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Abstract 

In this paper we learn the new idea total geodetic global domination number of a graph. A 

set  GVR   is termed as a total geodetic global dominating set if R is both a total geodetic set 

and a global dominating set. The minimum cardinality among all total geodetic global 

dominating sets of G is called total geodetic global domination number and it is designated by 

 .Ggt  For a connected graph G, if   ,kG   and   lGgt   then   2 lkG
tg  with 

2, lk  where lk,  are two positive integers.  

1. Introduction 

Throughout this article we scrutinize a simple graph  ., EVG   For 

fundamental graph theory expressions see [2], [3]. Here G  is the complement 

of G  with point set V and two points are adjacent in G  if and only if they 
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are not adjacent in G. The distance between two points u and v is the length 

of a shortest vu   path in a connected graph G. A point u of G is known as a 

full point if u is adjacent to all other points of G. 

      GExyGVyxN  :  is called the neighborhood of the point x in G. 

A point x is an extreme point of a graph G if  xN  is complete. The 

eccentricity  ve  of a point v in G is the maximum distance from v and a point 

of G. The minimum eccentricity among the points of G is the radius, Grad  or 

 Gr  and the maximum eccentricity is the diameter, Gdiam  of G. A cut 

point of G is a point whose removal results a disconnected graph. A subset 

VB   is a dominating set of G if each point of BV   is adjacent with at 

least one point of B. The domination number,  G  is the minimum 

cardinality out of all dominating sets of G. A dominating set B of G is a global 

dominating set of G if every point in G  is adjacent with a point in B. The 

global domination number,  G  is the minimum cardinality out of all global 

dominating sets of G [6]. An vu   path of length  vud ,  is known as vu   

geodesic. A point x is said to lie on a vu   geodesic Q if x is a point of Q 

including the points u and v. The corona product of two graphs HG   is 

defined as the graph obtained by taking one copy of G and  GV  copies of H 

and joining the i-th point of G to every point in the i-th copy of H. A geodetic 

set of G is a set  GVR   such that every point of G is contained in a 

geodesic joining some couple of points in R. The geodetic number  Gg  of G is 

the minimum order of its geodetic sets and any geodetic set of order  Gg  is a 

geodetic basis. The geodetic number of a graph was introduced in [4]. A 

geodetic set  GVR   is a total geodetic set if the subgraph  RG  induced by 

R has no isolated points. The total geodetic number  Ggt  is the minimum 

cardinality out of all total geodetic sets of G and it was introduced by 

Abdollahzadeh Ahangar and Vladimir Samodivkin [1]. A set VR   is a 

geodetic global dominating set if it is both a geodetic set and a global 

dominating set. The geodetic global domination number  Gg  is the 

minimum cardinality among all the geodetic global dominating sets of G [5]. 

In this paper we define and study total geodetic global domination number of 

a graph.  
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Theorem 1.1 [5]. Each extreme point of a connected graph G belongs to 

every geodetic global dominating set of G.  

Theorem 1.2 [5]. Every full point of a connected graph G belongs to every 

geodetic global dominating set of G.  

Theorem 1.3 [5]. For any connected graph G with cut point u, every 

geodetic global dominating set contains at least one point from each 

component of  .uG    

Theorem 1.4 [5]. Let G be a connected graph of order p. Then,   2 Gg  

if and only if 2KG   or there exist a geodetic set  yxR ,  such that 

  .3, yxd   

2. Total Geodetic Global domination Number of a Graph 

Definition 2.1. A set  GVR   is termed as a total geodetic global 

dominating set if R is both a total geodetic set and a global dominating set. 

The total geodetic global domination number,  Ggt  is the minimum 

cardinality among all total geodetic global dominating sets of G.  

Example 2.2. Scrutinize the graph G given in Figure 2.1 Here 

 6311 ,, aaaR   is a total geodetic set and  6312 ,, aaaR   is a global 

dominating set. It is clear that  63213 ,,, aaaaR   is a minimum total 

geodetic global dominating set. Hence   .4 Ggt   

 

Figure 2.1. Graph G with   .4 Ggt  

Observation 2.3. For a connected graph G of order   

          .,max,2 GGgGGgGp tgtt     
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Observation 2.4. For a complete graph     .,2 pGpK gtp    

Observation 2.5. For a complete bipartite graph ,, qpkG    

 
 



 


.4,if4

,3,2if1,min
, qp

qpqp
k qpgt  

Observation 2.6. For a star graph 1,1 pK  with p points   .1,1 pK pgt     

Theorem 2.7. Every total geodetic global dominating set of a connected 

graph G contains all its extreme points.  

Proof. Since every total geodetic global dominating set of G is also a 

geodetic global dominating set of G. Hence the result follows from theorem 

1.1.  □ 

Theorem 2.8. Let G be a connected graph with cut points and let R be a 

total geodetic global dominating set of G. If u is a cut point of G, then every 

component of  uG   contains at least one element of R.  

Proof. Let u be a cut point of G and R be a total geodetic global 

dominating set of G. Since R is also a geodetic global dominating set of G. By 

theorem 1.3. every component of  uG   contains at least one element of R.  □ 

Theorem 2.9. Each full point and cut point of a connected graph G 

belongs to every total geodetic global dominating set of G.  

Proof. Since every total geodetic global dominating set is a geodetic 

global dominating set. By theorem 1.2 each full point belongs to every total 

geodetic global dominating set of G. Let R be the total geodetic set of G and 

let u be a cut point of G. Then take  2,,,, 321 pGGGG p  be the 

components of  .uG   By theorem 2.8 R contains at least one point from 

each .,,, 21 pGGG   Since every points in G is connected, it follows that 

.Ru    □ 

Theorem 2.10. For any non-complete connected graph G with m extreme 

points and n full points,    .,2max Gnm gt   

Proof. This follows from theorem 2.7 and theorem 2.9.  □ 
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Theorem 2.11. For a connected graph G of order  Ggp t2,2  

  .pGgt    

Proof. Any total geodetic set has at least two points. Therefore, 

  .2Ggt  By our definition we know that every total geodetic global 

dominating set is a total geodetic set. So    .GGg gtt   Clearly set of all 

points of G is a total geodetic global dominating set. Thus   .pGgt   □ 

Theorem 2.12. For a connected graph G of order  Gp gt2,2   

  .pGgt   

Proof. Since every total geodetic dominating set contain at least two 

points. So   .2Ggt  Since every total geodetic global dominating set is also 

a total geodetic global dominating set. From that    .GG gtgt   Clearly set 

of all points of G is a total geodetic global dominating set. Thus 

    .pGG gtgt    □ 

Theorem 2.13. For a connected graph G of order  Gp g2,2  

  .pGgt   

Remark 2.14. The bound given in theorem 2.13 are sharp. For the 

complete graph   pKK pgtp ,  so the above equality hold. For the graph G 

given in Figure 2.2,  531 ,, aaaR   is the minimum geodetic global 

dominating set, so that   .3 Gg  Also  653211 ,,,, aaaaaR   is the 

minimum total geodetic global dominating set. Hence   .5 Ggt  Therefore, 

   .2 GG gtg    

 

Figure 2.2. Graph G with   3,6  Gp g  and   .5 Ggt  
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Theorem 2.15. For a connected graph G of order   pGp g 2,2  

if and only if every point of G is either a extreme point or a cut point or a full 

point.  

Proof. Let us assume   pGgt   for all .2p  To prove every point of 

G is either a extreme point or a cut point or a full point. Suppose we assume 

that G contains a point u which is not a full or cut or extreme point. Since u is 

not a extreme point, then pKG   and so    uGV   is a geodetic set of G. 

Also, u is not a full point, this implies .pKG   Since G is connected, 

   uGV   is a global dominating set of G. Moreover u is not a cut point of G, 

so    uGV   has no isolated points. Hence    uGV   is a total geodetic 

global dominating set of G. Therefore,       ,1 puGVGgt  which 

is a contradiction to our assumption. Conversely, we assume that every point 

of G is either a full point or a cut point or an extreme point. If ,pKG   then 

by observation 2.4.,   .pGgt   If pKG   the result follows from theorem 

2.10 and theorem 2.12.  □ 

Corollary 2.16. For a connected graph G, if   ,2 Ggt  then   .2 Gg   

Corollary 2.17. For a connected graph G, if   ,pGg   then   .pGgt    

Theorem 2.18. If  eKG p   is the graph obtained from pK  by 

removing a line 4, pe  then   .pGgt    

Proof. Let  ,eKG p   where e is a line of .pK  Let ,abe   where 

 GVba ,  then  baR ,1   is the geodetic set with minimum cardinality. 

Also    .1 GVRN   Hence 1R  is a dominating set of G. But 1R  has isolated 

points. Therefore 1R  is not a total geodetic set. Since   1deg  pci  for all 

   21,1  piRGVci  here     .2degdeg  pba  Take 

 .112 cRR   Now, 2R  is a total geodetic set and a dominating set of G. 

Because each  22  pici  has degree .1p  So each  22  pici  

are isolate in .G  Hence 2R  is not a global dominating set of G. Consider 

 .22  picB i  Now BRR 23   is a minimum total geodetic 
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global dominating set of G. Hence   pBRRGgt  323    

.3 p  □ 

Theorem 2.19. Let G be a trivial graph and H be any graph. If R is a 

minimum total geodetic global dominating set in ,HG   then   .GVR    

Proof. Let  GVy   and R be a minimum total geodetic global 

dominating set of .HG   We know that by definition of yHG ,  is adjacent 

to each point of H in .HG   So that y is an isolate point in G. Hence y must 

be an point of R. Therefore,   .GVR    □ 

Theorem 2.20. Let G be any connected graph of order 2p  and H be 

any graph. If R is a total geodetic global dominating set in ,HG   then 

  
iaHVR   for every  .GVai    

Proof. Let    pi aaaGV ,,, 2   and  i
n

ii bbb ,,, 21   be the point set of 

ith copy of H. To prove that   
iaHVR   for some  .GVai   Suppose 

  
iaHVR   for some  .GVai   Since every point in  

iaHV  is adjacent 

to exactly one point ia  in  GV  in .HG   So that  
iaHV  does not lies on 

any geodesic path in R. Hence R is not a total geodetic global dominating set 

of G. Which is a contradiction to our assumption. Therefore,   
iaHVR   

for every  .GVai   □ 

Theorem 2.21. Let G be any connected graph of order 2n  and pK  be 

a complete graph of order ,2p  then   .npKG pgt    

Proof. Let    naaaGV ,,, 21   and  i
p

ii bbb ,,, 21   be the point set of ith 

copy of .pK  Consider  .,,,,,,,,,,,,,,, 21
33

2
3
1

22
2

11
2

1
1

n
p

nn
ppp bbbbbbbbbbbR    

Clearly R is a total geodetic set and dominating set of G. Also R is a 

dominating set of .G  Which is also minimum. Hence  pgt KG    

.npR   □ 
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3. Realization Result 

Theorem 3.1. For a connected graph G, if   ,kG   and   lGgt   then 

  2 lkGgt  with 2, lk  where lk,  are two positive integers.  

Proof. Let 654321 ,,,,,: xxxxxxC  be a cycle of order 6. Let H be a 

graph obtained from C by adding the new points 321 ,,, lyyy   to the point 

.1x  Let G be the graph obtained from H by taking a copy of the path on 

  123 k  points  23210 ,,,, kvvvv   and joining 0v  to the point 6x  as 

shown in Figure 3.1. Let    12352611 ,,,,,  kvvvxxR   is a minimum 

global dominating set of G. Clearly 1R  contains k points and so   .kG   

Take     .,,,,,, 2312313212  kkl vvxyyyR   Then 2R  is a minimum 

total geodetic set of G. Hence   .lGgt   Now 13 RR   

  .,,,, 23321  kl vyyy   Clearly 3R  is a minimum total geodetic global 

dominating set of G. Hence   .2213  lklRRGgt   □ 

 

Figure 3.1. Graph G with     lGgkG t  ,  and   2 lkGgt  

Conclusion 

In this paper we discussed the total geodetic global domination number 

 .Ggt  We have found some general results of total geodetic global 

domination number. This work can be extended to find total edge geodetic 

global domination number of a graph, upper total geodetic global domination 

number of a graph, upper total edge geodetic global domination number of a 

graph.  
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