k-SUPER ROOT SQUARE MEAN LABELING OF ROOTED PRODUCT OF PATH GRAPH AND DIAMOND GRAPH

V. SHARON PHILOMENA ${ }^{1}$ and R. GEETHALAKSHMI ${ }^{2}$
${ }^{1}$ Assistant Professor
${ }^{2}$ Postgraduate Student
PG Department of Mathematics
Women's Christian College, Chennai
University of Madras, India
E-mail: sharonphilo2008@gmail.com
geetharamasamy11@gmail.com

Abstract

The graph labeling was established by Alexander Rosa [4] in 1967. In 2003 Somasundaram and Ponraj [6] introduced a labeling method called Mean labeling. Later various methodologies evolved and one such technique is k-Super root square mean labeling Akilandeswari [1] introduced the concept of k-Super root square mean labeling. We examine k-Super root square mean labeling of some path related graphs i.e. rooted product of path graph and diamond graph.

1. Motivation and Main Results

In [2, Theorem 1], it was established k-super root square mean labeling of rooted product of path graph and diamond graph.

Our main results can be stated as the following theorem.
Theorem 1. The graph $P_{n} \circ k_{1,2,3}$ admits a k-Super root square mean graph for $n \leq 2$.

2 Proof of Theorem 1. Consider the graph G be $P_{n} \circ k_{1,2,3}$. Denote the vertices of the diamond graph as $u_{i}, v_{i}, w_{i}, s_{i}$ where $1 \leq i \leq n$ and edges $\left\{e_{i}, e_{i}^{\prime}, e_{i}^{\prime}, \ldots\right\}$ where $1 \leq i \leq n$. The edge between the two vertices u_{i} and v_{i} 2020 Mathematics Subject Classification 05C78.
Keywords: Mean labeling, k-Super root square mean labeling, rooted product of path graph and diamond graph.
Received February 3, 2022; Accepted March 2, 2022
are denoted as e_{i} follows.
The total number of vertex in diamond graph $\left(K_{1,1, n}\right)=4 n$ and the total number of edges in diamond graph $\left(K_{1,1, n}\right)=5 n$, without loss of generality we initiate the labeling from the vertex u_{i}.

Define the vertex label as follows,
Let $\left(P_{n} \circ K_{1,2,3}\right)=\left\{u_{i}, v_{i}, w_{i}, s_{i} ; 1 \leq i \leq n\right\}$

Define the edge label as follows,

$$
\begin{aligned}
E\left(P_{n} \circ K_{1,2,3}\right)= & \left\{e_{i}=\left(u_{i}, v_{i}\right) ; 1 \leq i \leq n\right\} \cup \\
& \left\{e_{i}^{\prime}=\left(u_{i}, w_{i}\right) ; 1 \leq i \leq n\right\} \cup \\
& \left\{e_{i}^{\prime}=\left(u_{i}, s_{i}\right) ; 1 \leq i \leq n\right\} \cup \\
& \left\{e_{i}^{\prime \prime}=\left(v_{i}, s_{i}\right) ; 1 \leq i \leq n\right\} \cup \\
& \left\{e_{i}^{\prime v}=\left(w_{i}, s_{i}\right) ; 1 \leq i \leq n\right\} .
\end{aligned}
$$

Be the vertices and edges $\left(P_{n} \circ K_{1,1,2}\right)$ respectively.
Define the vertex labels of diamond graph $\left(K_{1,1,2}\right)$ as follows,

Let $f: V\left(P_{n} \circ K_{1,1,2}\right) \rightarrow\{k, k+1, k+2, \ldots, p+q+k-1\}$

Here, $p=4 n$ and $q=5 n+(n-1)$
$f: V\left(P_{n} \circ K_{1,1,2}\right) \rightarrow\{k, k+1, k+2, \ldots, k+10 n-2\}$

$$
\begin{aligned}
& f\left(u_{i}\right)=k+10 i-1,1 \leq i \leq n \\
& f\left(v_{i}\right)=k+10 i-2,1 \leq i \leq n \\
& f\left(w_{i}\right)=k+10 i-4,1 \leq i \leq n \\
& f\left(s_{i}\right)=k+10 i-8,1 \leq i \leq n
\end{aligned}
$$

Clearly, the vertex labels are distinct.

Define the edge labels of diamond graph ($K_{1,1,2}$) as follows,

$$
\begin{aligned}
& \left\{e_{i}=\left(u_{i}, v_{i}\right) ; 1 \leq i \leq n\right\} \cup \\
& \left\{e_{i}^{\prime}=\left(u_{i}, w_{i}\right) ; 1 \leq i \leq n\right\} \cup \\
& \left\{e_{i}^{\prime}=\left(u_{i}, s_{i}\right) ; 1 \leq i \leq n\right\} \cup \\
& \left\{e_{i}^{\prime \prime}=\left(v_{i}, s_{i}\right) ; 1 \leq i \leq n\right\} \cup \\
& \left\{e_{i}^{\prime v}=\left(w_{i}, s_{i}\right) ; 1 \leq i \leq n\right\} .
\end{aligned}
$$

Be the vertices and edges $\left(P_{n} \circ k_{1,2,3}\right)$ respectively.
Then f induced a function $f^{*}(e)=\left\lceil\sqrt{\frac{f(u)^{2}+f(v)^{2}}{2}}\right\rceil$, for each edge $e=u v$
Compute the edge labels of diamond graph $K_{1,1,2}$ as follows,

$$
\begin{aligned}
f^{*}\left(e_{i}\right) & =\left\lceil\sqrt{\frac{f\left(u_{i}\right)^{2}+f\left(v_{i}\right)^{2}}{2}}\right\rceil, \\
& =\sqrt{\frac{(k+10 i-1)^{2}+(k+10 i-2)^{2}}{2}} \\
f^{*}\left(e_{i}\right) & =k+10 i-1 ; 1 \leq i \leq n \\
f^{*}\left(e_{i}^{\prime}\right) & =\left\lceil\sqrt{\frac{f\left(u_{i}\right)^{2}+f\left(w_{i}\right)^{2}}{2}},\right. \\
& =\sqrt{\frac{(k+10 i-1)^{2}+(k+10 i-4)^{2}}{2}} \\
f^{*}\left(e_{i}^{\prime}\right) & =k+10 i-3 ; 1 \leq i \leq n \\
f^{*}\left(e_{i}^{\prime \prime}\right) & =\left\lceil\sqrt{\frac{f\left(u_{i}\right)^{2}+f\left(s_{i}\right)^{2}}{2}}\right\rceil,
\end{aligned}
$$

$$
=\sqrt{\frac{(k+10 i-1)^{2}+(k+10 i-8)^{2}}{2}}
$$

$$
\begin{aligned}
f^{*}\left(e_{i}^{\prime}\right) & =k+10 i-5 ; 1 \leq i \leq n \\
f^{*}\left(e_{i}^{\prime \prime}\right) & =\left[\sqrt{\frac{f\left(v_{i}\right)^{2}+f\left(s_{i}\right)^{2}}{2}}\right], \\
& =\sqrt{\frac{(k+10 i-2)^{2}+(k+10 i-8)^{2}}{2}} \\
f^{*}\left(e_{i}^{\prime \prime}\right) & =k+10 i-6 ; 1 \leq i \leq n \\
f^{*}\left(e_{i}^{\prime v}\right) & =\left[\sqrt{\frac{f\left(w_{i}\right)^{2}+f\left(s_{i}\right)^{2}}{2}}\right], \\
& =\sqrt{\frac{(k+10 i-4)^{2}+(k+10 i-8)^{2}}{2}} \\
f^{*}\left(e_{i}^{\prime v}\right) & =k+10 i-6 ; 1 \leq i \leq n
\end{aligned}
$$

Clearly, $f(V) \cup\left\{f^{*}(e): e \in E\left(P_{n} \circ K_{1,1,3}\right)=\{k, k+1, \ldots, k+10 n-2\}\right\}$
The edge labels of diamond graph $K_{1,1,2}$ are distinct.
Hence f admits k-super root square mean labeling.
Hence $P_{n} \circ k_{1,1,2}$ admits a k-Super root square mean graph.

Illustration

$10-$ SRSML of $P_{2} \circ K_{1,1,2}$ is given in Figure

10-SRSML of $P_{2} \circ K_{1,1,2}$.
The proof of theorem 1 is complete.

3. Remarks

Finally, we list several remarks on our main results and closely related things.

Remark 1.

Definition 1. Let G be a (p, q) graph and $f: V(G) \rightarrow$ $\{k, k+1, k+2, \ldots, p+q+k-1\}$ be an injection. For each edge $e=u v$, let $f^{*}(e)=\left\lceil\sqrt{\frac{f(u)^{2}+f(v)^{2}}{2}}\right\rceil$ or $\left\lfloor\sqrt{\frac{f(u)^{2}+f(v)^{2}}{2}}\right\rfloor$ then f is called k-Super root square mean labeling if $f(V) \cup\left\{f^{*}(e): e \in E(G)\right\}$ $=\{k, k+1, k+2, \ldots, p+q+k-1\}$. A graph that admits a k-Super root square mean labeling is called k-super root square mean graph.

Definition 2. Let G and H be graph then rooted product of G and H is denoted by $G \circ H$ and obtained by taking $|V(G)|$ copies of H, and for every vertex v_{i} of G, identify v_{i} with the root node of the $i^{\text {th }}$ copy of H.

Definition 3. The diamond graph is the simple graph on 4 nodes and 5 edges. It is isomorphic to the complete tripartite graph $k_{1,1,2}$. The diamond graph is also known as double triangle graph.

Remark 2. The motivations in this papers are [1,3,5,7] are same as the one in the paper.

Remark 3. This paper is a slightly modified version of the preprint [3].

References

[1] K. Akilandeswari, k-Super root square mean labeling of graphs, International Journal of Science and Research 6(2) (2015), 1605-1607.
[2] J. A. Bondy and U. S. R. Muruthy, Graph Theory with Applications, The Macmillian Press Ltd, (1976).
[3] J. A. Gallia, A Dynamic survey of Graph Labeling, The Electronic Journal of Combinatorics, (2020).
[3] A. Rosa, On Certain valuations of the vertices of a graph, Theory of Graph (International Symposium, Rome), Gordon and Breach N.Y and Dunod Paris (1967), 349-355.
[4] S. S. Sandhya, S. Somasundaram and S. Anusa, Root square mean labeling of graphs, International Journal of Contemporary Mathematical Science 9 (2014), 667-676.
[5] S. Somasundaram and R. Ponraj, Mean labeling of graphs, National Academy Science Letter 26 (2003), 210-213.
[6] K. Thirugnanasambandam and K. Venkatesan, Super root square mean labeling of graphs, International Journal of Mathematics and Soft Computing 5 (2015), 189-195.

