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Abstract

In this paper, we have some curvature conditions in 3-dimensional f-Kenmotsu manifolds
with the quarter-symmetric non-metric connection. We also have that this manifold is not
always E-projective flat. And we have shown that 3-dimensional f-Kenmotsu manifold with the
quarter-symmetric non-metric connection is also an n-Einstein manifold and the Ricci soliton
defined on this manifold is said to be expanding or shrinking with respect to values of f and A
constant.

1. Introduction

In 1972, Kenmotsu [6] studied a class of contact Riemannian manifold
satisfying some special conditions and named this manifold as Kenmotsu
manifold.

The manifold M, with the structure (¢,&, m, g) is called normal if
[0, ] + 2dn ® & = 0 and it is almost cosymplectic if dn =0 and dp = 0. A

normal and almost cosymplectic manifold is called cosympectic. Olszak and
Rosca [10] studied geometrical aspect of f~-Kenmotsu manifolds and gave some
curvature conditions. Also the other mathematicians proved that a Ricci-
symmetric f-Kenmotsu Manifold is an Einstein Manifold. Later on, in 2010,
authors also proved that Ricci semi-symmetric a-Kenmotsu manifolds are
Einstein manifolds.
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In 1983, Sharma and Sinha [13] started to study of the Ricci Solitons.
Later on Ricci Solitons in contact manifolds were extensively studied by
Cornelia Livia Bejan and Mircea Crasmareanu [2].

In 2012, the theory of Ricci solitons on Kenmotsu manifolds were studied
by Nagaraja and Premalatha [2] and a deep study was done by S. C. Rastogi

[11], [12] on quarter-symmetric non-metric connection.

Starting with the introduction, we have some fundamental notions used
in this study, in section 2. In section 3, we have the introduction of
f-Kenmotsu Manifold. In the next section 4 we study f-Kenmotsu manifold
with quarter-symmetric non-metric connection and proved that this manifold
is not always &-projective flat. In the last section we prove that f-Kenmotsu
manifold with the quarter-symmetric non-metric connection is n-Einstein
manifold and the Ricci soliton defined on this manifold is classified with

respect to the values of f and A constant.
2. Preliminaries

Consider a 3-dimensional differentiable manifold M with an almost

contact structure (¢, &, n, g) satisfying

0X = -X +n(X),

ne¢ =0,
0 =0,
nE) =1,
8(X, &) = n(X),
8(X, ¢Y) = —g(¢X, Y),
8(9X, $Y) = g(X, Y) - n(X)n(Y) (2.1)

for any vector fields X, Y € (M), where ¢ is a (1,1) tensor field, & is a vecter

field, n is a 1-form and g is Riemannian metric. Then M is called an almost

contact manifold. For an almost contact manifold M, we have [16]
(Vx9)Y = Vx¢Y - §(VxY), (2.2)
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(Vxn)Y = VxnY - n(VxY). (2.3)

Let {e;, ey, e3, ..., e,} be orthonormal basis of 7,(M). R be Riemannian

curvature tensor, S be Ricci curvature tensor, @ be Ricci operator, then
VX, Y e y(M) it follows that [5]

S(X,Y) =) a(R(e;, X)Y, ¢;), (2.4)
i=1
QX = —Z R(ei, X)ei (2-5)
i=1
S(X,Y)=g(@X,Y) (2.6)

In f-Kenmotsu manifold, if the Ricci tensor S satisfy the condition
S(X,Y) = 0g(X, Y) + pn(X)n(Y) 2.7

a, B be certain scalars, then the manifold M is said to be n-Einstein manifold.

If B = 0, the manifold is Einstein manifold.

In a three dimensional Riemannian manifold, the curvature tensor R is

defined as

R(X,Y)Z =8(Y, Z)X -S(X, Z)Y + g(Y, 2)QX - g(X, Z)QY
-5 ls(v. 2)X - g(X, Z)y] (2.8)

where S is the Ricci tensor, @ is Ricci operator and t is the scalar curvature.

Now, let M be an n-dimensional Riemannian manifold with the

Riemannian connection V. A linear connection V 1is said to be a quarter-

symmetric connection on M if its tortion tensor T satisfies
T(X,Y) = n(Y X — n(X)pY 2.9)

where T # 0 and n is a 1-form. If moreover Vg = 0 then the connection is

called quarter-symmetric metric connection.
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If §g # 0 then the connection is called quarter-symmetric non-metric

connection [17].

For n >1, the manifold M is locally projectively flat iff the projective

curvature tensor P vanishes. We define the projective curvature tensor P as
P(X,Y)Z =R(X,Y)Z - 21_n[S(Y’ Z)X - S(X, Z)Y] (2.10)

for any X,Y, Z € x(M) where S is the Ricci tensor and R is the curvature
tensor of M. If P(X,Y)E =0 for any X, Y e y(M), the manifold M is called
&-projective flat [16].

A Ricci Soliton is defined on a Riemannian manifold (M, g) as a natural

generalization of an Einstein metric. We define Ricci Soliton as a triple

(g, V, 1) with g a Riemannian metric, V a vector field and A be a real scalar
such that

Lyg+25+20g =0 (2.11)
where Ly denotes the Lie derivative operator along the vector field V and S

is a Ricci tensor of M. The Ricci soliton is said to be shrinking, steady and

expanding accordingly A is -ve, 0, +ve respectively.
3. f~FKenmotsu manifolds

A three dimensional almost contact manifold M with the structure

(9, &, 1, g) is an f-Kenmotsu manifold if the covariant derivative of ¢ satisfies

[16],

(Vx9)Y = flg(4X, Y)E - n(Y)¢X] (3.1)
where f e C*(M, R) such that df An =0. If 2+ f # Owhere f' = ¢&f,
then M is called Regular [3]. If f = o = constant = 0, M is called

a-Kenmotsu manifold. If f =1 then manifold is called 1-Kenmotsu manifold

also called Kenmotsu Manifold.

By (2.1) and (2.3), we have
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from (3.1),we have [14]
Vx§ = fIX - n(X)]

Also from (2.7), in a 3-dimensional f-Kenmotsu manifold

R(X,Y)Z = (% +2f2 + 2f’j (X AY)Z

- (% +3f% 4 3f') X)) (€ A Y)Z +n(Y) (X £ 8)Z]
and

S(X,Y) = G + 2+ f’jg(X, Y) - (% +3f2 + 8f’jn(X)11(Y).
Thus from (3.5), we get

S(X, &) = -2(f* - f/M(X).

By (3.4) and (3.5), we get

R(X, Y = ~(f* + /) [n(Y)X - n(X)Y]

R(X, Y)e = ~(f* + ) (n(X)e - X),

QX = (% + 12+ f’jX - (% +3f2 + 3f’)n(X)§.
From (2.10) and using (3.7) and (3.6), we have that

Theorem 1. A 3-dimensional f-Kenmotsu manifold

&-projectively flat.

2301

(3.3)

(3.4)

(3.5)

(3.6)

(3.7

(3.8)

(3.9)

always

4. f~Kenmotsu Manifolds with the Quarter-symmetric Non-metric

Connection

Let V be a Riemannian connection of f-Kenmotsu manifold and V be a

linear connection then this linear connection V defined as

VxY = VxY - n(XWY - g(X, Y)e

(4.1)

where X, Y € (M) be any vector field and n be 1-form, is called the quarter-

symmetric non-metric connection [15]. Now, using (2.2), (3.1) and (4.1) we
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have

(Vx0)Y = flg(0X, Y)e - n(¥ X1+ g(¢X, Y)e (4.2)
for any vector field X, Y € y(M) where ¢ be (1,1) tensor field , is & is a vector

field, n is 1-form and f e C*(M, R) so that df An =0. As a result of
df Am =0, we have

df = f', X(f) = fn(X) (4.3)

where f' = &f [10]. If f = 0, the manifold is cosymplectic. If f = a # 0, then
the manifold is a-Kenmotsu. An f-Kenmotsu manifold with quarter-

symmetric non-metric connection is called regular, if f 2, f'+f-2fp=0.
From (2.2), (4.2) we have
Vxt = fIX - n(X)e] - n(X)k. (4.4)
Using (2.2), (4.1) and (3.2), we get

(Vxn) = fz(0X, oY). (4.5)

We define the curvature tensor R of any f-Kenmotsu manifold M with

respect to quarter-symmetric non-metric connection V as
R(X, Y)e = VxVyt - VyVxt - Vix v (4.6)
using (4.1), (4.4) and (3.3) we obtain
VxVyé = X(Y = X(FM(Y)E + fVxY - Xn(Y)g - n(X)fpY

— f2(X, Y)E - n(Y)f*X - n(Y)fX + 2q(Xm(Y)fz

(XM + F(X MY - Xn(Y)E, (4.7)
and

~Vix, vt = ~fVxY + [VyX + Y )X - (XY

+ fX(Y) - fIn(X)g + Xn(Y)g - Yn(X)&. (4.8)
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Using (4.7) and (4.8) in (4.6), we have
R(X, Y = X(F)Y - Y(F)X - X(fM(Y)E + Y(F(X)&
— )X + (XY - (V)X + (XY
+ 2n(Y)fX - 2n(X)foY. (4.9)
By using (4.3) in (4.9), we have
RX, Y = ~(f% + '+ = 2fp) m(Y)X — n(X)Y). (4.10)
From (4.10), we get
RE Y)e =~(f2 + f' + [ - 2fp) (n(Y)g - Y). (4.11)
and
R(X, 8)e = ~(f + f'+ f - 2/6) (X - n(X)E). (4.12)
In (4.10), taking inner product with Z, we get
gRX, Y Z)=~(f* + £ + [ - 2/) M(V)2(X, 2) -n(X)g(Y, Z)).  (4.13)
With the help of these result we have the following lemma.

Lemma 1. Let M be 3-dimensional f-Kenmotsu manifold with the quarter-

symmetric non-metric connection. S be Ricci curvature and @ be Ricci

operator, then

S(X, €)= ~(f* + '+ [ - 2fp)n(X), (4.14)
and

Q= ~(f* + f'+ f - 2fp)e. (4.15)
Proof. Contracting (4.13) with Y and Z and taking summation over
i=1,2,38,..., n, using (2.4) we have (4.14). And also by using (2.6) and (2.1)

in (4.14), we get (4.15).
Lemma 2. Let M be 3-dimensional f-Kenmotsu manifold with quarter
symmetric non-metric connection. S be Ricci tensor, © be scaler curvature

tensor and Q be Ricci operator. Then it follows that
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SX.Y) = (F+ 72+ +f-2foel(X. V)

- (% +3f% 43+ 3f - 6f¢]n(X n(y), (4.16)

and
~ T 2 ’ T 2 '
QX = (§+f if +f—2f¢jX—(§+ 3f2 + 3f +3f—6f¢jn(X)a. (4.17)

Proof. Taking inner product of (4.12) with Y, we get

g(R(X,8).Y) = ~(f* + f' + f - 2/9) (g(X, Y) - n(X)n(Y)).  (4.18)
By putting X =€, Y =X,Z=Y in (2.8), using (4.14) and taking

contraction with &, we obtain

g(R(&, X)Y, &)= S(X, Y) + 4(f% + f' + [ - 2fom(Xn(Y)

~2f 4 4 f - 2fp)e(X. Y) - S [8(X, Y) = n(XOn(Y)] (4.19)

With the help of (4.18) and (4.19), we have (4.16). Now using (4.16) and
(2.6), we get
g(QX - K% + 2 f - 2f¢)X - (% +3f2 +3f +3f - 6f¢jn(X)§}, Y) = 0.

(4.20)
Since Y # 01in (4.20), this leads the proof of (4.17).

Example (a 3-dimensional f~Kenmotsu manifold with quarter-
symmetric non-metric connection). Let us consider the 3-dimensional

manifold M = (x, y, z) € R,z # 0 where (x, y, z) are the standard

coordinates in R®. The vector fields

are linearly independent at each point of M. Let g be the Riemannian metric
defined as

gler, e1) = gleg, ex) = gles, e3) = 1, gley, eg) = gleg, e3) = gles, ) = 0.
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Now consider a (1,1) tensor field ¢ defined by ¢(e;) = —eq, d(eg) = ey,
d(eg) = 0 then using linearity of g and ¢, for any Z, W € y(M) we have

1”1(93) =1,
$(Z) = ~Z + n(Z)es,
8(0Z, W) = g(Z, W) = n(Zm(W).
Now by computation directly, we get
2 2
[e1, e2] = 0, [eg, e3] = — €2 [e1, e3] = - e
By the use of these above equations, we have
2 2
Veer = S Ve €9 = S Vese3 =0,
Velel = Ve262 = Vese]_ = Vegeg = 0. (421)

Now in this example we consider for quarter-symmetric non-metric

connection, using (4.1) and (4.21) we have

~

2 = = 2 =
Ve e = (; —1)e3, Ve,e3 = —e3, V€3 = - ¢ Veej =0=V,e (4.22)

where i # j =1, 2.
We know that
RX,Y)Z =VxVyZ -VyVxZ - Vix y}Z. (4.23)
Using (4.22) and (4.23) we get

~ 2 6 ~
Re;, e3)e3 = [; 3 jei’ R(e;, ej)es = 0
4

R(e;, ejlej = (; - —zjei, R(e;, eg)ej =0, (4.24)
z

= 2 6
Res, e;)e; = (; - —zjes

z

where 1 # j =1, 2.
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Using (2.4) and (4.24), we verify that

§(ei,ei):—%+§+1,i:1, 2, S(es, e3):—%+%. (4.25)
z z

Now using (2.10), (4.24) and (4.25), we have that

p p 4 8
z

This leads to the following Lemma:

Lemma 3. A 3-dimensional f-Kenmotsu manifold with the quarter-
symmetric non-metric connection is not necessarily &-projectively flat.

5. Ricci Solitons in f~Kenmotsu Manifold with the quarter-symmetric

non-metric connection

Consider a 3-dimensional f-Kenmotsu manifold with the quarter-
symmetric non-metric connection. Let V be pointwise collinear with & (i.e.
V = b, where b is a function). Then (Ly g + 2S + 2Ag)(X, Y) = 0 implies

(XoM(Y) + bg(V &, Y) + (YoI(X) + bg(X, VyE) + 25(X, Y) + 20g(X, Y) = 0.

(5.1)
Using (4.4) in (5.1), we get

0 = (Xb)n(Y) + (Yon(X) + 2bfz(X, Y) = 2bf(X)n(Y) - bn(X)n(Y) + 25(X, Y)
+208(X,Y) (5.2)
substitute Y with & in (5.2),we obtain
Xb - 200(X) + EbN(X) - 4(f% + f'+ f - 2fom(X) + 2(X) =0 (5.3)
again substituting X with & in (5.3)
Eb=2f2+f +f-2fp)+b-1r (5.4)
putting (5.3) in (5.4), we have

b=[2f%+f +f-2f¢)+b-An (5.5)
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applying d on (5.5)
0=db=[20f2+f +f-2f)+b-Aldn (5.6)

since dn # 0, we have

R(F2+f +F-2f)+b-2]=0. (5.7)

Now using (5.5) and (5.7), it is obtain that b is constant. Hence from (5.2),
we can verify

S(X, Y) = ~(bf + 1)g(X, Y) + b(f = In(X)n(Y) (5.8)

which results that M is n-Einstein manifold. This gives a following theorem:

Theorem 2. If in a 3- dimensional f-Kenmotsu manifold with quarter-
symmetric non-metric connection, the metric g is a Ricci solitons and V is a
pointwise collinear with &, then V is a constant multiple of § and M is

n-Einstein manifold of the form (5.8) and Ricci Solitons is expanding or

shrinking according as » = 2(f% + f' + f — 2fd) + b is positive or negative.
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