

k-SUPER ROOT SQUARE MEAN LABELING OF ROOTED PRODUCT OF PATH GRAPH AND DIAMOND GRAPH

V. SHARON PHILOMENA¹ and R. GEETHALAKSHMI²

¹Assistant Professor
²Postgraduate Student
PG Department of Mathematics
Women's Christian College, Chennai
University of Madras, India
E-mail: sharonphilo2008@gmail.com geetharamasamy11@gmail.com

Abstract

The graph labeling was established by Alexander Rosa [4] in 1967. In 2003 Somasundaram and Ponraj [6] introduced a labeling method called Mean labeling. Later various methodologies evolved and one such technique is k-Super root square mean labeling Akilandeswari [1] introduced the concept of k-Super root square mean labeling. We examine k-Super root square mean labeling of some path related graphs i.e. rooted product of path graph and diamond graph.

1. Motivation and Main Results

In [2, Theorem 1], it was established k-super root square mean labeling of rooted product of path graph and diamond graph.

Our main results can be stated as the following theorem.

Theorem 1. The graph $P_n \circ k_{1,2,3}$ admits a k-Super root square mean graph for $n \leq 2$.

2 Proof of Theorem 1. Consider the graph G be $P_n \circ k_{1,2,3}$. Denote the vertices of the diamond graph as u_i, v_i, w_i, s_i where $1 \le i \le n$ and edges $\{e_i, e'_i, e'_i, ...\}$ where $1 \le i \le n$. The edge between the two vertices u_i and v_i 2020 Mathematics Subject Classification 05C78.

Keywords: Mean labeling, k-Super root square mean labeling, rooted product of path graph and diamond graph.

Received February 3, 2022; Accepted March 2, 2022

are denoted as e_i follows.

The total number of vertex in diamond graph $(K_{1,1,n}) = 4n$ and the total number of edges in diamond graph $(K_{1,1,n}) = 5n$, without loss of generality we initiate the labeling from the vertex u_i .

Define the vertex label as follows,

Let
$$(P_n \circ K_{1,2,3}) = \{u_i, v_i, w_i, s_i; 1 \le i \le n\}$$

Define the edge label as follows,

$$E(P_n \circ K_{1,2,3}) = \{e_i = (u_i, v_i); 1 \le i \le n\} \cup$$
$$\{e'_i = (u_i, w_i); 1 \le i \le n\} \cup$$
$$\{e'_i = (u_i, s_i); 1 \le i \le n\} \cup$$
$$\{e''_i = (v_i, s_i); 1 \le i \le n\} \cup$$
$$\{e'^{v}_i = (w_i, s_i); 1 \le i \le n\} \cup$$

Be the vertices and edges $(P_n \circ K_{1,1,2})$ respectively.

Define the vertex labels of diamond graph $(K_{1,1,2})$ as follows,

Let
$$f: V(P_n \circ K_{1,1,2}) \to \{k, k+1, k+2, ..., p+q+k-1\}$$

Here, $p = 4n$ and $q = 5n + (n-1)$
 $f: V(P_n \circ K_{1,1,2}) \to \{k, k+1, k+2, ..., k+10n-2\}$
 $f(u_i) = k + 10i - 1, 1 \le i \le n$
 $f(v_i) = k + 10i - 2, 1 \le i \le n$
 $f(w_i) = k + 10i - 4, 1 \le i \le n$
 $f(s_i) = k + 10i - 8, 1 \le i \le n$

Clearly, the vertex labels are distinct.

Define the edge labels of diamond graph $(K_{1,1,2})$ as follows,

$$\{e_i = (u_i, v_i); 1 \le i \le n\} \cup$$

$$\{e'_i = (u_i, w_i); 1 \le i \le n\} \cup$$

$$\{e'_i = (u_i, s_i); 1 \le i \le n\} \cup$$

$$\{e''_i = (v_i, s_i); 1 \le i \le n\} \cup$$

$$\{e'^{v}_i = (w_i, s_i); 1 \le i \le n\}.$$

Be the vertices and edges $(P_n \circ k_{1,2,3})$ respectively.

Then f induced a function $f^*(e) = \left[\sqrt{\frac{f(u)^2 + f(v)^2}{2}}\right]$, for each edge e = uv

Compute the edge labels of diamond graph $K_{1,1,2}$ as follows,

$$f^{*}(e_{i}) = \left[\sqrt{\frac{f(u_{i})^{2} + f(v_{i})^{2}}{2}}\right],$$

$$= \sqrt{\frac{(k+10i-1)^{2} + (k+10i-2)^{2}}{2}}$$

$$f^{*}(e_{i}) = k+10i-1; 1 \le i \le n$$

$$f^{*}(e_{i}') = \left[\sqrt{\frac{f(u_{i})^{2} + f(w_{i})^{2}}{2}}\right],$$

$$= \sqrt{\frac{(k+10i-1)^{2} + (k+10i-4)^{2}}{2}}$$

$$f^{*}(e_{i}') = k+10i-3; 1 \le i \le n$$

$$f^{*}(e_{i}'') = \left[\sqrt{\frac{f(u_{i})^{2} + f(s_{i})^{2}}{2}}\right],$$

6746

$$= \sqrt{\frac{(k+10i-1)^2 + (k+10i-8)^2}{2}}$$

$$f^*(e'_i) = k + 10i - 5; 1 \le i \le n$$

$$f^*(e''_i) = \left[\sqrt{\frac{f(v_i)^2 + f(s_i)^2}{2}}\right],$$

$$= \sqrt{\frac{(k+10i-2)^2 + (k+10i-8)^2}{2}}$$

$$f^*(e''_i) = k + 10i - 6; 1 \le i \le n$$

$$f^*(e''_i) = \left[\sqrt{\frac{f(w_i)^2 + f(s_i)^2}{2}}\right],$$

$$= \sqrt{\frac{(k+10i-4)^2 + (k+10i-8)^2}{2}}$$

$$f^*(e''_i) = k + 10i - 6; 1 \le i \le n$$

 $f^*(e_i'^v) = k + 10i - 6; 1 \le i \le n$

Clearly, $f(V) \cup \{f^*(e) : e \in E(P_n \circ K_{1,1,3}) = \{k, k+1, \dots, k+10n-2\}\}$

The edge labels of diamond graph $K_{1,1,2}$ are distinct.

Hence f admits k-super root square mean labeling.

Hence $P_n \circ k_{1,1,2}$ admits a k-Super root square mean graph.

Illustration

10-SRSML of $P_2 \circ K_{1,1,2}$ is given in Figure

10-SRSML of $P_2 \circ K_{1,1,2}$.

The proof of theorem 1 is complete.

3. Remarks

Finally, we list several remarks on our main results and closely related things.

Remark 1.

Definition 1. Let G be a (p, q) graph and $f: V(G) \rightarrow \{k, k+1, k+2, ..., p+q+k-1\}$ be an injection. For each edge e = uv, let $f^*(e) = \left[\sqrt{\frac{f(u)^2 + f(v)^2}{2}}\right]$ or $\left[\sqrt{\frac{f(u)^2 + f(v)^2}{2}}\right]$ then f is called k-Super root square mean labeling if $f(V) \cup \{f^*(e) : e \in E(G)\}$ = $\{k, k+1, k+2, ..., p+q+k-1\}$. A graph that admits a k-Super root square mean labeling is called k-super root square mean graph.

Definition 2. Let *G* and *H* be graph then rooted product of *G* and *H* is denoted by $G \circ H$ and obtained by taking |V(G)| copies of *H*, and for every vertex v_i of *G*, identify v_i with the root node of the *i*th copy of *H*.

Definition 3. The diamond graph is the simple graph on 4 nodes and 5 edges. It is isomorphic to the complete tripartite graph $k_{1,1,2}$. The diamond graph is also known as double triangle graph.

Remark 2. The motivations in this papers are [1,3, 5, 7] are same as the one in the paper.

6748 V. SHARON PHILOMENA and R. GEETHALAKSHMI

Remark 3. This paper is a slightly modified version of the preprint [3].

References

- K. Akilandeswari, k-Super root square mean labeling of graphs, International Journal of Science and Research 6(2) (2015), 1605-1607.
- [2] J. A. Bondy and U. S. R. Muruthy, Graph Theory with Applications, The Macmillian Press Ltd, (1976).
- [3] J. A. Gallia, A Dynamic survey of Graph Labeling, The Electronic Journal of Combinatorics, (2020).
- [3] A. Rosa, On Certain valuations of the vertices of a graph, Theory of Graph (International Symposium, Rome), Gordon and Breach N.Y and Dunod Paris (1967), 349-355.
- [4] S. S. Sandhya, S. Somasundaram and S. Anusa, Root square mean labeling of graphs, International Journal of Contemporary Mathematical Science 9 (2014), 667-676.
- [5] S. Somasundaram and R. Ponraj, Mean labeling of graphs, National Academy Science Letter 26 (2003), 210-213.
- [6] K. Thirugnanasambandam and K. Venkatesan, Super root square mean labeling of graphs, International Journal of Mathematics and Soft Computing 5 (2015), 189-195.