxp


  














































 












12

1
2

5

ln
12

1
2

,
2

5

ln

1yyx
p

 

.
12

1

24

5
ln 1 







  y  

On the other hand,  

   
 








 






 














 





12

1

12

3
ln

12

13
ln

12

1,3
ln, 1

1 y
yyxp

yxp  

    

 

 

 




































































1

11

1

11

14

2

1

2
1

2

,1

,1,

y

xy

y

xy

yxp

xxpyyp 
 

 

 

























12

1
14

2
3

ln 1

11

y

xy

 

 
.

24

1423
ln 111








 


yxy
 

Combining the observations above, we get  
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    






 






  

12

1

12

3
ln

12

1

24

5
ln, 11 yyyxp   

 
















 







 
24

1423
ln,

12

1

12

3
lnmax 111

1
yxy

y  

   
    

 
.

,1

,1,
,,max

































yxp

xxpyyp
yxp


 

Thus all the conditions of Theorem 3.1 are satisfied. Hence   has a fixed 

point, indeed  0,0v  is a fixed point. 
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