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Abstract 

Recently a new integral transform named -Laplace integral transform has been 

introduced which is a new form of generalization of classical Laplace transform. This new 

generalized transform has many characteristic properties over Laplace transform. In this work, 

we purpose a new technique to find Laplace transform by applying the -Laplace integral 

transform associated with Leibnitz rule which is simple and efficient than the direct Laplace 

transform technique. 

1. Introduction 

Integral transforms always been a very useful mathematical tool to solve 

many kind of differential equation, partial differential equation, integral 

equtions. We have a wide range of integral transform such as Laplace, 

Fourier, Hankel, Mellin, Radon, Gabor, Hilbert, Weiestrauss, Abel, Sumudu, 

etc. They all have a wide range of applications in the fields of Physical 

science, Mathematics, Statistics, and engineering [2, 9, 11]. 

Laplace integral transform is one of the oldest and famous integral 

transforms purposed by P. S. Laplace in its most celebrated work ‘Théorie 

analytique des probabilités’ [8]. Laplace transform has a wide range of 

applications in many fields of science and engineering [1, 3, 10, 12]. 

Recently a new form of generalization of Laplace Transform has been 

introduced and named -Laplace integral transform which has many 

characteristic properties over Laplace transform [4, 5, 6]. 
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 One more beautiful aspect of this new -Laplace integral transform is 

that it is generalization of most of the recently introduced transforms, for 

instance, Sumudu, Kamal, Natural, Polynomial, Tarig, Elzaki, Aboodh, 

Laplace-Carson (Mahgoub), Mohand, Sawi, Sadik integral transform [6]. 

In this paper, we establish a connection between -Laplace integral 

transform and Laplace integral transform via Leibnitz rule to find Laplace 

integral transform of a function. Here we   purpose a new efficient and simple 

technique to find Laplace transform by using this new generalized -Laplace 

transform via Leibnitz rule. We illustrate this technique by some examples. 

2.  Definitions and Prepositions 

(i) Laplace Integral Transform 

Laplace integral transform of a suitable function   0,  tt  is defined by 

      


 
0

.0Re,, ppduueL pu
p   (1) 

Where suitable function means a function for which improper integral of 

right side converges. 

(ii) -Laplace Integral Transform [4] 

-Laplace integral transform of a suitable function   0,  tt  is defined 

by 

      



 

0
.0Re,,1, ppduuL pu

p   (2) 

(iii) Leibnitz Integral Rule [7] 

Leibnitz rule (Differentiation under integral sign) for an integral in the 

form  
 

 
,,

2

1






x

x
dyyx  states that: 

Let  yx,  be a continuous function with continuous partial derivative 

 

x

yx



 ,
 in some region of the  -, yx plane which include region 

    ,, 1021 xxxxyx   where both the functions  ,1 x  and  x2  
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are continuous and have continuous derivatives for .10 xxx   Then, for 

,10 xxx   

 
 

 
        

 

 

























x

x

x

x
x

dx

d
xxdyyx

x
dyyx

dx

d 2

1

2

1
11,,,  

     ., 22 x
dx

d
xx   (3) 

Preposition 1 ([4]). Let   0,  tt  be a suitable function then 

     .lim pp
e

LL 


 (4) 

Preposition 2 ([4]). Let   0,  tt  be a suitable function then  

   .0lim 


p
e

L  (5) 

3. Main Results 

In this section we introduce a new way to find Laplace transform with the 

help of applying Leibnitz rule on -Laplace integral transform. 

Let  t  be the function under consideration of finding Laplace integral 

transform, and we start from the definition of -Laplace integral transform  

     .
0



  duuL pu

p  

Taking partial derivative both sides 

      .
0



 









duuL pu

p  

After applying Leibnitz rule, we get 

      .
0



 















duu

pu
L pu

p  

Let find the -Laplace transform of the right side of the equation, plug into 

equation 

     ., pG
p

L p 






  
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Where    .,
0
   pGduuu pt  

Taking integration both sides with respect to  

     ., 


 dpG
p

L p  

     ccpGL p ,,   is an integral constant 

Where    .,, 


 pGdpG
p

 

By preposition (2)   

   .0lim 


pL  

After taking Limit   

      cpGL p 





,limlim  

 .,lim pGc 


 

After plugging the value of c in equation 

      .,lim, pGpGL s 


  

Finally, after taking limit ,e  we obtain our desired Laplace transform 

      













pGpGL

ee
p

e
,lim,limlim  

      










pGpGL

ee
p ,limlim,lim  

      





























  

dpG
p

dpG
p

L
ee

p ,limlim,lim  

      
























dduu

p
L pu

e
p

0
lim  

  .limlim
0 



























  





dduu

pu pu

e
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Now We have obtained our desired result. 

4. Illustrative Examples 

Example 1.  The Laplace transform of 
 

.0,
sin

t
t

t
 By the definition of 

-Laplace transform 

     .
0



  duuL pu

p  

Taking   ,0,
sin

 t
t

t
t  we have 

  
 


 





0

.
sin

du
u

u
L

su

p  

Taking partial derivative with respect to  (Partial derivative under integral 

sign) We obtain 

    
   


  



























00

sinsin
du

u

upu
du

u

u
L

pupu

p  

 






0

sin duu
p pu  

 
.

1ln

1
2 

















p

p
 

Integrating with respect to  

  
  






























 .

1ln

1
2

d
p

p
L p  

After solving, we have      cpL p  
 lntan 1  where c is an integral 

constant. 

Taking ,limit   we get 
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      cpL p  





lntanlimlim 1  

c



2

0  

.
2


c  

And we get  

      


 
 lncot

2
lntan 11 ppL p  

   .
ln

1
tan 1











 


p

L p  

Again, taking limit as e  

   









 




 ln

1
tanlimlim 1

p
L

e
p

e
 

 
 

.
1

tan
sin 1

















  

pt

t
tL

p

 

Example 2. The Laplace integral transform .0,

2

3

1





t

t

e t
 By the 

definition of -Laplace transform 

     .
0



  duuL pu

p  

Taking   ,0,

2

3

1





t

e

e
t

t
  we have 

   





 

0
2

3

1

.du

u

e
L

u
pu

p  
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Taking partial derivative with respect to  (Partial derivative under integral 

sign) We obtain 

     










 





















0
2

3

1

2

3

1

0
du

u

epu
du

u

e
L

u
pu

u
pu

p  


















0
2

1

1

du

u

ep u
pu  

.
ln

ln2 














 pe

p

p
 

Substitute dvd
p

vp 


 ,ln  and integrating with respect to  

    






 
 















 dve
v

L v
p

e p

v
2  

   ceL v
p

e p

v  
















2  

   .ln2 cp
p eL 

   

Taking ,  we have 

    ceL p
p  






ln2limlim  

000  cc  

   .ln2 
  p

p eL  

Taking limit ,e  we get Laplace transform of the given function 

   .2 p
p eL 

   
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5.  Conclusion 

It is obvious that if we apply -Laplace integral transform via Leibnitz 

rule, then it is applicable to find Laplace integral transform of many of the 

functions without including much more calculation. 
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