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Abstract 

A tumor is an abnormal lump or growth of cells in any part of body. Such a mass of 

abnormal cell growth that lacks ability to invade neighbouring tissues is called benign tumor. 

When this abnormal, uncontrollable cell growth possesses ability to spread to other parts of the 

body; they are cancerous, also called malignant tumor or cancer. Early detection of this 

abnormality can help to cure it timely. The deep learning based methods offers number of 

techniques in image classification that helps in diagnosis of cancerous cells. It can significantly 

reduce the surgeon’s workload and make a better prognosis of patient conditions. This study is 

aimed to review the role of deep learning based approaches in identification and classification of 

cancer in different parts of human body. 

1. Introduction 

Cancer is one of the most deadly diseases with growing number of cases 

that has led to development of several diagnosis tools and techniques. Manual 

identification of cancer by pathologists is cumbersome task. Machine 

Learning (ML) offers versatile techniques that play vital role in healthcare [1] 
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including medical diagnosis. It thus also serves as promising weapon for 

automatic detection of cancer at early stages that can overcome issues that 

prevail in manual process. ML is discipline of artificial intelligence that relies 

on making predictions by finding relationships and patterns in data based on 

mathematical models [2]. ML methods are classified mainly into two types: 

Supervised and Unsupervised. Deep learning itself is a form of supervised 

ML technique that uses Artificial Neural Networks (ANN) to extract patterns 

and relationships in voluminous datasets [3]. There are different types of 

deep networks like Recurrent Neural Networks (RNN), Recursive Neural 

Network (RevNN), Convolutional Neural Network (CNN) [4]. CNN is one the 

most prominent type of deep network that is suitable for processing of spatial 

data such as images. Potential limitation of classical ML methods is that it 

requires handcrafted feature engineering. Deep neural networks such as 

CNN on other hand possess power of automatic feature selection. There are 

many imaging techniques like Ultrasound, MRI (Medical Resonance 

Imaging), CT scan (Computed Tomography), X-Ray that provide medical data 

for cancer detection and classification in the form of images of the body part 

that is suspected of abnormal cell growth. Given the significance of deep 

learning techniques in processing spatial data like images, this study 

presents a review of these learning techniques applies for cancer or tumor 

malignancy identification and classification. It also identifies challenges faced 

by researchers and presents future research directions. 

2. Literature Review 

Technological advancements in the area of artificial intelligence have 

revolutionized pathology practices. Especially machine learning and deep 

learning methods have spurred much interest to use it as diagnostic tool for 

medical ailments like cancer detection and classification [5]. Leading cause of 

death among women is breast cancer; detection of this malignancy at early 

stages can reduce mortality. ResNet-18 based deep extracted features with 

improved Crow-Search Optimized Extreme Learning Machine (ICS-ELM) 

algorithm for breast cancer detection is implemented in [6]. The performance 

of different deep learning architectures: Inception V3, DenseNet121, 

ResNet50, VGG16, MobileNetV2 with U-net segmentation (MSU) is tested in 

[7] that provided good improvement in accuracy. Apart from whole image 
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classification, [8] proposed a technique where model is trained using 

annotated dataset with ROI (Region of Interest) information and parameters 

of patch classifier are then used to initialize full image classification model. 

Authors in [9] presented a study that inculcates mass detection and patch 

extraction based on the feature matching of different regions using 

Maximally Stable Extremal Regions (MSER) [10]. Extracted patches are then 

classified using deep CNN. AlexNet and GoogleNet are modified and 

evaluated using Adam and Stochastic Gradient Descent (SGD) optimizer for 

breast cancer classification. Customized network “ResHist” comprising of 152 

layers inspired by ResNet50, with 13 residual blocks, in which 46 layers are 

learnable (45 convolutional layers and 1 fully connected) is presented in [11]. 

Model provides comparable performance for breast cancer classification. 

Brain tumors are graded as slow-growing/low grade/Gliomas (grade-1,2) or 

aggressive (grade--3,4) with MRI as most commonly used image modality 

used for its diagnosis [12]. Low complex architecture with channels is 

proposed in [13] to classify between Glioma and healthy tumor MRI with 

motive to reduce execution time. Further same architecture is used as the 

feature extractor of an RCNN to detect tumor regions and classify them as 

Meningioma and Pituitary. Final classification of deep extracted features can 

also be done using traditional ML classifiers. Such a classification model for 

brain tumor is proposed in [14], that adopts transfer learning and uses a pre-

trained GoogLeNet to extract features from brain MRI images and classify 

them using Support Vector Machine (SVM) and K-Nearest Neighbour (KNN). 

Similar study called hybrid CNN-SVM is proposed in [15] for binary 

classification of brain tumor. Before classification threshold segmentation is 

applied on BRATS2015 dataset. Three CNN-based pretrained models-

MobileNetV2, VGG19, and InceptionV3 are used in [16] to classify brain X-

ray images with transfer learning from ImageNet. MobileNetV2 has shown 

remarkable performance on small dataset of brain X-ray images. Using 

cropped, cropped, uncropped, and segmented brain MRI images, a study is 

conducted for multi-classification where maximum accuracy is reported for 

uncropped lesion images [17]. This signifies the contribution of background 

information towards accuracy of classification. Five stage framework 

comprising of initial preprocessing, skull stripping, tumor segmentation using 

CNN, post processing, and finally classification is proposed in [18] for labeling 

brain MRIs, model has significant performance improvement as compared to 
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different models from literature used for BRATS datasets. Fusion of Local 

Binary Pattern (LBP) features and statistical features followed by 

classification by CNN presented in [19]. Skin cancer is another deadly type of 

cancer that poses various challenges to dermatologists [20]. Deep CNN for 

binary classification of skin cancer is proposed in [21] using transfer learning 

from ImageNet. Proposed work provides better classification accuracy when 

compared with standard models like AlexNet, VGGNet. Melanoma stage 

classification system is proposed in [22] that uses CNN with custom loss 

function based on similarity measure for classification of 81 features 

extracted from dermoscopic images Melanoma dataset. Proposed model 

outperforms traditional machine learning classification using SVM. CNNs are 

usually developed at a fixed resource cost which is then scaled up to improve 

accuracy as more resources are available. Based on similar lines EfficientNet 

architecture is developed and is used in [23] to perform multiclass 

classification of skin cancer. Study on one of the malignant form of bone 

tumor called “osteosarcoma” is presented in [24]. Performance of Six deep 

networks InceptionV3 and NASNetLarge, VGG16, VGG19, ResNet50, 

DenseNet201 is evaluated where VGG19 model achieved the highest 

accuracy in both binary and multi-class classifications (Non-Tumor (NT), 

Necrotic Tumor (NCT), Viable Tumor (VT)). 

3. Discussion 

The research papers that have been cited in the literature have primarily 

focused on deep learning approaches. There are different deep learning 

architectures like RNN, LSTM (Long Short Term Memory), DBN (Deep Belief 

Networks) etc. Among them most often used neural network architecture in 

literature is CNN that offered good classification results. Comparative results 

reported in various studies have also marked the improvement in 

classification performance with use of DL techniques over traditional ML 

methods. Despite the fact that AI-based techniques have significant impact in 

cancer prediction research, researchers still face a number of obstacles and 

challenges that must be overcome. Computational time, class imbalance and 

limited datasets are main issues faced by researchers in training of deep 

networks. Also majority of the studies have developed a prediction model that 

has been validated on just one location of cancer. Availability of well 
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annotated datasets with relatively large number of images is must for 

training of deep neural architectures efficiently. However there are few 

publicly available benchmarks dataset. Due to this fact comparison of 

different techniques also becomes difficult. 

4. Conclusion 

Review of literature signifies that deep learning models have much 

potential to accelerate the pathological diagnostic process for cancer. 

Remarkable improvement in accuracy is observed as compared to traditional 

ML methods. One of the limitations of deep learning models used in 

pathological process of cancer diagnosis is their characteristic of being “black 

box”, posing a major challenge in their clinical implementation. Future 

research in this direction must focus on developing low complex models to 

minimize the cost of computational resources required for training large 

networks. 

Table 1. Comparative analysis of recent studies on cancer classification. 

[Ref.] Site of cancer Dataset: Accuracy 

[6] Breast 

ResNet-18 based deep extracted 

features with Improved ICS-ELM 

DDSM [27]: 97.193% 

MIAS [28]: 98.137% 

INbreast [29]:  98.26% 

[7] Breast 

Inception V3, DenseNet121, 

ResNet50, VGG16, MobileNet V2 

with modified U-net segmentation 

DDSM [27]: 

Inception V3 + MSU :98.87% 

MIAS [28]: 

Inception V3 + MSU: 96.87% 



  CHANDNI, M. SACHDEVA and A. K. SINGH KHUSHWAHA 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 10, August 2022 

5774 

[8] Breast 

CNN architecture of VGG-16 and 

ResNet-50 and hybrid of both is used 

initially for patch classification using 

ROI annotations. Patch classifier 

weights are the used for initialization 

of whole image classifier. 

CBIS-DDSM[30]: 

AUC-0.91,sensitivity-

86.1%,specificity-  80% 

INbreast [29]: 

AUC-0.98, sensitivity-86.7% 

specificity- 96.1% 

[9] Breast 

Patch extraction +(AlexNet and 

GoogleNet) for classification 

ACC: AlexNet, GoogleNet 

DDSM [27] :100%, 98.46% 

INbreast [29]: 100%, 88.24% 

MIAS [28] 98.53%, 91.58% 

Data from Egypt National 

Cancer Institute:97.89%, 88.24 

[11] Breast 

Customized residual network of 152 

layers with 13 residual blocks 

inspired from ResNet50. 

BreaKHis [31]:Acc-92.52% F1-

score-93.45% 

 

[13] Brain 

At stage-1 two channel CNN to 

classify healthy and Glioma samples. 

At stage-2 RCNN is used to classify 

Glioma samples into Meningioma 

and Pituitary. 

Dataset from two leading 

hospitals andKaggle: 

Stage-1. Acc-98.21% 

Stage-2.  VAL_Acc-100% 

[14] Brain 

GoogleNet for deep feature 

extraction and classification using 

SVM, KNN, Dense layers of CNN. 

Figshare [32]: 

Deep CNN 92.3% 

Deep features + SVM : 97.8% 

Deep features + KNN :98.0% 
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[15] Brain 

Hybrid CNN-SVM with threshold 

segmentation 

BRATS2015 [33]: 98.495% 

[16] Brain 

MobileNetV2 ,VGG19, InceptionV3 

based classification 

Kaggle dataset [34]: 

MobileNetV2: 92.00 % 

VGG19: 88.22 % 

InceptionV3: 91.00% 

[17] Brain 

18 layers architecture for 

classification. Performance is 

evaluated on cropped, uncropped and  

segmented dataset 

Figshare [32]: 

Cropped dataset: 98.93% 

Uncropped: 99% 

Segmented: 97.62% 

[18] Brain 

Two stage classification model is 

proposed. Segmentation of MRIs 

(pre-processed using median 

filtering) is performed using CNN 

and GoogleNet transfer learned 

model is used for classification 

ACC: Segmentation, 

Classification 

BRATS2018[35]:96:50%,96.49%, 

BRATS2019[36]: 97:50 %,  

97:31% 

BRATS2020 [37]98%,  98:79 % 

[19] Brain 

Fuzzy deformable fusion model for 

segmentation + LBP feature 

extraction, Statistical features+ 

Binary classification of brain MRIs 

using CNN 

BRATS [38]:95.3% 

SimBRATS:96.3% 

 

[21] Skin 

Deep CNN with pre-processing 

HAM10000[39]: 93.16% 
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[22] Skin 

81 features extracted and classified 

using CNN using SMTP as loss 

function. 

Melanoma dataset [40]: 

For Stage 1,2,3: 96% 

For Stage 1,2 :92% 

[23] Skin 

Transfer learning and fine tuning of 

EfficientNets variants B0-B7. 

HAM10000[39]:87.9% 

Max  accuracy with EfficientNet 

B4 
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