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Abstract 

Johan coloring concept is motivated by the newly introduced invariant called the rainbow 

neighbourhood number of a graph G. In this paper, we investigated Johan Chromatic Number 

(denoted  GJ  and Johan Chromatic Core Subgraph (denoted J-CCS) of Line graph of Star 

related graphs, Star related graphs and Product of Line graph of star related graph. 

1. Introductions 

All graphs  EVG ,  considered in this paper are finite, undirected 

simple graphs. For general notation and concepts in graphs and digraphs, we 

refer J. A. Bondy, F. Harary and D. B. West [1, 4, 10]. In graph colouring, 

vertices or edges or both assigned colours subject to conditions. Johan 

colouring and Chromatic Core Subgraph (denoted by CCS) were introduced 

by Kok. J (2018) [6, 8]. We have investigated Johan Chromatic Number 

(denoted  GJ  and introduce the Johan Chromatic Core Subgraph (denoted 

J-CCS) of Line graph of Star related graphs and Product of Line graph of star 

related graph. 
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2. Basic Definitions 

Definition 2.1. For a finite, undirected simple graph G of order 

  ,1 nGv  a chromatic core subgraph H is the smallest induced subgraph 

H (smallest in respect of  )si H  such that,    .GXHX   For a graph G, its 

structural size is measured by its structural index denoted and defined as, 

     .GGvGsi   

Definition 2.2. A proper k-colouring C of a graph G is called Johan 

colouring if C is the maximal colouring such that every vertex of G belongs to 

a rainbow neighbourhood of G [7]. A graph G is J-colourable if it admits J-

colouring. The J-colouring number of a graph G, denoted by  GJ  is the 

maximum number of colours in a J-colouring of G. 

Definition 2.3. Let    nivGV i  1:  and    .1: mjuHV j   

The node set of the Cartesian Product    HVGV   has nodes such that 

 ji uv ,  and  mn uv ,  are adjacent (adj, for brevity) if and only if, ni vv   and 

mj uadju  or ni vadjv  and .mj uu   

3. Johan Chromatic Number Of Line Graph Of Star Related Graph. 

In this section ,we initiate the Johan coloring chromatic number 

  SGLJ  of line of Star related Graphs namely, 

           .Land,,,,, 1,1,,2,12 nWnnn KnmCLBLBLKPL
i

  

Proposition 3.1. Let  12 KPL   be a line graph of Comb Graph. Then, 

    .1212 KPLKPLJ     

Note 3.2: Let   3,12 nKPL   be a line graph of Comb Graph. Then 

Johan coloring does not exist. 

Theorem 3.3. Let  1,1 nKL  be a Line graph of Star graph. Then, 

      .11,11,1   nnJ KLKL  

Proof. Let  nxxxx ,,,, 321   be the vertices of line graph of star graph 

and  ,,,,, 321 nyyyy   where  nixxy iii   1:, 1  be the edges of line 
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graph of star graph has a regular graph (i,e) every vertices have the same 

degree. 

Now, we allocate the Johan coloring to those vertices as follows, 

 
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





















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 niif

4i if

3i if

2i if

1 if

4

3

2

1

n

i

c

c

c

c

ic

vC



 

Based on the above coloring pattern, the graph  1,1 nKL  is Johan 

coloring with    11,1  nKL  colors. Hence, the Johan Chromatic number is 

      .11,11,1   nnJ KLKL  

Theorem 3.4. Let  nnBL ,  be a line graph of Bi-star graph then, 

    .,, nnnnJ BBL   

Proof. Let  ,,,,, 321 nyyyx   be the vertices of line graph of Bi-Star 

graph and  ,,,,, 321 nyyyy   where  nixxy iii   1:, 1  the edges of 

line graph of Bi- Star graph. When I take line graph for Bi-Star graph, we get 

complete graphs. There is usually one point for both. New we allocate the 

Johan coloring to these vertices as follows, 

 



























1 if

 

22,4 if4

12,3 if3

2n2, if2

12,1 if1

nin

ni

ni

i

ni

vC i



 

Based on the above coloring pattern the graph  nnBL ,  is Johan 

colouring with  nnB ,  colours. Hence, the Johan Chromatic number is 

    .,, nnnnJ BBL   

Note 3.5. Subdivision of Bi-star graph is not a Johan colourable. 
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Theorem 3.6. Let   nmCL ,  be a Line graph of Coconut graph then, 

   

   

   














otherwise

nandmifnmCL

nandmifnmCL

nmCLJ

0

11,

111,

,  

Proof. Let  1321 ,,,, nxxxx   be the vertices of line graph of coconut 

graph and  nyyyy ,,,, 321   where  nixxy iii   1:, 1  the edge set 

of line graph of coconut graph be. By applying the definition of Johan coloring 

of   nmCL ,  is as follows, 

Case (i): Suppose 1m  and 1n  the line graph of coconut graph has a 

regular graph of coconut graph has a regular graph every vertices s as the 

same degree. 

Now, we allocate the Johan coloring of these vertices as follows, 

 
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Based on the above coloring pattern, the graph    nmCL ,  is Johan 

coloring with    1,  nmCL  colors. Hence the Johan chromatic number 

   1,  nmCL  if 1m  and .1n  

Case (ii) Suppose 1m  and 1n  the line graph of coconut graph has 

acyclic graph. 

Now we allocate the Johan coloring of this graph as follows, 

 













,10,8,6,4,2if

,9,7,5,3,1if

2

1

ic

ic
vC i  

Based on the above coloring pattern, the graph    nmCL ,  is Johan 

coloring with    nmCL ,  colors. Hence the Johan chromatic number 

   nmCL ,  if 1m  and .1n  
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4. Johan Chromatic Core SubGraph of Product of Line Graph of Star 

Graph 

In this section, we found the Johan Chromatic Core Subgraph of line 

graph of Star related Graphs. 

Proposition 4.1. Let    1212 KPLKPL   be a corona product of Line 

graph of Comb graph for 2n  then, J-CCS of    1212 KPLKPL   is 

.3K  

Note 4.2. Let    11 KPLKPL nn   be a corona product of line graph of 

Comb graph for 3n  then, J-CCS as does not exist. 

Theorem 4.3. Let    1,11,1  nm KLKL   be a corona product of line 

graph of Star graph then J-CCS of    1,11,1  nm KLKL   is .nK  

Proof. Let  1,1 mKL  and  1,1 nKL  be a two set of line graph of star 

graph where the vertex and edge set it’s denoted by, Let 

 1321 ,,,, nxxxx   be the vertices of line graph of star graph and 

 iyyyy ,,, 321  where  nixxy iii   1:, 1  the edges of line graph of 

star graph. 

The corona graph if a    1,11,1  nm KLKL   admits Johan coloring and 

        1,11,11,11,1   nmnmJ KLKLnKLKL   has nK  as an induced 

subgraph and it’s      .1,11,1 nKLKL nmJ     Hence J-CCS of 

   1,11,1  nm KLK   is .nK  

5. Conclusion 

In this paper, we have established to Johan Coloring and Johan 

Chromatic Core Subgraph of the Line graph Star graph, Corona product of 

Line Star related graphs. This work has a future scope to find Central, 

Middle graph of Star related graph and Product of Star related graphs. 
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