
 

Advances and Applications in Mathematical Sciences 
Volume 19, Issue 9, July 2020, Pages 873-888 
© 2020 Mili Publications 

 

2010 Mathematics Subject Classification: 37N10, 37N15, 74B10, 74L05, 76S05. 

Keywords: reflected, refracted, non-local micropolar elastic, fluid saturated porous, amplitude 

ratio. 

*Corresponding author; E-mail: pawan7585@gmail.com 

Received December 20, 2019; Accepted January 25, 2020 

ON CHARACTERSTIC OF AMPLITUDE RATIOS OF 

REFLECTED AND REFRACTED WAVES 

NEELAM KUMARI1, R. K. POONIA2, PAWAN KUMAR1,* 

and VINOD KALIRAMAN1 

Department of Mathematics 

Chaudhary Devi Lal University 

Sirsa 125055, Haryana, India 

E-mail: neelamkumaricdlu@gmail.com 

vsisaiya@gmail.com 

Department of Mathematics  

Chandigarh University 

Mohali (Punjab) India-140413 

Email: dr.rkpoonia@gmail.com 

Abstract 

In this problem to analysis more characteristic of amplitude ratios of various reflected and 

refracted wave at the interface between non-local micropolar elastic solid and fluid saturated 

porous solid. So, the wave propagates in the medium non-local micropolar solid and fluid 

saturated porous solid and separated by the interfaces 0z  is studied. Longitudinal wave and 

coupled wave impinges obliquely on the interfaces. Amplitude ratios of different reflected and 

refracted waves have been computed numerically for this specific model and results obtained 

are revealed graphically with incidence angle. 

1. Introduction 

The micropolar theory of elasticity constructed by Eringen and his co-

workers intended to be applied on such materials and for problems where the 

ordinary theory of elasticity fails because of microstructure in the materials. 

Micropolar elastic materials, roughly speaking, are the classical elastic 

materials with extra independent degree of freedom for the local rotations. 
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These materials respond to spin inertia, body and surface couples and as a 

consequence they exhibit certain new static and dynamic effects, e.g. new 

types of waves and couples stresses. 

Eringen developed the theories of „micropolar continua‟ and 

„microstructures continua‟ which are special cases of the theory of 

„micromorphic continua‟ earlier developed by Eringen and his coworkers [7]. 

Thus, the Eringen‟s „3M‟ theories (Micromorphic, Microstretch, Micropolar) 

are the generalization the classical theory of elasticity. In classical 

continuum, each particle of a continuum is represented by a geometrical point 

and can have three degree of freedom of translation during the process of 

deformations. 

Eringen and Edelen [2] developed the nonlocal elasticity theories 

characterized by the presence of nonlocality residuals of fields. In nonlocal 

theory of elasticity, the stress at any reference point within a continuous body 

depends not only on the strain at that point but also significantly influenced 

by the strains at all other points of the continuous body. Thus, the nonlocal 

stress forces act as a remote action forces. These types of forces are frequently 

encountered in atomic theory of lattice dynamics. The characteristic features 

of nonlocal theory may fall in the materials with microstructures, where the 

internal characteristic length may be considered as comparable with external 

characteristic length. There are so many authors related to waves and 

vibrations have been discussed. The present paper is concerned with waves 

propagate non-local micropolar elastic solid and fluid saturated porous solid. 

Find the values of amplitude ratios and with the help of MATLAB Software 

depicted in the graphs. 

2. Basic Equations and Constitutive Relations 

The basic equations for the reflection and refraction of inclination waves 

at the boundary of media 1M  and 2M  are discussed as 

         xxeKxe
lkeklrrklkl  221  (1) 

       ,1 22 xxx lkklrrklkl   (2) 

where kl  and kl  are using for the stresses; K,,,   are representing the 

micrpolar elastic constants; , are Lame‟s constants;  mklmklkl ue   are 
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relative distortion tensor iu  and i  are components of displacement and 

microrataion vector;  klkl   are curvature tensor;  ae0  is the non-

local parameter; 0e  and a are material constant and internal characteristic 

length respective and others symbols are their usual meaning. 

The following equations of motion without body force and couple densities 

are given as  

      1
22

,,, 1 uKuKu mkklmkklklk   

    .12 1
22

1,,1,  jKuK mnkmmkkklk  

Now, using the Helmholtz decomposition 

        .0,,,,,  UUqu  

Using above equation in (3) and (4) and assuming the wave form of 

potentials       ,exp,,,,,, VtrnikBAbaUq 


 propagating in the 

direction of unit vector n


 with the speed V. Therefore, four waves there exist 

in non-local isotropic micropolar elastic solid; such waves are independently 

longitudinal displacement wave, independently longitudinal micro-rotational 

wave and two sets of coupled transverse waves having their respective speed 

321 ,, VVV  and .4V  
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4 jj
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


  

Every set of coupled transverse waves consists of a transverse displacement 

wave coupled with a transverse micro-rotational wave. 

Assuming the 2-D problem by taking the following components of 

displacement and microrotation as 

    ,00,,0,0, 231 





y
uuu  

where 

xzzx UquUqu ,23,21   

and components of stresses are 
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.2

zzy 


  

For medium 2M  (Fluid Saturated Porous Solid) 

Using de Boer and Ehlers (1990), governing equations for deformation of 

an incompressible porous medium drenched with non-viscous fluid in non-

existence of body forces are as follow 

  0 F
F

S
S uu   (10) 

      02  SFvs
SSS

S
SS uuSupu   (11) 

  0 SFvF
FF uuSup   (12) 

 IIEEuT S
S

S
SS

E  2  (13) 
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 ,
2

1
S

T
sS ugradugradE   (14) 

where SFiuuu i
iii ,;,,,   are using for displacements, velocities, 

acceleration and density of fluid and solid parts respectively and p denote 

effective pore pressure of incompressible pore fluid. S
ET  Stands for stress and  

is the linearized Langrangian strain tensor in solid segment. S  and S  are 

the macroscopic Lame‟s parameters of porous solid and S  and F  are the 

volume fractions satisfying the relation 

.1 FS  (15) 

The tensor vS  relating the coupled interaction flanked by solid and fluid, in 

isotropic permeability may be define as 

 
,

2

I
K

S
F

FRF

v


  (16) 

where FR  and FK  are fluid‟s specific weight and Darcy‟s permeability 

coefficient respectively. 

The displacement vector  SFiui ,  in two dimensional problems can 

be taken as 

 ii
i wuu ,0,  where ., SFi   (17) 

Using equation (17) in equations (10) to (13) following equations are obtained 

as 

  0
2

2
2 


































t

u

t

u
S

t

u

x

p
u

x

SF

v

S
SSSS

S
SS  (18) 

  0
2

2
2 


































t

w

t

w
S

t

w

z

p
w

z

SF

v

S
SSSS

S
SS  (19) 

0
2

2






























t

u

t

u
S

t

u

x

p SF

v

F
FF  (20) 



N. KUMARI, R. K. POONIA, P. KUMAR and V. KALIRAMAN 

Advances and Applications in Mathematical Sciences, Volume 19, Issue 9, July 2020 

878 

0
2

2






























t

w

t

w
S

t

w

z

p SF

v

F
FF  (21) 

.0
2222






































tz

w

tx

u

tz

w

tx

u FF
F

SS
S  (22) 

Also, s
zzt  and s

zxt  are normal and tangential stresses in solid part respectively 

and written as in this way 
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where 
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and 
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  (26) 

In fluid and solid phase, displacement components (i.e. ju  and jw  are 

associated to dimensional potential (i.e. j  and j  as 
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Making use of equation (27), so the equations (10) to (13) can be written as 
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Assuming the solution of the system of equations (28) to (32) in the form 

     ,exp,,,,,,,, 11111 tipp FSFSFSFS   (34) 

where   is the complex circular frequency. 

Making the use of (34) in equations (28) to (32), obtained the results 
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Equation (35) corresponds to longitudinal wave propagating with velocity 

,1V  given by 
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From equation (36) and (37) obtained the equation 
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Equation (42) corresponds to transverse wave propagating with velocity ,2V  

given by .
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3. Solution of Problem 

The potential function for Medium ,1M  can be written as: 

   tizxikBq 10000 cossinexp   

   tizxikB 11101 cossinexp   (44) 

   tizxiBU 222122 cossinexp   

   tizxiB 33323 cossinexp   (45) 

   tizxiBE 222122 cossinexp   
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where 3210 ,,, BBBB  are amplitudes of incident longitudinal wave, reflected 

longitudinal displacement, transverse and micro-rotation waves respectively. 
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For the medium 2M  

The wave field due to incident, reflected and transmitted waves are given 

by 

       tikzkxkiAmmpFS
1001121 cossinexp,,1,,   (49) 

       ,cossinexp,1, 200223 tikzkxkiAmFS   (50) 
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1A  and 2A  are amplitude of reflected P-wave as well as reflected SV-

wave respectively. 1k and 2k  represents the wave numbers of reflected P and 

SV-wave respectively. 

4. Boundary Conditions for Welded Contact Interface 

At the interface ,0z  between micropolar elastic solid with non-locality 

and fluid saturated porous solid is considered to be in perfect contact. The 

appropriate boundary conditions are continuity of force stresses, couple stress 

and displacements respectively. Mathematically, these boundary conditions 

can be written as: 

At the interface ,0z  

      .0111 222222 S
kkl

S
klkl

S
klkl uumtpt   (50) 

For this model, these boundary conditions can be written from in the view of 

(1) and (2), so the first boundary condition is that the difference of normal 

stress components in z direction, of fluid and solid respectively equal to the 

fluid pressure p; second boundary condition is that tangential force per unit 

area are equal at this interface; third condition is that couple stresses is 

vanishes at this interface; due to continuity of displacement component and 

welded contact of the interface horizontal and vertical displacement are 

same. So, the suitable boundary conditions for the model under consideration, 

in mathematical form are taken as 
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In order to gratify above said boundary conditions, the Snell‟s law‟s 

extension can be written as 
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For the incident longitudinal wave  
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Eventually, obtained a non-homogeneous system of five equations in 

matrix from 

BAZ   (54) 

 tZZZZZZ 54321  (55) 
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where 1Z  to 5Z  are the amplitude ratios of reflected longitudinal 

displacement, reflected transverse and micro-rotational waves  and refracted 

P and SV waves. 

The elements of matrix are can be written as: 
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5. Numerical Results and Discussion 

System of five non-homogeneous equations obtained the various 

amplitude ratios of reflected and refracted waves for emergence longitudinal 

wave. In order to understand the behavior of different amplitude ratios, in 

detail, these ratios are computed numerically for the considered model by 

taking the values of applicable elastic parameters. 

Consider the medium 1M  as silicon crystal, so the physical constants are 

211212 mN102518.0mN101055.0   

49.0101.0 0
211  emN  
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3216 mkg2330m1021.9  j  

N.105431.0N1099.8695 98   a  (58) 

In the second medium ,2M  the values of various parameters are 

33.067.0  FS  

23 mMN5833.5mMg34.1  SS  

2mN3750.8sm01.0  SFK  

33 mMg33.0mKN00.10  FFR  

.s10  (59) 

Determines the modulus of amplitude ratios of different reflected and 

refracted waves for this particular model and MATLAB software (R2015a 32-

bit) has been used for numerical computation of the resulting non-

dimensional coefficients and illustrate these ratios graphically. The 

amplitude ratios are computed for incidence angle changes from 0  to 

.90  The disparity of modulus of amplitude ratios i.e.  4,3,2,1iZi  

and 5) with emergence angle 0  of longitudinal wave are revealed in figures. 

In figures (2) and (3), describes the variations of amplitude ratios when 

the incident wave is longitudinal wave when medium 1M  is micropolar 

elastic solid with non-locality and medium 2M  is fluid saturated porous solid. 

This case is represented by „General‟ and uses its abbreviation “GEN” in the 

figures. The tendency of dependence of iZ  on incident wave as well as 

angle of incidence is dissimilar for different reflected and refracted waves as 

depicted in the figures. 

In the figure (2) represent the dissimilarities of the values of the 

amplitude ratios 21 , ZZ  and 3Z  from the angle of emergence 00   

to .900
  Here the values of the amplitude ratios 2Z   and 3Z  are 

vanishes zero at 00   and 900   while the value of amplitude ratio 
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1Z  is non-zero at the same angle. The amplitude ratios 1Z  and 3Z  

have common value at angle 280   and 740   whereas the ratios 1Z  

and 2Z  have point of intersection common value at angle 580   and 

.660
  Except such angles, all amplitude ratios have totally different 

values from 00   to .900
  The values of 1Z  are very smoothly 

increases from initial angle to 580   and then the values rapidly decreases 

from the angle 580   to 640   and approaches to its local minima and 

after that the values again increase according to angle of emergence. The 

values of 2Z  are smoothly increases from the initial angle i.e. 00   to 

600   and obtain its peak value and then values suddenly decreases up-to 

650   and after all the values again smoothly decreases corresponds to 

angle of emergence. Now, the values of 3Z  are smoothly increases from the 

initial angle i.e. 00   to 600   and obtain its peak value and then 

values suddenly decreases up-to 650   and finally the values again 

smoothly decreases corresponds to angle of emergence. In this figure, all the 

values of 3Z  are greater than the values of 2Z  apart from only two 

angle i.e. 00  and 900   whereas the values of 3Z  are lesser from 

the angle 00   to 270   and 740   to 900   as compare to the 

values of .1Z  The values of 1Z  are smaller than the values of 3Z  

from 270   to .900
  The effects of the non-locality are very clearly 

visible in the above figure. 
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The figure (3) describes the variation of the values of 4Z  and 5Z  

from the angle of emergence 00   to .900
  Here the value of the 

ratios 4Z  and 5Z  are obtains zero at 00   and .900
  The ratios 

4Z  and 5Z  have point of intersection common value at angle .290
  

Except the angles ,29,0 00
   and ,900

  both of amplitude ratios 

have totally different values from the initial angle to last angle. The values of 

4Z  are very smoothly increases from initial angle to 600   and then 

the values rapidly decreases from the angle 600   to 650   and after 

that the values again smoothly decreases according to angle of emergence 

and again attains its local minima. The values of 5Z  are increases very 

slowly from 00   to 600   and then the values rapidly decreases from 

the angle 600   to 650   and after that the values again smoothly 

decreases according to angle of incidence. The values of 4Z  are smaller in 

comparison to the values of 5Z  from 00   to 290   except only the 

angle 00   whereas values are greater from 290   to 900   except 

only .900
  It is concluding that under the consideration of the medium 

and boundary conditions the effect of non-locality is clearly seen in this 

figure. 
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6. Conclusion 

The tendency of reflection and refraction of emergent plane wave at an 

interface of non-local micropolar elastic solid and fluid saturated porous solid 

has investigated. Amplitude ratios of various reflected and refracted waves 

have been computed numerically for a specific model and thus the results are 

represented graphically with an angle of incidence of incident wave. 

Graphical behavior of amplitudes ratios of different waves are depicted by 

computing in MATLAB software and constant value of physical parameters 

and corresponding boundary conditions. 

 Amplitude ratios of different waves depend on the emergence angle of 

emergent wave at the interface. 

 The tendency of amplitudes ratios of various waves depend on angle 0  

and properties of materials half spaces. 

 Effects of non-locality are clearly visible in the figures. 
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